| author | wenzelm | 
| Sat, 11 Nov 2023 20:08:20 +0100 | |
| changeset 78944 | b0b86fead48c | 
| parent 69597 | ff784d5a5bfb | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/ex/While_Combinator_Example.thy  | 
| 37760 | 2  | 
Author: Tobias Nipkow  | 
3  | 
Copyright 2000 TU Muenchen  | 
|
4  | 
*)  | 
|
5  | 
||
| 61343 | 6  | 
section \<open>An application of the While combinator\<close>  | 
| 37760 | 7  | 
|
8  | 
theory While_Combinator_Example  | 
|
| 
66453
 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 
wenzelm 
parents: 
62390 
diff
changeset
 | 
9  | 
imports "HOL-Library.While_Combinator"  | 
| 37760 | 10  | 
begin  | 
11  | 
||
| 69597 | 12  | 
text \<open>Computation of the \<^term>\<open>lfp\<close> on finite sets via  | 
| 61343 | 13  | 
iteration.\<close>  | 
| 37760 | 14  | 
|
15  | 
theorem lfp_conv_while:  | 
|
16  | 
"[| mono f; finite U; f U = U |] ==>  | 
|
17  | 
    lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
 | 
|
18  | 
apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and  | 
|
19  | 
r = "((Pow U \<times> UNIV) \<times> (Pow U \<times> UNIV)) \<inter>  | 
|
| 67399 | 20  | 
inv_image finite_psubset ((-) U o fst)" in while_rule)  | 
| 37760 | 21  | 
apply (subst lfp_unfold)  | 
22  | 
apply assumption  | 
|
23  | 
apply (simp add: monoD)  | 
|
24  | 
apply (subst lfp_unfold)  | 
|
25  | 
apply assumption  | 
|
26  | 
apply clarsimp  | 
|
27  | 
apply (blast dest: monoD)  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
41959 
diff
changeset
 | 
28  | 
apply (fastforce intro!: lfp_lowerbound)  | 
| 37760 | 29  | 
apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset])  | 
30  | 
apply (clarsimp simp add: finite_psubset_def order_less_le)  | 
|
| 
40786
 
0a54cfc9add3
gave more standard finite set rules simp and intro attribute
 
nipkow 
parents: 
37760 
diff
changeset
 | 
31  | 
apply (blast dest: monoD)  | 
| 37760 | 32  | 
done  | 
33  | 
||
34  | 
||
| 61343 | 35  | 
subsection \<open>Example\<close>  | 
| 37760 | 36  | 
|
| 61343 | 37  | 
text\<open>Cannot use @{thm[source]set_eq_subset} because it leads to
 | 
| 37760 | 38  | 
looping because the antisymmetry simproc turns the subset relationship  | 
| 61343 | 39  | 
back into equality.\<close>  | 
| 37760 | 40  | 
|
41  | 
theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
 | 
|
42  | 
  P {0, 4, 2}"
 | 
|
43  | 
proof -  | 
|
| 67613 | 44  | 
have seteq: "\<And>A B. (A = B) = ((\<forall>a \<in> A. a\<in>B) \<and> (\<forall>b\<in>B. b\<in>A))"  | 
| 37760 | 45  | 
by blast  | 
| 67613 | 46  | 
  have aux: "\<And>f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
 | 
| 37760 | 47  | 
apply blast  | 
48  | 
done  | 
|
49  | 
show ?thesis  | 
|
50  | 
    apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
 | 
|
51  | 
apply (rule monoI)  | 
|
52  | 
apply blast  | 
|
53  | 
apply simp  | 
|
54  | 
apply (simp add: aux set_eq_subset)  | 
|
| 61343 | 55  | 
txt \<open>The fixpoint computation is performed purely by rewriting:\<close>  | 
| 37760 | 56  | 
apply (simp add: while_unfold aux seteq del: subset_empty)  | 
57  | 
done  | 
|
58  | 
qed  | 
|
59  | 
||
| 62390 | 60  | 
end  |