author | wenzelm |
Fri, 26 Oct 2001 23:58:21 +0200 | |
changeset 11952 | b10f1e8862f4 |
parent 11601 | 9273cef990f5 |
child 12338 | de0f4a63baa5 |
permissions | -rw-r--r-- |
1465 | 1 |
(* Title: HOL/Fun |
923 | 2 |
ID: $Id$ |
1465 | 3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
923 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
6 |
Lemmas about functions. |
|
7 |
*) |
|
8 |
||
7089 | 9 |
Goal "(f = g) = (! x. f(x)=g(x))"; |
923 | 10 |
by (rtac iffI 1); |
1264 | 11 |
by (Asm_simp_tac 1); |
12 |
by (rtac ext 1 THEN Asm_simp_tac 1); |
|
923 | 13 |
qed "expand_fun_eq"; |
14 |
||
5316 | 15 |
val prems = Goal |
923 | 16 |
"[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)"; |
17 |
by (rtac (arg_cong RS box_equals) 1); |
|
18 |
by (REPEAT (resolve_tac (prems@[refl]) 1)); |
|
19 |
qed "apply_inverse"; |
|
20 |
||
21 |
||
5608 | 22 |
section "id"; |
5441 | 23 |
|
7089 | 24 |
Goalw [id_def] "id x = x"; |
25 |
by (rtac refl 1); |
|
26 |
qed "id_apply"; |
|
5608 | 27 |
Addsimps [id_apply]; |
5441 | 28 |
|
29 |
||
5306 | 30 |
section "o"; |
31 |
||
7089 | 32 |
Goalw [o_def] "(f o g) x = f (g x)"; |
33 |
by (rtac refl 1); |
|
34 |
qed "o_apply"; |
|
5306 | 35 |
Addsimps [o_apply]; |
36 |
||
7089 | 37 |
Goalw [o_def] "f o (g o h) = f o g o h"; |
38 |
by (rtac ext 1); |
|
39 |
by (rtac refl 1); |
|
40 |
qed "o_assoc"; |
|
5306 | 41 |
|
7089 | 42 |
Goalw [id_def] "id o g = g"; |
43 |
by (rtac ext 1); |
|
44 |
by (Simp_tac 1); |
|
45 |
qed "id_o"; |
|
5608 | 46 |
Addsimps [id_o]; |
5306 | 47 |
|
7089 | 48 |
Goalw [id_def] "f o id = f"; |
49 |
by (rtac ext 1); |
|
50 |
by (Simp_tac 1); |
|
51 |
qed "o_id"; |
|
5608 | 52 |
Addsimps [o_id]; |
5306 | 53 |
|
10832 | 54 |
Goalw [o_def] "(f o g)`r = f`(g`r)"; |
5306 | 55 |
by (Blast_tac 1); |
56 |
qed "image_compose"; |
|
57 |
||
10832 | 58 |
Goal "f`A = (UN x:A. {f x})"; |
7536 | 59 |
by (Blast_tac 1); |
7916 | 60 |
qed "image_eq_UN"; |
7536 | 61 |
|
10832 | 62 |
Goalw [o_def] "UNION A (g o f) = UNION (f`A) g"; |
5852 | 63 |
by (Blast_tac 1); |
6829
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
64 |
qed "UN_o"; |
5852 | 65 |
|
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
66 |
(** lemma for proving injectivity of representation functions for **) |
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
67 |
(** datatypes involving function types **) |
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
68 |
|
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
69 |
Goalw [o_def] |
7089 | 70 |
"[| ! x y. g (f x) = g y --> f x = y; g o f = g o fa |] ==> f = fa"; |
71 |
by (rtac ext 1); |
|
72 |
by (etac allE 1); |
|
73 |
by (etac allE 1); |
|
74 |
by (etac mp 1); |
|
75 |
by (etac fun_cong 1); |
|
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
76 |
qed "inj_fun_lemma"; |
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
77 |
|
5306 | 78 |
|
79 |
section "inj"; |
|
6171 | 80 |
(**NB: inj now just translates to inj_on**) |
5306 | 81 |
|
923 | 82 |
(*** inj(f): f is a one-to-one function ***) |
83 |
||
6171 | 84 |
(*for Tools/datatype_rep_proofs*) |
85 |
val [prem] = Goalw [inj_on_def] |
|
86 |
"(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"; |
|
87 |
by (blast_tac (claset() addIs [prem RS spec RS mp]) 1); |
|
88 |
qed "datatype_injI"; |
|
923 | 89 |
|
6171 | 90 |
Goalw [inj_on_def] "[| inj(f); f(x) = f(y) |] ==> x=y"; |
5316 | 91 |
by (Blast_tac 1); |
923 | 92 |
qed "injD"; |
93 |
||
94 |
(*Useful with the simplifier*) |
|
5316 | 95 |
Goal "inj(f) ==> (f(x) = f(y)) = (x=y)"; |
923 | 96 |
by (rtac iffI 1); |
5316 | 97 |
by (etac arg_cong 2); |
98 |
by (etac injD 1); |
|
5318 | 99 |
by (assume_tac 1); |
923 | 100 |
qed "inj_eq"; |
101 |
||
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
102 |
Goalw [o_def] "[| inj f; f o g = f o h |] ==> g = h"; |
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
103 |
by (rtac ext 1); |
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
104 |
by (etac injD 1); |
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
105 |
by (etac fun_cong 1); |
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6829
diff
changeset
|
106 |
qed "inj_o"; |
923 | 107 |
|
4830 | 108 |
(*** inj_on f A: f is one-to-one over A ***) |
923 | 109 |
|
5316 | 110 |
val prems = Goalw [inj_on_def] |
11395 | 111 |
"(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A"; |
4089 | 112 |
by (blast_tac (claset() addIs prems) 1); |
4830 | 113 |
qed "inj_onI"; |
9108 | 114 |
bind_thm ("injI", inj_onI); (*for compatibility*) |
923 | 115 |
|
5316 | 116 |
val [major] = Goal |
4830 | 117 |
"(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"; |
118 |
by (rtac inj_onI 1); |
|
923 | 119 |
by (etac (apply_inverse RS trans) 1); |
120 |
by (REPEAT (eresolve_tac [asm_rl,major] 1)); |
|
4830 | 121 |
qed "inj_on_inverseI"; |
9108 | 122 |
bind_thm ("inj_inverseI", inj_on_inverseI); (*for compatibility*) |
923 | 123 |
|
5316 | 124 |
Goalw [inj_on_def] "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y"; |
125 |
by (Blast_tac 1); |
|
4830 | 126 |
qed "inj_onD"; |
923 | 127 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
128 |
Goal "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)"; |
4830 | 129 |
by (blast_tac (claset() addSDs [inj_onD]) 1); |
130 |
qed "inj_on_iff"; |
|
923 | 131 |
|
11459 | 132 |
Goalw [o_def, inj_on_def] |
133 |
"[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A"; |
|
134 |
by (Blast_tac 1); |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
135 |
qed "comp_inj_on"; |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
136 |
|
5316 | 137 |
Goalw [inj_on_def] "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)"; |
138 |
by (Blast_tac 1); |
|
4830 | 139 |
qed "inj_on_contraD"; |
923 | 140 |
|
8156 | 141 |
Goal "inj (%s. {s})"; |
8253 | 142 |
by (rtac injI 1); |
143 |
by (etac singleton_inject 1); |
|
8156 | 144 |
qed "inj_singleton"; |
145 |
||
5316 | 146 |
Goalw [inj_on_def] "[| A<=B; inj_on f B |] ==> inj_on f A"; |
3341 | 147 |
by (Blast_tac 1); |
4830 | 148 |
qed "subset_inj_on"; |
3341 | 149 |
|
923 | 150 |
|
6235 | 151 |
(** surj **) |
152 |
||
6267 | 153 |
val [prem] = Goalw [surj_def] "(!! x. g(f x) = x) ==> surj g"; |
154 |
by (blast_tac (claset() addIs [prem RS sym]) 1); |
|
6235 | 155 |
qed "surjI"; |
156 |
||
157 |
Goalw [surj_def] "surj f ==> range f = UNIV"; |
|
158 |
by Auto_tac; |
|
159 |
qed "surj_range"; |
|
160 |
||
6267 | 161 |
Goalw [surj_def] "surj f ==> EX x. y = f x"; |
162 |
by (Blast_tac 1); |
|
163 |
qed "surjD"; |
|
164 |
||
11601 | 165 |
val [p1, p2] = Goal "surj f ==> (!!x. y = f x ==> C) ==> C"; |
166 |
by (cut_facts_tac [p1 RS surjD] 1); |
|
167 |
by (etac exE 1); |
|
168 |
by (rtac p2 1); |
|
169 |
by (atac 1); |
|
170 |
qed "surjE"; |
|
171 |
||
11459 | 172 |
Goalw [o_def, surj_def] "[| surj f; surj g |] ==> surj (g o f)"; |
173 |
by (Clarify_tac 1); |
|
174 |
by (dres_inst_tac [("x","y")] spec 1); |
|
175 |
by (Clarify_tac 1); |
|
176 |
by (dres_inst_tac [("x","x")] spec 1); |
|
177 |
by (Blast_tac 1); |
|
178 |
qed "comp_surj"; |
|
10066 | 179 |
|
8253 | 180 |
|
181 |
(** Bijections **) |
|
182 |
||
183 |
Goalw [bij_def] "[| inj f; surj f |] ==> bij f"; |
|
184 |
by (Blast_tac 1); |
|
185 |
qed "bijI"; |
|
186 |
||
187 |
Goalw [bij_def] "bij f ==> inj f"; |
|
188 |
by (Blast_tac 1); |
|
189 |
qed "bij_is_inj"; |
|
190 |
||
191 |
Goalw [bij_def] "bij f ==> surj f"; |
|
192 |
by (Blast_tac 1); |
|
193 |
qed "bij_is_surj"; |
|
194 |
||
195 |
||
7514 | 196 |
(** We seem to need both the id-forms and the (%x. x) forms; the latter can |
197 |
arise by rewriting, while id may be used explicitly. **) |
|
198 |
||
10832 | 199 |
Goal "(%x. x) ` Y = Y"; |
7514 | 200 |
by (Blast_tac 1); |
201 |
qed "image_ident"; |
|
202 |
||
10832 | 203 |
Goalw [id_def] "id ` Y = Y"; |
7514 | 204 |
by (Blast_tac 1); |
205 |
qed "image_id"; |
|
206 |
Addsimps [image_ident, image_id]; |
|
207 |
||
10832 | 208 |
Goal "(%x. x) -` Y = Y"; |
7514 | 209 |
by (Blast_tac 1); |
210 |
qed "vimage_ident"; |
|
211 |
||
10832 | 212 |
Goalw [id_def] "id -` A = A"; |
7514 | 213 |
by Auto_tac; |
214 |
qed "vimage_id"; |
|
215 |
Addsimps [vimage_ident, vimage_id]; |
|
216 |
||
10832 | 217 |
Goal "f -` (f ` A) = {y. EX x:A. f x = f y}"; |
7876 | 218 |
by (blast_tac (claset() addIs [sym]) 1); |
219 |
qed "vimage_image_eq"; |
|
220 |
||
10832 | 221 |
Goal "f ` (f -` A) <= A"; |
8173 | 222 |
by (Blast_tac 1); |
223 |
qed "image_vimage_subset"; |
|
224 |
||
10832 | 225 |
Goal "f ` (f -` A) = A Int range f"; |
8173 | 226 |
by (Blast_tac 1); |
227 |
qed "image_vimage_eq"; |
|
228 |
Addsimps [image_vimage_eq]; |
|
229 |
||
10832 | 230 |
Goal "surj f ==> f ` (f -` A) = A"; |
8173 | 231 |
by (asm_simp_tac (simpset() addsimps [surj_range]) 1); |
232 |
qed "surj_image_vimage_eq"; |
|
233 |
||
10832 | 234 |
Goalw [inj_on_def] "inj f ==> f -` (f ` A) = A"; |
8173 | 235 |
by (Blast_tac 1); |
236 |
qed "inj_vimage_image_eq"; |
|
237 |
||
10832 | 238 |
Goalw [surj_def] "surj f ==> f -` B <= A ==> B <= f ` A"; |
8173 | 239 |
by (blast_tac (claset() addIs [sym]) 1); |
240 |
qed "vimage_subsetD"; |
|
241 |
||
10832 | 242 |
Goalw [inj_on_def] "inj f ==> B <= f ` A ==> f -` B <= A"; |
8173 | 243 |
by (Blast_tac 1); |
244 |
qed "vimage_subsetI"; |
|
245 |
||
10832 | 246 |
Goalw [bij_def] "bij f ==> (f -` B <= A) = (B <= f ` A)"; |
8173 | 247 |
by (blast_tac (claset() delrules [subsetI] |
248 |
addIs [vimage_subsetI, vimage_subsetD]) 1); |
|
249 |
qed "vimage_subset_eq"; |
|
250 |
||
10832 | 251 |
Goal "f`(A Int B) <= f`A Int f`B"; |
6290 | 252 |
by (Blast_tac 1); |
253 |
qed "image_Int_subset"; |
|
254 |
||
10832 | 255 |
Goal "f`A - f`B <= f`(A - B)"; |
6290 | 256 |
by (Blast_tac 1); |
257 |
qed "image_diff_subset"; |
|
258 |
||
5069 | 259 |
Goalw [inj_on_def] |
10832 | 260 |
"[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B"; |
4059 | 261 |
by (Blast_tac 1); |
4830 | 262 |
qed "inj_on_image_Int"; |
4059 | 263 |
|
5069 | 264 |
Goalw [inj_on_def] |
10832 | 265 |
"[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B"; |
4059 | 266 |
by (Blast_tac 1); |
4830 | 267 |
qed "inj_on_image_set_diff"; |
4059 | 268 |
|
10832 | 269 |
Goalw [inj_on_def] "inj f ==> f`(A Int B) = f`A Int f`B"; |
4059 | 270 |
by (Blast_tac 1); |
271 |
qed "image_Int"; |
|
272 |
||
10832 | 273 |
Goalw [inj_on_def] "inj f ==> f`(A-B) = f`A - f`B"; |
4059 | 274 |
by (Blast_tac 1); |
275 |
qed "image_set_diff"; |
|
276 |
||
10832 | 277 |
Goal "inj f ==> (f a : f`A) = (a : A)"; |
6301 | 278 |
by (blast_tac (claset() addDs [injD]) 1); |
279 |
qed "inj_image_mem_iff"; |
|
280 |
||
10832 | 281 |
Goalw [inj_on_def] "inj f ==> (f`A <= f`B) = (A<=B)"; |
8253 | 282 |
by (Blast_tac 1); |
283 |
qed "inj_image_subset_iff"; |
|
284 |
||
10832 | 285 |
Goal "inj f ==> (f`A = f`B) = (A = B)"; |
6301 | 286 |
by (blast_tac (claset() addSEs [equalityE] addDs [injD]) 1); |
287 |
qed "inj_image_eq_iff"; |
|
288 |
||
10832 | 289 |
Goal "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"; |
6829
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
290 |
by (Blast_tac 1); |
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
291 |
qed "image_UN"; |
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
292 |
|
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
293 |
(*injectivity's required. Left-to-right inclusion holds even if A is empty*) |
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
294 |
Goalw [inj_on_def] |
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
295 |
"[| inj_on f C; ALL x:A. B x <= C; j:A |] \ |
10832 | 296 |
\ ==> f ` (INTER A B) = (INT x:A. f ` B x)"; |
6829
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
297 |
by (Blast_tac 1); |
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
298 |
qed "image_INT"; |
50459a995aa3
renamed UNION_o to UN_o (to fit the convention) and added image_UN, image_INT
paulson
parents:
6301
diff
changeset
|
299 |
|
8309 | 300 |
(*Compare with image_INT: no use of inj_on, and if f is surjective then |
301 |
it doesn't matter whether A is empty*) |
|
10832 | 302 |
Goalw [bij_def] "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"; |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
303 |
by (asm_full_simp_tac (simpset() addsimps [inj_on_def, surj_def]) 1); |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
304 |
by (Blast_tac 1); |
8309 | 305 |
qed "bij_image_INT"; |
306 |
||
10832 | 307 |
Goal "surj f ==> -(f`A) <= f`(-A)"; |
10076
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
308 |
by (auto_tac (claset(), simpset() addsimps [surj_def])); |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
309 |
qed "surj_Compl_image_subset"; |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
310 |
|
10832 | 311 |
Goal "inj f ==> f`(-A) <= -(f`A)"; |
10076
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
312 |
by (auto_tac (claset(), simpset() addsimps [inj_on_def])); |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
313 |
qed "inj_image_Compl_subset"; |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
314 |
|
10832 | 315 |
Goalw [bij_def] "bij f ==> f`(-A) = -(f`A)"; |
10076
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
316 |
by (rtac equalityI 1); |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
317 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [inj_image_Compl_subset, |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
318 |
surj_Compl_image_subset]))); |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
319 |
qed "bij_image_Compl_eq"; |
2683ff181047
removed the obsolete (and badly named) inj_select
paulson
parents:
10066
diff
changeset
|
320 |
|
4089 | 321 |
val set_cs = claset() delrules [equalityI]; |
5305 | 322 |
|
323 |
||
324 |
section "fun_upd"; |
|
325 |
||
326 |
Goalw [fun_upd_def] "(f(x:=y) = f) = (f x = y)"; |
|
327 |
by Safe_tac; |
|
328 |
by (etac subst 1); |
|
329 |
by (rtac ext 2); |
|
330 |
by Auto_tac; |
|
331 |
qed "fun_upd_idem_iff"; |
|
332 |
||
333 |
(* f x = y ==> f(x:=y) = f *) |
|
334 |
bind_thm("fun_upd_idem", fun_upd_idem_iff RS iffD2); |
|
335 |
||
336 |
(* f(x := f x) = f *) |
|
337 |
AddIffs [refl RS fun_upd_idem]; |
|
338 |
||
339 |
Goal "(f(x:=y))z = (if z=x then y else f z)"; |
|
340 |
by (simp_tac (simpset() addsimps [fun_upd_def]) 1); |
|
341 |
qed "fun_upd_apply"; |
|
342 |
Addsimps [fun_upd_apply]; |
|
343 |
||
9339 | 344 |
(* fun_upd_apply supersedes these two, but they are useful |
345 |
if fun_upd_apply is intentionally removed from the simpset *) |
|
7089 | 346 |
Goal "(f(x:=y)) x = y"; |
347 |
by (Simp_tac 1); |
|
348 |
qed "fun_upd_same"; |
|
349 |
||
350 |
Goal "z~=x ==> (f(x:=y)) z = f z"; |
|
351 |
by (Asm_simp_tac 1); |
|
352 |
qed "fun_upd_other"; |
|
353 |
||
7445 | 354 |
Goal "f(x:=y,x:=z) = f(x:=z)"; |
355 |
by (rtac ext 1); |
|
356 |
by (Simp_tac 1); |
|
357 |
qed "fun_upd_upd"; |
|
358 |
Addsimps [fun_upd_upd]; |
|
5305 | 359 |
|
9339 | 360 |
(* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *) |
361 |
local |
|
362 |
fun gen_fun_upd None T _ _ = None |
|
363 |
| gen_fun_upd (Some f) T x y = Some (Const ("Fun.fun_upd",T) $ f $ x $ y) |
|
364 |
fun dest_fun_T1 (Type (_,T::Ts)) = T |
|
365 |
fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) = let |
|
366 |
fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) = |
|
367 |
if v aconv x then Some g else gen_fun_upd (find g) T v w |
|
368 |
| find t = None |
|
369 |
in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end |
|
9422 | 370 |
val ss = simpset (); |
9339 | 371 |
val fun_upd_prover = K [rtac eq_reflection 1, rtac ext 1, |
9422 | 372 |
simp_tac ss 1] |
9339 | 373 |
fun mk_eq_cterm sg T l r = Thm.cterm_of sg (equals T $ l $ r) |
374 |
in |
|
375 |
val fun_upd2_simproc = Simplifier.mk_simproc "fun_upd2" |
|
9422 | 376 |
[Thm.read_cterm (sign_of (the_context ())) ("f(v:=w,x:=y)", HOLogic.termT)] |
9339 | 377 |
(fn sg => (K (fn t => case find_double t of (T,None)=> None | (T,Some rhs)=> |
378 |
Some (prove_goalw_cterm [] (mk_eq_cterm sg T t rhs) fun_upd_prover)))) |
|
379 |
end; |
|
380 |
Addsimprocs[fun_upd2_simproc]; |
|
381 |
||
8258 | 382 |
Goal "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"; |
5305 | 383 |
by (rtac ext 1); |
7089 | 384 |
by Auto_tac; |
5305 | 385 |
qed "fun_upd_twist"; |
5852 | 386 |
|
387 |
||
388 |
(*** -> and Pi, by Florian Kammueller and LCP ***) |
|
389 |
||
390 |
val prems = Goalw [Pi_def] |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
391 |
"[| !!x. x: A ==> f x: B x; !!x. x ~: A ==> f(x) = arbitrary|] \ |
5852 | 392 |
\ ==> f: Pi A B"; |
393 |
by (auto_tac (claset(), simpset() addsimps prems)); |
|
394 |
qed "Pi_I"; |
|
395 |
||
396 |
val prems = Goal |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
397 |
"[| !!x. x: A ==> f x: B; !!x. x ~: A ==> f(x) = arbitrary|] ==> f: A funcset B"; |
5852 | 398 |
by (blast_tac (claset() addIs Pi_I::prems) 1); |
399 |
qed "funcsetI"; |
|
400 |
||
401 |
Goalw [Pi_def] "[|f: Pi A B; x: A|] ==> f x: B x"; |
|
402 |
by Auto_tac; |
|
403 |
qed "Pi_mem"; |
|
404 |
||
405 |
Goalw [Pi_def] "[|f: A funcset B; x: A|] ==> f x: B"; |
|
406 |
by Auto_tac; |
|
407 |
qed "funcset_mem"; |
|
408 |
||
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
409 |
Goalw [Pi_def] "[|f: Pi A B; x~: A|] ==> f x = arbitrary"; |
5852 | 410 |
by Auto_tac; |
411 |
qed "apply_arb"; |
|
412 |
||
413 |
Goalw [Pi_def] "[| f: Pi A B; g: Pi A B; ! x: A. f x = g x |] ==> f = g"; |
|
414 |
by (rtac ext 1); |
|
415 |
by Auto_tac; |
|
9108 | 416 |
bind_thm ("Pi_extensionality", ballI RSN (3, result())); |
5852 | 417 |
|
8138 | 418 |
|
5852 | 419 |
(*** compose ***) |
420 |
||
421 |
Goalw [Pi_def, compose_def, restrict_def] |
|
422 |
"[| f: A funcset B; g: B funcset C |]==> compose A g f: A funcset C"; |
|
423 |
by Auto_tac; |
|
424 |
qed "funcset_compose"; |
|
425 |
||
426 |
Goal "[| f: A funcset B; g: B funcset C; h: C funcset D |]\ |
|
427 |
\ ==> compose A h (compose A g f) = compose A (compose B h g) f"; |
|
428 |
by (res_inst_tac [("A","A")] Pi_extensionality 1); |
|
429 |
by (blast_tac (claset() addIs [funcset_compose]) 1); |
|
430 |
by (blast_tac (claset() addIs [funcset_compose]) 1); |
|
431 |
by (rewrite_goals_tac [Pi_def, compose_def, restrict_def]); |
|
432 |
by Auto_tac; |
|
433 |
qed "compose_assoc"; |
|
434 |
||
11446 | 435 |
Goal "x : A ==> compose A g f x = g(f(x))"; |
436 |
by (asm_simp_tac (simpset() addsimps [compose_def, restrict_def]) 1); |
|
5852 | 437 |
qed "compose_eq"; |
438 |
||
11446 | 439 |
Goal "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"; |
440 |
by (auto_tac (claset(), simpset() addsimps [image_def, compose_eq])); |
|
5852 | 441 |
qed "surj_compose"; |
442 |
||
11446 | 443 |
Goal "[| f ` A = B; inj_on f A; inj_on g B |] ==> inj_on (compose A g f) A"; |
444 |
by (auto_tac (claset(), simpset() addsimps [inj_on_def, compose_eq])); |
|
5852 | 445 |
qed "inj_on_compose"; |
446 |
||
447 |
||
448 |
(*** restrict / lam ***) |
|
8138 | 449 |
|
10832 | 450 |
Goal "f`A <= B ==> (lam x: A. f x) : A funcset B"; |
5852 | 451 |
by (auto_tac (claset(), |
452 |
simpset() addsimps [restrict_def, Pi_def])); |
|
453 |
qed "restrict_in_funcset"; |
|
454 |
||
455 |
val prems = Goalw [restrict_def, Pi_def] |
|
456 |
"(!!x. x: A ==> f x: B x) ==> (lam x: A. f x) : Pi A B"; |
|
457 |
by (asm_simp_tac (simpset() addsimps prems) 1); |
|
458 |
qed "restrictI"; |
|
459 |
||
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
460 |
Goal "(lam y: A. f y) x = (if x : A then f x else arbitrary)"; |
5852 | 461 |
by (asm_simp_tac (simpset() addsimps [restrict_def]) 1); |
11395 | 462 |
qed "restrict_apply"; |
463 |
Addsimps [restrict_apply]; |
|
5852 | 464 |
|
465 |
val prems = Goal |
|
466 |
"(!!x. x: A ==> f x = g x) ==> (lam x: A. f x) = (lam x: A. g x)"; |
|
467 |
by (rtac ext 1); |
|
468 |
by (auto_tac (claset(), |
|
469 |
simpset() addsimps prems@[restrict_def, Pi_def])); |
|
470 |
qed "restrict_ext"; |
|
471 |
||
8138 | 472 |
Goalw [inj_on_def, restrict_def] "inj_on (restrict f A) A = inj_on f A"; |
473 |
by Auto_tac; |
|
474 |
qed "inj_on_restrict_eq"; |
|
475 |
||
5852 | 476 |
|
11446 | 477 |
Goal "f : A funcset B ==> compose A (lam y:B. y) f = f"; |
478 |
by (rtac ext 1); |
|
479 |
by (auto_tac (claset(), simpset() addsimps [compose_def, Pi_def])); |
|
480 |
qed "Id_compose"; |
|
481 |
||
482 |
Goal "g : A funcset B ==> compose A g (lam x:A. x) = g"; |
|
483 |
by (rtac ext 1); |
|
484 |
by (auto_tac (claset(), simpset() addsimps [compose_def, Pi_def])); |
|
485 |
qed "compose_Id"; |
|
486 |
||
5852 | 487 |
|
10826 | 488 |
(*** Pi ***) |
5852 | 489 |
|
490 |
Goalw [Pi_def] "[| B(x) = {}; x: A |] ==> (PI x: A. B x) = {}"; |
|
491 |
by Auto_tac; |
|
492 |
qed "Pi_eq_empty"; |
|
493 |
||
494 |
Goal "[| (PI x: A. B x) ~= {}; x: A |] ==> B(x) ~= {}"; |
|
495 |
by (blast_tac (HOL_cs addIs [Pi_eq_empty]) 1); |
|
496 |
qed "Pi_total1"; |
|
497 |
||
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11446
diff
changeset
|
498 |
Goal "Pi {} B = { %x. arbitrary }"; |
5865
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
499 |
by (auto_tac (claset() addIs [ext], simpset() addsimps [Pi_def])); |
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
500 |
qed "Pi_empty"; |
5852 | 501 |
|
5865
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
502 |
val [major] = Goalw [Pi_def] "(!!x. x: A ==> B x <= C x) ==> Pi A B <= Pi A C"; |
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
503 |
by (auto_tac (claset(), |
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
504 |
simpset() addsimps [impOfSubs major])); |
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
505 |
qed "Pi_mono"; |