| author | haftmann | 
| Mon, 29 Nov 2010 22:47:55 +0100 | |
| changeset 40818 | b117df72e56b | 
| parent 37765 | 26bdfb7b680b | 
| child 47217 | 501b9bbd0d6e | 
| permissions | -rw-r--r-- | 
| 27468 | 1  | 
(* Title : HSeries.thy  | 
2  | 
Author : Jacques D. Fleuriot  | 
|
3  | 
Copyright : 1998 University of Cambridge  | 
|
4  | 
||
5  | 
Converted to Isar and polished by lcp  | 
|
6  | 
*)  | 
|
7  | 
||
8  | 
header{*Finite Summation and Infinite Series for Hyperreals*}
 | 
|
9  | 
||
10  | 
theory HSeries  | 
|
11  | 
imports Series HSEQ  | 
|
12  | 
begin  | 
|
13  | 
||
14  | 
definition  | 
|
15  | 
sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal" where  | 
|
| 37765 | 16  | 
"sumhr =  | 
| 27468 | 17  | 
      (%(M,N,f). starfun2 (%m n. setsum f {m..<n}) M N)"
 | 
18  | 
||
19  | 
definition  | 
|
20  | 
NSsums :: "[nat=>real,real] => bool" (infixr "NSsums" 80) where  | 
|
21  | 
  "f NSsums s = (%n. setsum f {0..<n}) ----NS> s"
 | 
|
22  | 
||
23  | 
definition  | 
|
24  | 
NSsummable :: "(nat=>real) => bool" where  | 
|
| 37765 | 25  | 
"NSsummable f = (\<exists>s. f NSsums s)"  | 
| 27468 | 26  | 
|
27  | 
definition  | 
|
28  | 
NSsuminf :: "(nat=>real) => real" where  | 
|
29  | 
"NSsuminf f = (THE s. f NSsums s)"  | 
|
30  | 
||
31  | 
lemma sumhr_app: "sumhr(M,N,f) = ( *f2* (\<lambda>m n. setsum f {m..<n})) M N"
 | 
|
32  | 
by (simp add: sumhr_def)  | 
|
33  | 
||
34  | 
text{*Base case in definition of @{term sumr}*}
 | 
|
35  | 
lemma sumhr_zero [simp]: "!!m. sumhr (m,0,f) = 0"  | 
|
36  | 
unfolding sumhr_app by transfer simp  | 
|
37  | 
||
38  | 
text{*Recursive case in definition of @{term sumr}*}
 | 
|
39  | 
lemma sumhr_if:  | 
|
40  | 
"!!m n. sumhr(m,n+1,f) =  | 
|
41  | 
(if n + 1 \<le> m then 0 else sumhr(m,n,f) + ( *f* f) n)"  | 
|
42  | 
unfolding sumhr_app by transfer simp  | 
|
43  | 
||
44  | 
lemma sumhr_Suc_zero [simp]: "!!n. sumhr (n + 1, n, f) = 0"  | 
|
45  | 
unfolding sumhr_app by transfer simp  | 
|
46  | 
||
47  | 
lemma sumhr_eq_bounds [simp]: "!!n. sumhr (n,n,f) = 0"  | 
|
48  | 
unfolding sumhr_app by transfer simp  | 
|
49  | 
||
50  | 
lemma sumhr_Suc [simp]: "!!m. sumhr (m,m + 1,f) = ( *f* f) m"  | 
|
51  | 
unfolding sumhr_app by transfer simp  | 
|
52  | 
||
53  | 
lemma sumhr_add_lbound_zero [simp]: "!!k m. sumhr(m+k,k,f) = 0"  | 
|
54  | 
unfolding sumhr_app by transfer simp  | 
|
55  | 
||
56  | 
lemma sumhr_add:  | 
|
57  | 
"!!m n. sumhr (m,n,f) + sumhr(m,n,g) = sumhr(m,n,%i. f i + g i)"  | 
|
58  | 
unfolding sumhr_app by transfer (rule setsum_addf [symmetric])  | 
|
59  | 
||
60  | 
lemma sumhr_mult:  | 
|
61  | 
"!!m n. hypreal_of_real r * sumhr(m,n,f) = sumhr(m,n,%n. r * f n)"  | 
|
62  | 
unfolding sumhr_app by transfer (rule setsum_right_distrib)  | 
|
63  | 
||
64  | 
lemma sumhr_split_add:  | 
|
65  | 
"!!n p. n < p ==> sumhr(0,n,f) + sumhr(n,p,f) = sumhr(0,p,f)"  | 
|
66  | 
unfolding sumhr_app by transfer (simp add: setsum_add_nat_ivl)  | 
|
67  | 
||
68  | 
lemma sumhr_split_diff: "n<p ==> sumhr(0,p,f) - sumhr(0,n,f) = sumhr(n,p,f)"  | 
|
69  | 
by (drule_tac f = f in sumhr_split_add [symmetric], simp)  | 
|
70  | 
||
71  | 
lemma sumhr_hrabs: "!!m n. abs(sumhr(m,n,f)) \<le> sumhr(m,n,%i. abs(f i))"  | 
|
72  | 
unfolding sumhr_app by transfer (rule setsum_abs)  | 
|
73  | 
||
74  | 
text{* other general version also needed *}
 | 
|
75  | 
lemma sumhr_fun_hypnat_eq:  | 
|
76  | 
"(\<forall>r. m \<le> r & r < n --> f r = g r) -->  | 
|
77  | 
sumhr(hypnat_of_nat m, hypnat_of_nat n, f) =  | 
|
78  | 
sumhr(hypnat_of_nat m, hypnat_of_nat n, g)"  | 
|
79  | 
unfolding sumhr_app by transfer simp  | 
|
80  | 
||
81  | 
lemma sumhr_const:  | 
|
82  | 
"!!n. sumhr(0, n, %i. r) = hypreal_of_hypnat n * hypreal_of_real r"  | 
|
83  | 
unfolding sumhr_app by transfer (simp add: real_of_nat_def)  | 
|
84  | 
||
85  | 
lemma sumhr_less_bounds_zero [simp]: "!!m n. n < m ==> sumhr(m,n,f) = 0"  | 
|
86  | 
unfolding sumhr_app by transfer simp  | 
|
87  | 
||
88  | 
lemma sumhr_minus: "!!m n. sumhr(m, n, %i. - f i) = - sumhr(m, n, f)"  | 
|
89  | 
unfolding sumhr_app by transfer (rule setsum_negf)  | 
|
90  | 
||
91  | 
lemma sumhr_shift_bounds:  | 
|
92  | 
"!!m n. sumhr(m+hypnat_of_nat k,n+hypnat_of_nat k,f) =  | 
|
93  | 
sumhr(m,n,%i. f(i + k))"  | 
|
94  | 
unfolding sumhr_app by transfer (rule setsum_shift_bounds_nat_ivl)  | 
|
95  | 
||
96  | 
||
97  | 
subsection{*Nonstandard Sums*}
 | 
|
98  | 
||
99  | 
text{*Infinite sums are obtained by summing to some infinite hypernatural
 | 
|
100  | 
 (such as @{term whn})*}
 | 
|
101  | 
lemma sumhr_hypreal_of_hypnat_omega:  | 
|
102  | 
"sumhr(0,whn,%i. 1) = hypreal_of_hypnat whn"  | 
|
103  | 
by (simp add: sumhr_const)  | 
|
104  | 
||
105  | 
lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, %i. 1) = omega - 1"  | 
|
106  | 
apply (simp add: sumhr_const)  | 
|
107  | 
(* FIXME: need lemma: hypreal_of_hypnat whn = omega - 1 *)  | 
|
108  | 
(* maybe define omega = hypreal_of_hypnat whn + 1 *)  | 
|
109  | 
apply (unfold star_class_defs omega_def hypnat_omega_def  | 
|
110  | 
of_hypnat_def star_of_def)  | 
|
111  | 
apply (simp add: starfun_star_n starfun2_star_n real_of_nat_def)  | 
|
112  | 
done  | 
|
113  | 
||
114  | 
lemma sumhr_minus_one_realpow_zero [simp]:  | 
|
115  | 
"!!N. sumhr(0, N + N, %i. (-1) ^ (i+1)) = 0"  | 
|
116  | 
unfolding sumhr_app  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
28562 
diff
changeset
 | 
117  | 
by transfer (simp del: power_Suc add: nat_mult_2 [symmetric])  | 
| 27468 | 118  | 
|
119  | 
lemma sumhr_interval_const:  | 
|
120  | 
"(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na  | 
|
121  | 
==> sumhr(hypnat_of_nat m,hypnat_of_nat na,f) =  | 
|
122  | 
(hypreal_of_nat (na - m) * hypreal_of_real r)"  | 
|
123  | 
unfolding sumhr_app by transfer simp  | 
|
124  | 
||
125  | 
lemma starfunNat_sumr: "!!N. ( *f* (%n. setsum f {0..<n})) N = sumhr(0,N,f)"
 | 
|
126  | 
unfolding sumhr_app by transfer (rule refl)  | 
|
127  | 
||
128  | 
lemma sumhr_hrabs_approx [simp]: "sumhr(0, M, f) @= sumhr(0, N, f)  | 
|
129  | 
==> abs (sumhr(M, N, f)) @= 0"  | 
|
130  | 
apply (cut_tac x = M and y = N in linorder_less_linear)  | 
|
131  | 
apply (auto simp add: approx_refl)  | 
|
132  | 
apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]])  | 
|
133  | 
apply (auto dest: approx_hrabs  | 
|
134  | 
simp add: sumhr_split_diff diff_minus [symmetric])  | 
|
135  | 
done  | 
|
136  | 
||
137  | 
(*----------------------------------------------------------------  | 
|
138  | 
infinite sums: Standard and NS theorems  | 
|
139  | 
----------------------------------------------------------------*)  | 
|
140  | 
lemma sums_NSsums_iff: "(f sums l) = (f NSsums l)"  | 
|
141  | 
by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff)  | 
|
142  | 
||
143  | 
lemma summable_NSsummable_iff: "(summable f) = (NSsummable f)"  | 
|
144  | 
by (simp add: summable_def NSsummable_def sums_NSsums_iff)  | 
|
145  | 
||
146  | 
lemma suminf_NSsuminf_iff: "(suminf f) = (NSsuminf f)"  | 
|
147  | 
by (simp add: suminf_def NSsuminf_def sums_NSsums_iff)  | 
|
148  | 
||
149  | 
lemma NSsums_NSsummable: "f NSsums l ==> NSsummable f"  | 
|
150  | 
by (simp add: NSsums_def NSsummable_def, blast)  | 
|
151  | 
||
152  | 
lemma NSsummable_NSsums: "NSsummable f ==> f NSsums (NSsuminf f)"  | 
|
153  | 
apply (simp add: NSsummable_def NSsuminf_def NSsums_def)  | 
|
154  | 
apply (blast intro: theI NSLIMSEQ_unique)  | 
|
155  | 
done  | 
|
156  | 
||
157  | 
lemma NSsums_unique: "f NSsums s ==> (s = NSsuminf f)"  | 
|
158  | 
by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique)  | 
|
159  | 
||
160  | 
lemma NSseries_zero:  | 
|
161  | 
  "\<forall>m. n \<le> Suc m --> f(m) = 0 ==> f NSsums (setsum f {0..<n})"
 | 
|
162  | 
by (simp add: sums_NSsums_iff [symmetric] series_zero)  | 
|
163  | 
||
164  | 
lemma NSsummable_NSCauchy:  | 
|
165  | 
"NSsummable f =  | 
|
166  | 
(\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. abs (sumhr(M,N,f)) @= 0)"  | 
|
167  | 
apply (auto simp add: summable_NSsummable_iff [symmetric]  | 
|
168  | 
summable_convergent_sumr_iff convergent_NSconvergent_iff  | 
|
169  | 
NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr)  | 
|
170  | 
apply (cut_tac x = M and y = N in linorder_less_linear)  | 
|
171  | 
apply (auto simp add: approx_refl)  | 
|
172  | 
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])  | 
|
173  | 
apply (rule_tac [2] approx_minus_iff [THEN iffD2])  | 
|
174  | 
apply (auto dest: approx_hrabs_zero_cancel  | 
|
175  | 
simp add: sumhr_split_diff diff_minus [symmetric])  | 
|
176  | 
done  | 
|
177  | 
||
178  | 
||
179  | 
text{*Terms of a convergent series tend to zero*}
 | 
|
180  | 
lemma NSsummable_NSLIMSEQ_zero: "NSsummable f ==> f ----NS> 0"  | 
|
181  | 
apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy)  | 
|
182  | 
apply (drule bspec, auto)  | 
|
183  | 
apply (drule_tac x = "N + 1 " in bspec)  | 
|
184  | 
apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel)  | 
|
185  | 
done  | 
|
186  | 
||
187  | 
text{*Nonstandard comparison test*}
 | 
|
188  | 
lemma NSsummable_comparison_test:  | 
|
189  | 
"[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |] ==> NSsummable f"  | 
|
190  | 
apply (fold summable_NSsummable_iff)  | 
|
191  | 
apply (rule summable_comparison_test, simp, assumption)  | 
|
192  | 
done  | 
|
193  | 
||
194  | 
lemma NSsummable_rabs_comparison_test:  | 
|
195  | 
"[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |]  | 
|
196  | 
==> NSsummable (%k. abs (f k))"  | 
|
197  | 
apply (rule NSsummable_comparison_test)  | 
|
198  | 
apply (auto)  | 
|
199  | 
done  | 
|
200  | 
||
201  | 
end  |