| author | haftmann | 
| Mon, 29 Nov 2010 22:47:55 +0100 | |
| changeset 40818 | b117df72e56b | 
| parent 39302 | d7728f65b353 | 
| child 41959 | b460124855b8 | 
| permissions | -rw-r--r-- | 
| 36583 | 1  | 
(* Title: Multivariate_Analysis/Path_Connected.thy  | 
2  | 
Author: Robert Himmelmann, TU Muenchen  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Continuous paths and path-connected sets *}
 | 
|
6  | 
||
7  | 
theory Path_Connected  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
8  | 
imports Convex_Euclidean_Space  | 
| 36583 | 9  | 
begin  | 
10  | 
||
11  | 
subsection {* Paths. *}
 | 
|
12  | 
||
13  | 
definition  | 
|
14  | 
path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"  | 
|
15  | 
  where "path g \<longleftrightarrow> continuous_on {0 .. 1} g"
 | 
|
16  | 
||
17  | 
definition  | 
|
18  | 
pathstart :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a"  | 
|
19  | 
where "pathstart g = g 0"  | 
|
20  | 
||
21  | 
definition  | 
|
22  | 
pathfinish :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a"  | 
|
23  | 
where "pathfinish g = g 1"  | 
|
24  | 
||
25  | 
definition  | 
|
26  | 
path_image :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a set"  | 
|
27  | 
  where "path_image g = g ` {0 .. 1}"
 | 
|
28  | 
||
29  | 
definition  | 
|
30  | 
reversepath :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a)"  | 
|
31  | 
where "reversepath g = (\<lambda>x. g(1 - x))"  | 
|
32  | 
||
33  | 
definition  | 
|
34  | 
joinpaths :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a)"  | 
|
35  | 
(infixr "+++" 75)  | 
|
36  | 
where "g1 +++ g2 = (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))"  | 
|
37  | 
||
38  | 
definition  | 
|
39  | 
simple_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"  | 
|
40  | 
where "simple_path g \<longleftrightarrow>  | 
|
41  | 
  (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 | 
|
42  | 
||
43  | 
definition  | 
|
44  | 
injective_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"  | 
|
45  | 
  where "injective_path g \<longleftrightarrow> (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
 | 
|
46  | 
||
47  | 
subsection {* Some lemmas about these concepts. *}
 | 
|
48  | 
||
49  | 
lemma injective_imp_simple_path:  | 
|
50  | 
"injective_path g \<Longrightarrow> simple_path g"  | 
|
51  | 
unfolding injective_path_def simple_path_def by auto  | 
|
52  | 
||
53  | 
lemma path_image_nonempty: "path_image g \<noteq> {}"
 | 
|
54  | 
unfolding path_image_def image_is_empty interval_eq_empty by auto  | 
|
55  | 
||
56  | 
lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g"  | 
|
57  | 
unfolding pathstart_def path_image_def by auto  | 
|
58  | 
||
59  | 
lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g"  | 
|
60  | 
unfolding pathfinish_def path_image_def by auto  | 
|
61  | 
||
62  | 
lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)"  | 
|
63  | 
unfolding path_def path_image_def  | 
|
64  | 
apply (erule connected_continuous_image)  | 
|
65  | 
by(rule convex_connected, rule convex_real_interval)  | 
|
66  | 
||
67  | 
lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)"  | 
|
68  | 
unfolding path_def path_image_def  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36583 
diff
changeset
 | 
69  | 
by (erule compact_continuous_image, rule compact_interval)  | 
| 36583 | 70  | 
|
71  | 
lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g"  | 
|
72  | 
unfolding reversepath_def by auto  | 
|
73  | 
||
74  | 
lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g"  | 
|
75  | 
unfolding pathstart_def reversepath_def pathfinish_def by auto  | 
|
76  | 
||
77  | 
lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g"  | 
|
78  | 
unfolding pathstart_def reversepath_def pathfinish_def by auto  | 
|
79  | 
||
80  | 
lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1"  | 
|
81  | 
unfolding pathstart_def joinpaths_def pathfinish_def by auto  | 
|
82  | 
||
83  | 
lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2"  | 
|
84  | 
unfolding pathstart_def joinpaths_def pathfinish_def by auto  | 
|
85  | 
||
86  | 
lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof-  | 
|
87  | 
have *:"\<And>g. path_image(reversepath g) \<subseteq> path_image g"  | 
|
88  | 
unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE)  | 
|
89  | 
apply(rule_tac x="1 - xa" in bexI) by auto  | 
|
90  | 
show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed  | 
|
91  | 
||
92  | 
lemma path_reversepath[simp]: "path(reversepath g) \<longleftrightarrow> path g" proof-  | 
|
93  | 
have *:"\<And>g. path g \<Longrightarrow> path(reversepath g)" unfolding path_def reversepath_def  | 
|
94  | 
apply(rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"])  | 
|
95  | 
apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id)  | 
|
96  | 
    apply(rule continuous_on_subset[of "{0..1}"], assumption) by auto
 | 
|
97  | 
show ?thesis using *[of "reversepath g"] *[of g] unfolding reversepath_reversepath by (rule iffI) qed  | 
|
98  | 
||
99  | 
lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath  | 
|
100  | 
||
101  | 
lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2"  | 
|
102  | 
unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof-  | 
|
103  | 
  assume as:"continuous_on {0..1} (g1 +++ g2)"
 | 
|
104  | 
have *:"g1 = (\<lambda>x. g1 (2 *\<^sub>R x)) \<circ> (\<lambda>x. (1/2) *\<^sub>R x)"  | 
|
105  | 
"g2 = (\<lambda>x. g2 (2 *\<^sub>R x - 1)) \<circ> (\<lambda>x. (1/2) *\<^sub>R (x + 1))"  | 
|
106  | 
unfolding o_def by (auto simp add: add_divide_distrib)  | 
|
107  | 
  have "op *\<^sub>R (1 / 2) ` {0::real..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {(0::real)..1} \<subseteq> {0..1}"
 | 
|
108  | 
by auto  | 
|
109  | 
  thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
 | 
|
110  | 
apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose)  | 
|
111  | 
apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer  | 
|
112  | 
apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3  | 
|
113  | 
    apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
 | 
|
114  | 
apply(rule) defer apply rule proof-  | 
|
115  | 
    fix x assume "x \<in> op *\<^sub>R (1 / 2) ` {0::real..1}"
 | 
|
116  | 
hence "x \<le> 1 / 2" unfolding image_iff by auto  | 
|
117  | 
thus "(g1 +++ g2) x = g1 (2 *\<^sub>R x)" unfolding joinpaths_def by auto next  | 
|
118  | 
    fix x assume "x \<in> (\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {0::real..1}"
 | 
|
119  | 
hence "x \<ge> 1 / 2" unfolding image_iff by auto  | 
|
120  | 
thus "(g1 +++ g2) x = g2 (2 *\<^sub>R x - 1)" proof(cases "x = 1 / 2")  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36583 
diff
changeset
 | 
121  | 
case True hence "x = (1/2) *\<^sub>R 1" by auto  | 
| 36583 | 122  | 
thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by (auto simp add: mult_ac)  | 
123  | 
qed (auto simp add:le_less joinpaths_def) qed  | 
|
124  | 
next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | 
|
125  | 
  have *:"{0 .. 1::real} = {0.. (1/2)*\<^sub>R 1} \<union> {(1/2) *\<^sub>R 1 .. 1}" by auto
 | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
37674 
diff
changeset
 | 
126  | 
  have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real}" apply(rule set_eqI, rule) unfolding image_iff 
 | 
| 36583 | 127  | 
defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by auto  | 
128  | 
  have ***:"(\<lambda>x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real}"
 | 
|
129  | 
apply (auto simp add: image_def)  | 
|
130  | 
apply (rule_tac x="(x + 1) / 2" in bexI)  | 
|
131  | 
apply (auto simp add: add_divide_distrib)  | 
|
132  | 
done  | 
|
133  | 
  show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply (rule closed_real_atLeastAtMost)+ proof-
 | 
|
134  | 
    show "continuous_on {0..(1 / 2) *\<^sub>R 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *\<^sub>R x)"]) defer
 | 
|
135  | 
unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id)  | 
|
136  | 
unfolding ** apply(rule as(1)) unfolding joinpaths_def by auto next  | 
|
137  | 
    show "continuous_on {(1/2)*\<^sub>R1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *\<^sub>R x - 1)"]) defer
 | 
|
138  | 
apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const)  | 
|
139  | 
unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def]  | 
|
140  | 
by (auto simp add: mult_ac) qed qed  | 
|
141  | 
||
142  | 
lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof  | 
|
143  | 
fix x assume "x \<in> path_image (g1 +++ g2)"  | 
|
144  | 
  then obtain y where y:"y\<in>{0..1}" "x = (if y \<le> 1 / 2 then g1 (2 *\<^sub>R y) else g2 (2 *\<^sub>R y - 1))"
 | 
|
145  | 
unfolding path_image_def image_iff joinpaths_def by auto  | 
|
146  | 
thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "y \<le> 1/2")  | 
|
147  | 
apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1)  | 
|
148  | 
by(auto intro!: imageI) qed  | 
|
149  | 
||
150  | 
lemma subset_path_image_join:  | 
|
151  | 
assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s" shows "path_image(g1 +++ g2) \<subseteq> s"  | 
|
152  | 
using path_image_join_subset[of g1 g2] and assms by auto  | 
|
153  | 
||
154  | 
lemma path_image_join:  | 
|
155  | 
assumes "path g1" "path g2" "pathfinish g1 = pathstart g2"  | 
|
156  | 
shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)"  | 
|
157  | 
apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE)  | 
|
158  | 
fix x assume "x \<in> path_image g1"  | 
|
159  | 
  then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
 | 
|
160  | 
thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff  | 
|
161  | 
apply(rule_tac x="(1/2) *\<^sub>R y" in bexI) by auto next  | 
|
162  | 
fix x assume "x \<in> path_image g2"  | 
|
163  | 
  then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
 | 
|
164  | 
then show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff  | 
|
165  | 
apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def]  | 
|
166  | 
by (auto simp add: add_divide_distrib) qed  | 
|
167  | 
||
168  | 
lemma not_in_path_image_join:  | 
|
169  | 
assumes "x \<notin> path_image g1" "x \<notin> path_image g2" shows "x \<notin> path_image(g1 +++ g2)"  | 
|
170  | 
using assms and path_image_join_subset[of g1 g2] by auto  | 
|
171  | 
||
172  | 
lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)"  | 
|
173  | 
using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+  | 
|
174  | 
apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE)  | 
|
175  | 
by auto  | 
|
176  | 
||
177  | 
lemma simple_path_join_loop:  | 
|
178  | 
assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1"  | 
|
179  | 
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
 | 
|
180  | 
shows "simple_path(g1 +++ g2)"  | 
|
181  | 
unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2"  | 
|
182  | 
note inj = assms(1,2)[unfolded injective_path_def, rule_format]  | 
|
183  | 
  fix x y::"real" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
 | 
|
184  | 
show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x \<le> 1/2",case_tac[!] "y \<le> 1/2", unfold not_le)  | 
|
185  | 
assume as:"x \<le> 1 / 2" "y \<le> 1 / 2"  | 
|
186  | 
hence "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)" using xy(3) unfolding joinpaths_def by auto  | 
|
187  | 
    moreover have "2 *\<^sub>R x \<in> {0..1}" "2 *\<^sub>R y \<in> {0..1}" using xy(1,2) as
 | 
|
188  | 
by auto  | 
|
189  | 
ultimately show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto  | 
|
190  | 
next assume as:"x > 1 / 2" "y > 1 / 2"  | 
|
191  | 
hence "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)" using xy(3) unfolding joinpaths_def by auto  | 
|
192  | 
    moreover have "2 *\<^sub>R x - 1 \<in> {0..1}" "2 *\<^sub>R y - 1 \<in> {0..1}" using xy(1,2) as by auto
 | 
|
193  | 
ultimately show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto  | 
|
194  | 
next assume as:"x \<le> 1 / 2" "y > 1 / 2"  | 
|
195  | 
hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def  | 
|
196  | 
using xy(1,2) by auto  | 
|
197  | 
moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def  | 
|
198  | 
using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2)  | 
|
199  | 
by (auto simp add: field_simps)  | 
|
200  | 
ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto  | 
|
201  | 
hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1)  | 
|
202  | 
using inj(1)[of "2 *\<^sub>R x" 0] by auto  | 
|
203  | 
moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym]  | 
|
204  | 
unfolding joinpaths_def pathfinish_def using as(2) and xy(2)  | 
|
205  | 
using inj(2)[of "2 *\<^sub>R y - 1" 1] by auto  | 
|
206  | 
ultimately show ?thesis by auto  | 
|
207  | 
next assume as:"x > 1 / 2" "y \<le> 1 / 2"  | 
|
208  | 
hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def  | 
|
209  | 
using xy(1,2) by auto  | 
|
210  | 
moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def  | 
|
211  | 
using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1)  | 
|
212  | 
by (auto simp add: field_simps)  | 
|
213  | 
ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto  | 
|
214  | 
hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2)  | 
|
215  | 
using inj(1)[of "2 *\<^sub>R y" 0] by auto  | 
|
216  | 
moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym]  | 
|
217  | 
unfolding joinpaths_def pathfinish_def using as(1) and xy(1)  | 
|
218  | 
using inj(2)[of "2 *\<^sub>R x - 1" 1] by auto  | 
|
219  | 
ultimately show ?thesis by auto qed qed  | 
|
220  | 
||
221  | 
lemma injective_path_join:  | 
|
222  | 
assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2"  | 
|
223  | 
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
 | 
|
224  | 
shows "injective_path(g1 +++ g2)"  | 
|
225  | 
unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2"  | 
|
226  | 
note inj = assms(1,2)[unfolded injective_path_def, rule_format]  | 
|
227  | 
  fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
 | 
|
228  | 
show "x = y" proof(cases "x \<le> 1/2", case_tac[!] "y \<le> 1/2", unfold not_le)  | 
|
229  | 
assume "x \<le> 1 / 2" "y \<le> 1 / 2" thus ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy  | 
|
230  | 
unfolding joinpaths_def by auto  | 
|
231  | 
next assume "x > 1 / 2" "y > 1 / 2" thus ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy  | 
|
232  | 
unfolding joinpaths_def by auto  | 
|
233  | 
next assume as:"x \<le> 1 / 2" "y > 1 / 2"  | 
|
234  | 
hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def  | 
|
235  | 
using xy(1,2) by auto  | 
|
236  | 
hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto  | 
|
237  | 
thus ?thesis using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2)  | 
|
238  | 
unfolding pathstart_def pathfinish_def joinpaths_def  | 
|
239  | 
by auto  | 
|
240  | 
next assume as:"x > 1 / 2" "y \<le> 1 / 2"  | 
|
241  | 
hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def  | 
|
242  | 
using xy(1,2) by auto  | 
|
243  | 
hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto  | 
|
244  | 
thus ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2)  | 
|
245  | 
unfolding pathstart_def pathfinish_def joinpaths_def  | 
|
246  | 
by auto qed qed  | 
|
247  | 
||
248  | 
lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join  | 
|
249  | 
||
250  | 
subsection {* Reparametrizing a closed curve to start at some chosen point. *}
 | 
|
251  | 
||
252  | 
definition "shiftpath a (f::real \<Rightarrow> 'a::topological_space) =  | 
|
253  | 
(\<lambda>x. if (a + x) \<le> 1 then f(a + x) else f(a + x - 1))"  | 
|
254  | 
||
255  | 
lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a"  | 
|
256  | 
unfolding pathstart_def shiftpath_def by auto  | 
|
257  | 
||
258  | 
lemma pathfinish_shiftpath: assumes "0 \<le> a" "pathfinish g = pathstart g"  | 
|
259  | 
shows "pathfinish(shiftpath a g) = g a"  | 
|
260  | 
using assms unfolding pathstart_def pathfinish_def shiftpath_def  | 
|
261  | 
by auto  | 
|
262  | 
||
263  | 
lemma endpoints_shiftpath:  | 
|
264  | 
  assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
 | 
|
265  | 
shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a"  | 
|
266  | 
using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath)  | 
|
267  | 
||
268  | 
lemma closed_shiftpath:  | 
|
269  | 
  assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
 | 
|
270  | 
shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)"  | 
|
271  | 
using endpoints_shiftpath[OF assms] by auto  | 
|
272  | 
||
273  | 
lemma path_shiftpath:  | 
|
274  | 
  assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
 | 
|
275  | 
shows "path(shiftpath a g)" proof-  | 
|
276  | 
  have *:"{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by auto
 | 
|
277  | 
have **:"\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)"  | 
|
278  | 
using assms(2)[unfolded pathfinish_def pathstart_def] by auto  | 
|
279  | 
show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union)  | 
|
280  | 
apply(rule closed_real_atLeastAtMost)+ apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3  | 
|
281  | 
apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3  | 
|
282  | 
apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+  | 
|
283  | 
apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]])  | 
|
284  | 
using assms(3) and ** by(auto, auto simp add: field_simps) qed  | 
|
285  | 
||
286  | 
lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
 | 
|
287  | 
shows "shiftpath (1 - a) (shiftpath a g) x = g x"  | 
|
288  | 
using assms unfolding pathfinish_def pathstart_def shiftpath_def by auto  | 
|
289  | 
||
290  | 
lemma path_image_shiftpath:  | 
|
291  | 
  assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
 | 
|
292  | 
shows "path_image(shiftpath a g) = path_image g" proof-  | 
|
293  | 
  { fix x assume as:"g 1 = g 0" "x \<in> {0..1::real}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a + x \<le> 1}. g x \<noteq> g (a + y - 1)" 
 | 
|
294  | 
    hence "\<exists>y\<in>{0..1} \<inter> {x. a + x \<le> 1}. g x = g (a + y)" proof(cases "a \<le> x")
 | 
|
295  | 
case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI)  | 
|
296  | 
using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1)  | 
|
297  | 
by(auto simp add: field_simps atomize_not) next  | 
|
298  | 
case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI)  | 
|
299  | 
by(auto simp add: field_simps) qed }  | 
|
300  | 
thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def  | 
|
301  | 
by(auto simp add: image_iff) qed  | 
|
302  | 
||
303  | 
subsection {* Special case of straight-line paths. *}
 | 
|
304  | 
||
305  | 
definition  | 
|
306  | 
linepath :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a" where  | 
|
307  | 
"linepath a b = (\<lambda>x. (1 - x) *\<^sub>R a + x *\<^sub>R b)"  | 
|
308  | 
||
309  | 
lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a"  | 
|
310  | 
unfolding pathstart_def linepath_def by auto  | 
|
311  | 
||
312  | 
lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b"  | 
|
313  | 
unfolding pathfinish_def linepath_def by auto  | 
|
314  | 
||
315  | 
lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"  | 
|
316  | 
unfolding linepath_def by (intro continuous_intros)  | 
|
317  | 
||
318  | 
lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)"  | 
|
319  | 
using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on)  | 
|
320  | 
||
321  | 
lemma path_linepath[intro]: "path(linepath a b)"  | 
|
322  | 
unfolding path_def by(rule continuous_on_linepath)  | 
|
323  | 
||
324  | 
lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)"  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
37674 
diff
changeset
 | 
325  | 
unfolding path_image_def segment linepath_def apply (rule set_eqI, rule) defer  | 
| 36583 | 326  | 
unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI)  | 
327  | 
by auto  | 
|
328  | 
||
329  | 
lemma reversepath_linepath[simp]: "reversepath(linepath a b) = linepath b a"  | 
|
330  | 
unfolding reversepath_def linepath_def by(rule ext, auto)  | 
|
331  | 
||
332  | 
lemma injective_path_linepath:  | 
|
333  | 
assumes "a \<noteq> b" shows "injective_path(linepath a b)"  | 
|
334  | 
proof -  | 
|
335  | 
  { fix x y :: "real"
 | 
|
336  | 
assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b"  | 
|
337  | 
hence "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" by (simp add: algebra_simps)  | 
|
338  | 
with assms have "x = y" by simp }  | 
|
339  | 
thus ?thesis unfolding injective_path_def linepath_def by(auto simp add: algebra_simps) qed  | 
|
340  | 
||
341  | 
lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath)  | 
|
342  | 
||
343  | 
subsection {* Bounding a point away from a path. *}
 | 
|
344  | 
||
345  | 
lemma not_on_path_ball:  | 
|
346  | 
fixes g :: "real \<Rightarrow> 'a::heine_borel"  | 
|
347  | 
assumes "path g" "z \<notin> path_image g"  | 
|
348  | 
  shows "\<exists>e>0. ball z e \<inter> (path_image g) = {}" proof-
 | 
|
349  | 
obtain a where "a\<in>path_image g" "\<forall>y\<in>path_image g. dist z a \<le> dist z y"  | 
|
350  | 
using distance_attains_inf[OF _ path_image_nonempty, of g z]  | 
|
351  | 
using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto  | 
|
352  | 
thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed  | 
|
353  | 
||
354  | 
lemma not_on_path_cball:  | 
|
355  | 
fixes g :: "real \<Rightarrow> 'a::heine_borel"  | 
|
356  | 
assumes "path g" "z \<notin> path_image g"  | 
|
357  | 
  shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}" proof-
 | 
|
358  | 
  obtain e where "ball z e \<inter> path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto
 | 
|
359  | 
moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto  | 
|
360  | 
ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed  | 
|
361  | 
||
362  | 
subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
 | 
|
363  | 
||
364  | 
definition "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"  | 
|
365  | 
||
366  | 
lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def  | 
|
367  | 
||
368  | 
lemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" "y \<in> s"  | 
|
369  | 
using assms unfolding path_defs by auto  | 
|
370  | 
||
371  | 
lemma path_component_refl: assumes "x \<in> s" shows "path_component s x x"  | 
|
372  | 
unfolding path_defs apply(rule_tac x="\<lambda>u. x" in exI) using assms  | 
|
373  | 
by(auto intro!:continuous_on_intros)  | 
|
374  | 
||
375  | 
lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s"  | 
|
376  | 
by(auto intro!: path_component_mem path_component_refl)  | 
|
377  | 
||
378  | 
lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x"  | 
|
379  | 
using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI)  | 
|
380  | 
by auto  | 
|
381  | 
||
382  | 
lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z"  | 
|
383  | 
using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join)  | 
|
384  | 
||
385  | 
lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y"  | 
|
386  | 
unfolding path_component_def by auto  | 
|
387  | 
||
388  | 
subsection {* Can also consider it as a set, as the name suggests. *}
 | 
|
389  | 
||
390  | 
lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
 | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
37674 
diff
changeset
 | 
391  | 
apply(rule set_eqI) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto  | 
| 36583 | 392  | 
|
393  | 
lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto  | 
|
394  | 
||
395  | 
lemma path_component_subset: "(path_component s x) \<subseteq> s"  | 
|
396  | 
apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def)  | 
|
397  | 
||
398  | 
lemma path_component_eq_empty: "path_component s x = {} \<longleftrightarrow> x \<notin> s"
 | 
|
399  | 
apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set  | 
|
400  | 
apply(drule path_component_mem(1)) using path_component_refl by auto  | 
|
401  | 
||
402  | 
subsection {* Path connectedness of a space. *}
 | 
|
403  | 
||
404  | 
definition "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"  | 
|
405  | 
||
406  | 
lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)"  | 
|
407  | 
unfolding path_connected_def path_component_def by auto  | 
|
408  | 
||
409  | 
lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component s x = s)"  | 
|
410  | 
unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset)  | 
|
411  | 
unfolding subset_eq mem_path_component_set Ball_def mem_def by auto  | 
|
412  | 
||
413  | 
subsection {* Some useful lemmas about path-connectedness. *}
 | 
|
414  | 
||
415  | 
lemma convex_imp_path_connected:  | 
|
416  | 
fixes s :: "'a::real_normed_vector set"  | 
|
417  | 
assumes "convex s" shows "path_connected s"  | 
|
418  | 
unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI)  | 
|
419  | 
unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto  | 
|
420  | 
||
421  | 
lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s"  | 
|
422  | 
unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof-  | 
|
423  | 
  fix e1 e2 assume as:"open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | 
|
424  | 
then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto  | 
|
425  | 
then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2"  | 
|
426  | 
using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto  | 
|
427  | 
  have *:"connected {0..1::real}" by(auto intro!: convex_connected convex_real_interval)
 | 
|
428  | 
  have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast
 | 
|
429  | 
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto 
 | 
|
430  | 
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt
 | 
|
431  | 
by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl)  | 
|
432  | 
  ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
 | 
|
433  | 
using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)]  | 
|
434  | 
using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed  | 
|
435  | 
||
436  | 
lemma open_path_component:  | 
|
437  | 
fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*)  | 
|
438  | 
assumes "open s" shows "open(path_component s x)"  | 
|
439  | 
unfolding open_contains_ball proof  | 
|
440  | 
fix y assume as:"y \<in> path_component s x"  | 
|
441  | 
hence "y\<in>s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto  | 
|
442  | 
then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto  | 
|
443  | 
show "\<exists>e>0. ball y e \<subseteq> path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof-  | 
|
444  | 
fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer  | 
|
445  | 
apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0`  | 
|
446  | 
using as[unfolded mem_def] by auto qed qed  | 
|
447  | 
||
448  | 
lemma open_non_path_component:  | 
|
449  | 
fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*)  | 
|
450  | 
assumes "open s" shows "open(s - path_component s x)"  | 
|
451  | 
unfolding open_contains_ball proof  | 
|
452  | 
fix y assume as:"y\<in>s - path_component s x"  | 
|
453  | 
then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto  | 
|
454  | 
show "\<exists>e>0. ball y e \<subseteq> s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr)  | 
|
455  | 
fix z assume "z\<in>ball y e" "\<not> z \<notin> path_component s x"  | 
|
456  | 
hence "y \<in> path_component s x" unfolding not_not mem_path_component_set using `e>0`  | 
|
457  | 
apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)])  | 
|
458  | 
apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto  | 
|
459  | 
thus False using as by auto qed(insert e(2), auto) qed  | 
|
460  | 
||
461  | 
lemma connected_open_path_connected:  | 
|
462  | 
fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*)  | 
|
463  | 
assumes "open s" "connected s" shows "path_connected s"  | 
|
464  | 
unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule)  | 
|
465  | 
fix x y assume "x \<in> s" "y \<in> s" show "y \<in> path_component s x" proof(rule ccontr)  | 
|
466  | 
assume "y \<notin> path_component s x" moreover  | 
|
467  | 
    have "path_component s x \<inter> s \<noteq> {}" using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto
 | 
|
468  | 
ultimately show False using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)]  | 
|
469  | 
using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto  | 
|
470  | 
qed qed  | 
|
471  | 
||
472  | 
lemma path_connected_continuous_image:  | 
|
473  | 
assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)"  | 
|
474  | 
unfolding path_connected_def proof(rule,rule)  | 
|
475  | 
fix x' y' assume "x' \<in> f ` s" "y' \<in> f ` s"  | 
|
476  | 
then obtain x y where xy:"x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto  | 
|
477  | 
guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] ..  | 
|
478  | 
thus "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'"  | 
|
479  | 
unfolding xy apply(rule_tac x="f \<circ> g" in exI) unfolding path_defs  | 
|
480  | 
    using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed
 | 
|
481  | 
||
482  | 
lemma homeomorphic_path_connectedness:  | 
|
483  | 
"s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)"  | 
|
484  | 
unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule  | 
|
485  | 
apply(drule_tac f=f in path_connected_continuous_image) prefer 3  | 
|
486  | 
apply(drule_tac f=g in path_connected_continuous_image) by auto  | 
|
487  | 
||
488  | 
lemma path_connected_empty: "path_connected {}"
 | 
|
489  | 
unfolding path_connected_def by auto  | 
|
490  | 
||
491  | 
lemma path_connected_singleton: "path_connected {a}"
 | 
|
492  | 
unfolding path_connected_def pathstart_def pathfinish_def path_image_def  | 
|
493  | 
apply (clarify, rule_tac x="\<lambda>x. a" in exI, simp add: image_constant_conv)  | 
|
494  | 
apply (simp add: path_def continuous_on_const)  | 
|
495  | 
done  | 
|
496  | 
||
497  | 
lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
 | 
|
498  | 
shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule)  | 
|
499  | 
fix x y assume as:"x \<in> s \<union> t" "y \<in> s \<union> t"  | 
|
500  | 
from assms(3) obtain z where "z \<in> s \<inter> t" by auto  | 
|
501  | 
thus "path_component (s \<union> t) x y" using as using assms(1-2)[unfolded path_connected_component] apply-  | 
|
502  | 
apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z])  | 
|
503  | 
by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed  | 
|
504  | 
||
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
505  | 
lemma path_connected_UNION:  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
506  | 
assumes "\<And>i. i \<in> A \<Longrightarrow> path_connected (S i)"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
507  | 
assumes "\<And>i. i \<in> A \<Longrightarrow> z \<in> S i"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
508  | 
shows "path_connected (\<Union>i\<in>A. S i)"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
509  | 
unfolding path_connected_component proof(clarify)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
510  | 
fix x i y j  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
511  | 
assume *: "i \<in> A" "x \<in> S i" "j \<in> A" "y \<in> S j"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
512  | 
hence "path_component (S i) x z" and "path_component (S j) z y"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
513  | 
using assms by (simp_all add: path_connected_component)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
514  | 
hence "path_component (\<Union>i\<in>A. S i) x z" and "path_component (\<Union>i\<in>A. S i) z y"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
515  | 
using *(1,3) by (auto elim!: path_component_of_subset [COMP swap_prems_rl])  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
516  | 
thus "path_component (\<Union>i\<in>A. S i) x y"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
517  | 
by (rule path_component_trans)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
518  | 
qed  | 
| 36583 | 519  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
520  | 
subsection {* sphere is path-connected. *}
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36583 
diff
changeset
 | 
521  | 
|
| 36583 | 522  | 
lemma path_connected_punctured_universe:  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
523  | 
  assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
524  | 
  shows "path_connected((UNIV::'a::euclidean_space set) - {a})"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
525  | 
proof-  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
526  | 
  let ?A = "{x::'a. \<exists>i\<in>{..<DIM('a)}. x $$ i < a $$ i}"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
527  | 
  let ?B = "{x::'a. \<exists>i\<in>{..<DIM('a)}. a $$ i < x $$ i}"
 | 
| 36583 | 528  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
529  | 
have A: "path_connected ?A" unfolding Collect_bex_eq  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
530  | 
proof (rule path_connected_UNION)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
531  | 
    fix i assume "i \<in> {..<DIM('a)}"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
532  | 
    thus "(\<chi>\<chi> i. a $$ i - 1) \<in> {x::'a. x $$ i < a $$ i}" by simp
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
533  | 
    show "path_connected {x. x $$ i < a $$ i}" unfolding euclidean_component_def
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
534  | 
by (rule convex_imp_path_connected [OF convex_halfspace_lt])  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
535  | 
qed  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
536  | 
have B: "path_connected ?B" unfolding Collect_bex_eq  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
537  | 
proof (rule path_connected_UNION)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
538  | 
    fix i assume "i \<in> {..<DIM('a)}"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
539  | 
    thus "(\<chi>\<chi> i. a $$ i + 1) \<in> {x::'a. a $$ i < x $$ i}" by simp
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
540  | 
    show "path_connected {x. a $$ i < x $$ i}" unfolding euclidean_component_def
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
541  | 
by (rule convex_imp_path_connected [OF convex_halfspace_gt])  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
542  | 
qed  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
543  | 
  from assms have "1 < DIM('a)" by auto
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
544  | 
hence "a + basis 0 - basis 1 \<in> ?A \<inter> ?B" by auto  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
545  | 
  hence "?A \<inter> ?B \<noteq> {}" by fast
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
546  | 
with A B have "path_connected (?A \<union> ?B)"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
547  | 
by (rule path_connected_Un)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
548  | 
  also have "?A \<union> ?B = {x. \<exists>i\<in>{..<DIM('a)}. x $$ i \<noteq> a $$ i}"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
549  | 
unfolding neq_iff bex_disj_distrib Collect_disj_eq ..  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
550  | 
  also have "\<dots> = {x. x \<noteq> a}"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
551  | 
unfolding Bex_def euclidean_eq [where 'a='a] by simp  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
552  | 
  also have "\<dots> = UNIV - {a}" by auto
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
553  | 
finally show ?thesis .  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
554  | 
qed  | 
| 36583 | 555  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
556  | 
lemma path_connected_sphere:  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
557  | 
  assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
558  | 
  shows "path_connected {x::'a::euclidean_space. norm(x - a) = r}"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
559  | 
proof (rule linorder_cases [of r 0])  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
560  | 
  assume "r < 0" hence "{x::'a. norm(x - a) = r} = {}" by auto
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
561  | 
thus ?thesis using path_connected_empty by simp  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
562  | 
next  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
563  | 
assume "r = 0"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
564  | 
thus ?thesis using path_connected_singleton by simp  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
565  | 
next  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
566  | 
assume r: "0 < r"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
37674 
diff
changeset
 | 
567  | 
  hence *:"{x::'a. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" apply -apply(rule set_eqI,rule)
 | 
| 36583 | 568  | 
unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib)  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
37674 
diff
changeset
 | 
569  | 
  have **:"{x::'a. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_eqI,rule)
 | 
| 36583 | 570  | 
unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto split:split_if_asm)  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
571  | 
  have "continuous_on (UNIV - {0}) (\<lambda>x::'a. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within
 | 
| 36583 | 572  | 
apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within)  | 
573  | 
apply(rule continuous_at_norm[unfolded o_def]) by auto  | 
|
574  | 
thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms]  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
575  | 
by(auto intro!: path_connected_continuous_image continuous_on_intros)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
576  | 
qed  | 
| 36583 | 577  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
578  | 
lemma connected_sphere: "2 \<le> DIM('a::euclidean_space) \<Longrightarrow> connected {x::'a. norm(x - a) = r}"
 | 
| 36583 | 579  | 
using path_connected_sphere path_connected_imp_connected by auto  | 
580  | 
||
581  | 
end  |