| author | haftmann | 
| Tue, 20 Oct 2009 08:10:47 +0200 | |
| changeset 33008 | b0ff69f0a248 | 
| parent 24893 | b8ef7afe3a6b | 
| child 35762 | af3ff2ba4c54 | 
| permissions | -rw-r--r-- | 
| 1478 | 1 | (* Title: ZF/qpair.thy | 
| 0 | 2 | ID: $Id$ | 
| 1478 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 4 | Copyright 1993 University of Cambridge | 
| 5 | ||
| 13285 | 6 | Many proofs are borrowed from pair.thy and sum.thy | 
| 7 | ||
| 8 | Do we EVER have rank(a) < rank(<a;b>) ? Perhaps if the latter rank | |
| 9 | is not a limit ordinal? | |
| 0 | 10 | *) | 
| 11 | ||
| 13356 | 12 | header{*Quine-Inspired Ordered Pairs and Disjoint Sums*}
 | 
| 13 | ||
| 16417 | 14 | theory QPair imports Sum func begin | 
| 13285 | 15 | |
| 13356 | 16 | text{*For non-well-founded data
 | 
| 17 | structures in ZF. Does not precisely follow Quine's construction. Thanks | |
| 18 | to Thomas Forster for suggesting this approach! | |
| 19 | ||
| 20 | W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers, | |
| 21 | 1966. | |
| 22 | *} | |
| 23 | ||
| 24893 | 24 | definition | 
| 25 |   QPair     :: "[i, i] => i"                      ("<(_;/ _)>")  where
 | |
| 13285 | 26 | "<a;b> == a+b" | 
| 3923 | 27 | |
| 24893 | 28 | definition | 
| 29 | qfst :: "i => i" where | |
| 13285 | 30 | "qfst(p) == THE a. EX b. p=<a;b>" | 
| 31 | ||
| 24893 | 32 | definition | 
| 33 | qsnd :: "i => i" where | |
| 13285 | 34 | "qsnd(p) == THE b. EX a. p=<a;b>" | 
| 35 | ||
| 24893 | 36 | definition | 
| 37 |   qsplit    :: "[[i, i] => 'a, i] => 'a::{}"  (*for pattern-matching*)  where
 | |
| 13285 | 38 | "qsplit(c,p) == c(qfst(p), qsnd(p))" | 
| 0 | 39 | |
| 24893 | 40 | definition | 
| 41 | qconverse :: "i => i" where | |
| 13285 | 42 |     "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
 | 
| 43 | ||
| 24893 | 44 | definition | 
| 45 | QSigma :: "[i, i => i] => i" where | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13544diff
changeset | 46 |     "QSigma(A,B)  ==  \<Union>x\<in>A. \<Union>y\<in>B(x). {<x;y>}"
 | 
| 0 | 47 | |
| 929 
137035296ad6
Moved declarations of @QSUM and <*> to a syntax section.
 lcp parents: 
753diff
changeset | 48 | syntax | 
| 22808 | 49 |   "_QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
 | 
| 0 | 50 | translations | 
| 24893 | 51 | "QSUM x:A. B" => "CONST QSigma(A, %x. B)" | 
| 22808 | 52 | |
| 53 | abbreviation | |
| 54 | qprod (infixr "<*>" 80) where | |
| 55 | "A <*> B == QSigma(A, %_. B)" | |
| 0 | 56 | |
| 24893 | 57 | definition | 
| 58 | qsum :: "[i,i]=>i" (infixr "<+>" 65) where | |
| 13285 | 59 |     "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
 | 
| 3923 | 60 | |
| 24893 | 61 | definition | 
| 62 | QInl :: "i=>i" where | |
| 13285 | 63 | "QInl(a) == <0;a>" | 
| 64 | ||
| 24893 | 65 | definition | 
| 66 | QInr :: "i=>i" where | |
| 13285 | 67 | "QInr(b) == <1;b>" | 
| 68 | ||
| 24893 | 69 | definition | 
| 70 | qcase :: "[i=>i, i=>i, i]=>i" where | |
| 13285 | 71 | "qcase(c,d) == qsplit(%y z. cond(y, d(z), c(z)))" | 
| 72 | ||
| 73 | ||
| 13356 | 74 | subsection{*Quine ordered pairing*}
 | 
| 13285 | 75 | |
| 76 | (** Lemmas for showing that <a;b> uniquely determines a and b **) | |
| 77 | ||
| 78 | lemma QPair_empty [simp]: "<0;0> = 0" | |
| 79 | by (simp add: QPair_def) | |
| 80 | ||
| 81 | lemma QPair_iff [simp]: "<a;b> = <c;d> <-> a=c & b=d" | |
| 82 | apply (simp add: QPair_def) | |
| 83 | apply (rule sum_equal_iff) | |
| 84 | done | |
| 85 | ||
| 86 | lemmas QPair_inject = QPair_iff [THEN iffD1, THEN conjE, standard, elim!] | |
| 87 | ||
| 88 | lemma QPair_inject1: "<a;b> = <c;d> ==> a=c" | |
| 89 | by blast | |
| 90 | ||
| 91 | lemma QPair_inject2: "<a;b> = <c;d> ==> b=d" | |
| 92 | by blast | |
| 93 | ||
| 94 | ||
| 13356 | 95 | subsubsection{*QSigma: Disjoint union of a family of sets
 | 
| 96 | Generalizes Cartesian product*} | |
| 13285 | 97 | |
| 98 | lemma QSigmaI [intro!]: "[| a:A; b:B(a) |] ==> <a;b> : QSigma(A,B)" | |
| 99 | by (simp add: QSigma_def) | |
| 100 | ||
| 101 | ||
| 102 | (** Elimination rules for <a;b>:A*B -- introducing no eigenvariables **) | |
| 103 | ||
| 104 | lemma QSigmaE [elim!]: | |
| 105 | "[| c: QSigma(A,B); | |
| 106 | !!x y.[| x:A; y:B(x); c=<x;y> |] ==> P | |
| 107 | |] ==> P" | |
| 13356 | 108 | by (simp add: QSigma_def, blast) | 
| 13285 | 109 | |
| 110 | lemma QSigmaE2 [elim!]: | |
| 111 | "[| <a;b>: QSigma(A,B); [| a:A; b:B(a) |] ==> P |] ==> P" | |
| 112 | by (simp add: QSigma_def) | |
| 113 | ||
| 114 | lemma QSigmaD1: "<a;b> : QSigma(A,B) ==> a : A" | |
| 115 | by blast | |
| 116 | ||
| 117 | lemma QSigmaD2: "<a;b> : QSigma(A,B) ==> b : B(a)" | |
| 118 | by blast | |
| 119 | ||
| 120 | lemma QSigma_cong: | |
| 121 | "[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> | |
| 122 | QSigma(A,B) = QSigma(A',B')" | |
| 123 | by (simp add: QSigma_def) | |
| 124 | ||
| 125 | lemma QSigma_empty1 [simp]: "QSigma(0,B) = 0" | |
| 126 | by blast | |
| 127 | ||
| 128 | lemma QSigma_empty2 [simp]: "A <*> 0 = 0" | |
| 129 | by blast | |
| 130 | ||
| 131 | ||
| 13356 | 132 | subsubsection{*Projections: qfst, qsnd*}
 | 
| 13285 | 133 | |
| 134 | lemma qfst_conv [simp]: "qfst(<a;b>) = a" | |
| 13544 | 135 | by (simp add: qfst_def) | 
| 13285 | 136 | |
| 137 | lemma qsnd_conv [simp]: "qsnd(<a;b>) = b" | |
| 13544 | 138 | by (simp add: qsnd_def) | 
| 13285 | 139 | |
| 140 | lemma qfst_type [TC]: "p:QSigma(A,B) ==> qfst(p) : A" | |
| 141 | by auto | |
| 142 | ||
| 143 | lemma qsnd_type [TC]: "p:QSigma(A,B) ==> qsnd(p) : B(qfst(p))" | |
| 144 | by auto | |
| 145 | ||
| 146 | lemma QPair_qfst_qsnd_eq: "a: QSigma(A,B) ==> <qfst(a); qsnd(a)> = a" | |
| 147 | by auto | |
| 148 | ||
| 149 | ||
| 13356 | 150 | subsubsection{*Eliminator: qsplit*}
 | 
| 13285 | 151 | |
| 152 | (*A META-equality, so that it applies to higher types as well...*) | |
| 153 | lemma qsplit [simp]: "qsplit(%x y. c(x,y), <a;b>) == c(a,b)" | |
| 154 | by (simp add: qsplit_def) | |
| 155 | ||
| 156 | ||
| 157 | lemma qsplit_type [elim!]: | |
| 158 | "[| p:QSigma(A,B); | |
| 159 | !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x;y>) | |
| 160 | |] ==> qsplit(%x y. c(x,y), p) : C(p)" | |
| 161 | by auto | |
| 162 | ||
| 163 | lemma expand_qsplit: | |
| 164 | "u: A<*>B ==> R(qsplit(c,u)) <-> (ALL x:A. ALL y:B. u = <x;y> --> R(c(x,y)))" | |
| 165 | apply (simp add: qsplit_def, auto) | |
| 166 | done | |
| 167 | ||
| 168 | ||
| 13356 | 169 | subsubsection{*qsplit for predicates: result type o*}
 | 
| 13285 | 170 | |
| 171 | lemma qsplitI: "R(a,b) ==> qsplit(R, <a;b>)" | |
| 172 | by (simp add: qsplit_def) | |
| 173 | ||
| 174 | ||
| 175 | lemma qsplitE: | |
| 176 | "[| qsplit(R,z); z:QSigma(A,B); | |
| 177 | !!x y. [| z = <x;y>; R(x,y) |] ==> P | |
| 178 | |] ==> P" | |
| 13356 | 179 | by (simp add: qsplit_def, auto) | 
| 13285 | 180 | |
| 181 | lemma qsplitD: "qsplit(R,<a;b>) ==> R(a,b)" | |
| 182 | by (simp add: qsplit_def) | |
| 183 | ||
| 184 | ||
| 13356 | 185 | subsubsection{*qconverse*}
 | 
| 13285 | 186 | |
| 187 | lemma qconverseI [intro!]: "<a;b>:r ==> <b;a>:qconverse(r)" | |
| 188 | by (simp add: qconverse_def, blast) | |
| 189 | ||
| 190 | lemma qconverseD [elim!]: "<a;b> : qconverse(r) ==> <b;a> : r" | |
| 191 | by (simp add: qconverse_def, blast) | |
| 192 | ||
| 193 | lemma qconverseE [elim!]: | |
| 194 | "[| yx : qconverse(r); | |
| 195 | !!x y. [| yx=<y;x>; <x;y>:r |] ==> P | |
| 196 | |] ==> P" | |
| 13356 | 197 | by (simp add: qconverse_def, blast) | 
| 13285 | 198 | |
| 199 | lemma qconverse_qconverse: "r<=QSigma(A,B) ==> qconverse(qconverse(r)) = r" | |
| 200 | by blast | |
| 201 | ||
| 202 | lemma qconverse_type: "r <= A <*> B ==> qconverse(r) <= B <*> A" | |
| 203 | by blast | |
| 204 | ||
| 205 | lemma qconverse_prod: "qconverse(A <*> B) = B <*> A" | |
| 206 | by blast | |
| 207 | ||
| 208 | lemma qconverse_empty: "qconverse(0) = 0" | |
| 209 | by blast | |
| 210 | ||
| 211 | ||
| 13356 | 212 | subsection{*The Quine-inspired notion of disjoint sum*}
 | 
| 13285 | 213 | |
| 214 | lemmas qsum_defs = qsum_def QInl_def QInr_def qcase_def | |
| 215 | ||
| 216 | (** Introduction rules for the injections **) | |
| 217 | ||
| 218 | lemma QInlI [intro!]: "a : A ==> QInl(a) : A <+> B" | |
| 219 | by (simp add: qsum_defs, blast) | |
| 1097 
01379c46ad2d
Changed definitions so that qsplit is now defined in terms of
 lcp parents: 
929diff
changeset | 220 | |
| 13285 | 221 | lemma QInrI [intro!]: "b : B ==> QInr(b) : A <+> B" | 
| 222 | by (simp add: qsum_defs, blast) | |
| 223 | ||
| 224 | (** Elimination rules **) | |
| 225 | ||
| 226 | lemma qsumE [elim!]: | |
| 227 | "[| u: A <+> B; | |
| 228 | !!x. [| x:A; u=QInl(x) |] ==> P; | |
| 229 | !!y. [| y:B; u=QInr(y) |] ==> P | |
| 230 | |] ==> P" | |
| 13356 | 231 | by (simp add: qsum_defs, blast) | 
| 13285 | 232 | |
| 233 | ||
| 234 | (** Injection and freeness equivalences, for rewriting **) | |
| 235 | ||
| 236 | lemma QInl_iff [iff]: "QInl(a)=QInl(b) <-> a=b" | |
| 237 | by (simp add: qsum_defs ) | |
| 238 | ||
| 239 | lemma QInr_iff [iff]: "QInr(a)=QInr(b) <-> a=b" | |
| 240 | by (simp add: qsum_defs ) | |
| 241 | ||
| 13823 | 242 | lemma QInl_QInr_iff [simp]: "QInl(a)=QInr(b) <-> False" | 
| 13285 | 243 | by (simp add: qsum_defs ) | 
| 244 | ||
| 13823 | 245 | lemma QInr_QInl_iff [simp]: "QInr(b)=QInl(a) <-> False" | 
| 13285 | 246 | by (simp add: qsum_defs ) | 
| 247 | ||
| 248 | lemma qsum_empty [simp]: "0<+>0 = 0" | |
| 249 | by (simp add: qsum_defs ) | |
| 250 | ||
| 251 | (*Injection and freeness rules*) | |
| 252 | ||
| 253 | lemmas QInl_inject = QInl_iff [THEN iffD1, standard] | |
| 254 | lemmas QInr_inject = QInr_iff [THEN iffD1, standard] | |
| 13823 | 255 | lemmas QInl_neq_QInr = QInl_QInr_iff [THEN iffD1, THEN FalseE, elim!] | 
| 256 | lemmas QInr_neq_QInl = QInr_QInl_iff [THEN iffD1, THEN FalseE, elim!] | |
| 13285 | 257 | |
| 258 | lemma QInlD: "QInl(a): A<+>B ==> a: A" | |
| 259 | by blast | |
| 260 | ||
| 261 | lemma QInrD: "QInr(b): A<+>B ==> b: B" | |
| 262 | by blast | |
| 263 | ||
| 264 | (** <+> is itself injective... who cares?? **) | |
| 265 | ||
| 266 | lemma qsum_iff: | |
| 267 | "u: A <+> B <-> (EX x. x:A & u=QInl(x)) | (EX y. y:B & u=QInr(y))" | |
| 13356 | 268 | by blast | 
| 13285 | 269 | |
| 270 | lemma qsum_subset_iff: "A <+> B <= C <+> D <-> A<=C & B<=D" | |
| 271 | by blast | |
| 272 | ||
| 273 | lemma qsum_equal_iff: "A <+> B = C <+> D <-> A=C & B=D" | |
| 274 | apply (simp (no_asm) add: extension qsum_subset_iff) | |
| 275 | apply blast | |
| 276 | done | |
| 277 | ||
| 13356 | 278 | subsubsection{*Eliminator -- qcase*}
 | 
| 13285 | 279 | |
| 280 | lemma qcase_QInl [simp]: "qcase(c, d, QInl(a)) = c(a)" | |
| 281 | by (simp add: qsum_defs ) | |
| 282 | ||
| 283 | ||
| 284 | lemma qcase_QInr [simp]: "qcase(c, d, QInr(b)) = d(b)" | |
| 285 | by (simp add: qsum_defs ) | |
| 286 | ||
| 287 | lemma qcase_type: | |
| 288 | "[| u: A <+> B; | |
| 289 | !!x. x: A ==> c(x): C(QInl(x)); | |
| 290 | !!y. y: B ==> d(y): C(QInr(y)) | |
| 291 | |] ==> qcase(c,d,u) : C(u)" | |
| 13784 | 292 | by (simp add: qsum_defs, auto) | 
| 13285 | 293 | |
| 294 | (** Rules for the Part primitive **) | |
| 295 | ||
| 296 | lemma Part_QInl: "Part(A <+> B,QInl) = {QInl(x). x: A}"
 | |
| 297 | by blast | |
| 298 | ||
| 299 | lemma Part_QInr: "Part(A <+> B,QInr) = {QInr(y). y: B}"
 | |
| 300 | by blast | |
| 301 | ||
| 302 | lemma Part_QInr2: "Part(A <+> B, %x. QInr(h(x))) = {QInr(y). y: Part(B,h)}"
 | |
| 303 | by blast | |
| 0 | 304 | |
| 13285 | 305 | lemma Part_qsum_equality: "C <= A <+> B ==> Part(C,QInl) Un Part(C,QInr) = C" | 
| 306 | by blast | |
| 307 | ||
| 308 | ||
| 13356 | 309 | subsubsection{*Monotonicity*}
 | 
| 13285 | 310 | |
| 311 | lemma QPair_mono: "[| a<=c; b<=d |] ==> <a;b> <= <c;d>" | |
| 312 | by (simp add: QPair_def sum_mono) | |
| 313 | ||
| 314 | lemma QSigma_mono [rule_format]: | |
| 315 | "[| A<=C; ALL x:A. B(x) <= D(x) |] ==> QSigma(A,B) <= QSigma(C,D)" | |
| 316 | by blast | |
| 317 | ||
| 318 | lemma QInl_mono: "a<=b ==> QInl(a) <= QInl(b)" | |
| 319 | by (simp add: QInl_def subset_refl [THEN QPair_mono]) | |
| 320 | ||
| 321 | lemma QInr_mono: "a<=b ==> QInr(a) <= QInr(b)" | |
| 322 | by (simp add: QInr_def subset_refl [THEN QPair_mono]) | |
| 323 | ||
| 324 | lemma qsum_mono: "[| A<=C; B<=D |] ==> A <+> B <= C <+> D" | |
| 325 | by blast | |
| 326 | ||
| 0 | 327 | end |