| author | wenzelm | 
| Wed, 05 Dec 2012 14:45:44 +0100 | |
| changeset 50366 | b1dd455593a9 | 
| parent 46008 | c296c75f4cf4 | 
| child 57418 | 6ab1c7cb0b8d | 
| permissions | -rw-r--r-- | 
| 38159 | 1 | (* Title: HOL/Old_Number_Theory/EulerFermat.thy | 
| 2 | Author: Thomas M. Rasmussen | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 3 | Copyright 2000 University of Cambridge | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 4 | *) | 
| 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 5 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 6 | header {* Fermat's Little Theorem extended to Euler's Totient function *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 7 | |
| 27556 | 8 | theory EulerFermat | 
| 9 | imports BijectionRel IntFact | |
| 10 | begin | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 11 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 12 | text {*
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 13 | Fermat's Little Theorem extended to Euler's Totient function. More | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 14 | abstract approach than Boyer-Moore (which seems necessary to achieve | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 15 | the extended version). | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 16 | *} | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 17 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 18 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 19 | subsection {* Definitions and lemmas *}
 | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 20 | |
| 38159 | 21 | inductive_set RsetR :: "int => int set set" for m :: int | 
| 22 | where | |
| 23 |   empty [simp]: "{} \<in> RsetR m"
 | |
| 24 | | insert: "A \<in> RsetR m ==> zgcd a m = 1 ==> | |
| 25 | \<forall>a'. a' \<in> A --> \<not> zcong a a' m ==> insert a A \<in> RsetR m" | |
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 26 | |
| 38159 | 27 | fun BnorRset :: "int \<Rightarrow> int => int set" where | 
| 35440 | 28 | "BnorRset a m = | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 29 | (if 0 < a then | 
| 35440 | 30 | let na = BnorRset (a - 1) m | 
| 27556 | 31 | in (if zgcd a m = 1 then insert a na else na) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 32 |     else {})"
 | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 33 | |
| 38159 | 34 | definition norRRset :: "int => int set" | 
| 35 | where "norRRset m = BnorRset (m - 1) m" | |
| 19670 | 36 | |
| 38159 | 37 | definition noXRRset :: "int => int => int set" | 
| 38 | where "noXRRset m x = (\<lambda>a. a * x) ` norRRset m" | |
| 19670 | 39 | |
| 38159 | 40 | definition phi :: "int => nat" | 
| 41 | where "phi m = card (norRRset m)" | |
| 19670 | 42 | |
| 38159 | 43 | definition is_RRset :: "int set => int => bool" | 
| 44 | where "is_RRset A m = (A \<in> RsetR m \<and> card A = phi m)" | |
| 19670 | 45 | |
| 38159 | 46 | definition RRset2norRR :: "int set => int => int => int" | 
| 47 | where | |
| 48 | "RRset2norRR A m a = | |
| 49 | (if 1 < m \<and> is_RRset A m \<and> a \<in> A then | |
| 50 | SOME b. zcong a b m \<and> b \<in> norRRset m | |
| 51 | else 0)" | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 52 | |
| 38159 | 53 | definition zcongm :: "int => int => int => bool" | 
| 54 | where "zcongm m = (\<lambda>a b. zcong a b m)" | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 55 | |
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 56 | lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \<or> z = -1)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 57 |   -- {* LCP: not sure why this lemma is needed now *}
 | 
| 18369 | 58 | by (auto simp add: abs_if) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 59 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 60 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 61 | text {* \medskip @{text norRRset} *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 62 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 63 | declare BnorRset.simps [simp del] | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 64 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 65 | lemma BnorRset_induct: | 
| 18369 | 66 |   assumes "!!a m. P {} a m"
 | 
| 35440 | 67 | and "!!a m :: int. 0 < a ==> P (BnorRset (a - 1) m) (a - 1) m | 
| 68 | ==> P (BnorRset a m) a m" | |
| 69 | shows "P (BnorRset u v) u v" | |
| 18369 | 70 | apply (rule BnorRset.induct) | 
| 35440 | 71 | apply (case_tac "0 < a") | 
| 72 | apply (rule_tac assms) | |
| 18369 | 73 | apply simp_all | 
| 35440 | 74 | apply (simp_all add: BnorRset.simps assms) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 75 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 76 | |
| 35440 | 77 | lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset a m \<longrightarrow> b \<le> a" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 78 | apply (induct a m rule: BnorRset_induct) | 
| 18369 | 79 | apply simp | 
| 80 | apply (subst BnorRset.simps) | |
| 13833 | 81 | apply (unfold Let_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 82 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 83 | |
| 35440 | 84 | lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset a m" | 
| 18369 | 85 | by (auto dest: Bnor_mem_zle) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 86 | |
| 35440 | 87 | lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset a m --> 0 < b" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 88 | apply (induct a m rule: BnorRset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 89 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 90 | apply (subst BnorRset.simps) | 
| 13833 | 91 | apply (unfold Let_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 92 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 93 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 94 | lemma Bnor_mem_if [rule_format]: | 
| 35440 | 95 | "zgcd b m = 1 --> 0 < b --> b \<le> a --> b \<in> BnorRset a m" | 
| 13833 | 96 | apply (induct a m rule: BnorRset.induct, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 97 | apply (subst BnorRset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 98 | defer | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 99 | apply (subst BnorRset.simps) | 
| 13833 | 100 | apply (unfold Let_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 101 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 102 | |
| 35440 | 103 | lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset a m \<in> RsetR m" | 
| 13833 | 104 | apply (induct a m rule: BnorRset_induct, simp) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 105 | apply (subst BnorRset.simps) | 
| 13833 | 106 | apply (unfold Let_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 107 | apply (rule RsetR.insert) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 108 | apply (rule_tac [3] allI) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 109 | apply (rule_tac [3] impI) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 110 | apply (rule_tac [3] zcong_not) | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 111 | apply (subgoal_tac [6] "a' \<le> a - 1") | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 112 | apply (rule_tac [7] Bnor_mem_zle) | 
| 13833 | 113 | apply (rule_tac [5] Bnor_mem_zg, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 114 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 115 | |
| 35440 | 116 | lemma Bnor_fin: "finite (BnorRset a m)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 117 | apply (induct a m rule: BnorRset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 118 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 119 | apply (subst BnorRset.simps) | 
| 13833 | 120 | apply (unfold Let_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 121 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 122 | |
| 13524 | 123 | lemma norR_mem_unique_aux: "a \<le> b - 1 ==> a < (b::int)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 124 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 125 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 126 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 127 | lemma norR_mem_unique: | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 128 | "1 < m ==> | 
| 27556 | 129 | zgcd a m = 1 ==> \<exists>!b. [a = b] (mod m) \<and> b \<in> norRRset m" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 130 | apply (unfold norRRset_def) | 
| 13833 | 131 | apply (cut_tac a = a and m = m in zcong_zless_unique, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 132 | apply (rule_tac [2] m = m in zcong_zless_imp_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 133 | apply (auto intro: Bnor_mem_zle Bnor_mem_zg zcong_trans | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 134 | order_less_imp_le norR_mem_unique_aux simp add: zcong_sym) | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
13833diff
changeset | 135 | apply (rule_tac x = b in exI, safe) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 136 | apply (rule Bnor_mem_if) | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 137 | apply (case_tac [2] "b = 0") | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 138 | apply (auto intro: order_less_le [THEN iffD2]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 139 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 140 | apply (simp only: zcong_def) | 
| 27556 | 141 | apply (subgoal_tac "zgcd a m = m") | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 142 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 143 | apply (subst zdvd_iff_zgcd [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 144 | apply (rule_tac [4] zgcd_zcong_zgcd) | 
| 45480 
a39bb6d42ace
remove unnecessary number-representation-specific rules from metis calls;
 huffman parents: 
44766diff
changeset | 145 | apply (simp_all (no_asm_use) add: zcong_sym) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 146 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 147 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 148 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 149 | text {* \medskip @{term noXRRset} *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 150 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 151 | lemma RRset_gcd [rule_format]: | 
| 27556 | 152 | "is_RRset A m ==> a \<in> A --> zgcd a m = 1" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 153 | apply (unfold is_RRset_def) | 
| 46008 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
45605diff
changeset | 154 | apply (rule RsetR.induct, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 155 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 156 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 157 | lemma RsetR_zmult_mono: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 158 | "A \<in> RsetR m ==> | 
| 27556 | 159 | 0 < m ==> zgcd x m = 1 ==> (\<lambda>a. a * x) ` A \<in> RsetR m" | 
| 13833 | 160 | apply (erule RsetR.induct, simp_all) | 
| 161 | apply (rule RsetR.insert, auto) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 162 | apply (blast intro: zgcd_zgcd_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 163 | apply (simp add: zcong_cancel) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 164 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 165 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 166 | lemma card_nor_eq_noX: | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 167 | "0 < m ==> | 
| 27556 | 168 | zgcd x m = 1 ==> card (noXRRset m x) = card (norRRset m)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 169 | apply (unfold norRRset_def noXRRset_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 170 | apply (rule card_image) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 171 | apply (auto simp add: inj_on_def Bnor_fin) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 172 | apply (simp add: BnorRset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 173 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 174 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 175 | lemma noX_is_RRset: | 
| 27556 | 176 | "0 < m ==> zgcd x m = 1 ==> is_RRset (noXRRset m x) m" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 177 | apply (unfold is_RRset_def phi_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 178 | apply (auto simp add: card_nor_eq_noX) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 179 | apply (unfold noXRRset_def norRRset_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 180 | apply (rule RsetR_zmult_mono) | 
| 13833 | 181 | apply (rule Bnor_in_RsetR, simp_all) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 182 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 183 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 184 | lemma aux_some: | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 185 | "1 < m ==> is_RRset A m ==> a \<in> A | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 186 | ==> zcong a (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) m \<and> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 187 | (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) \<in> norRRset m" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 188 | apply (rule norR_mem_unique [THEN ex1_implies_ex, THEN someI_ex]) | 
| 13833 | 189 | apply (rule_tac [2] RRset_gcd, simp_all) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 190 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 191 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 192 | lemma RRset2norRR_correct: | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 193 | "1 < m ==> is_RRset A m ==> a \<in> A ==> | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 194 | [a = RRset2norRR A m a] (mod m) \<and> RRset2norRR A m a \<in> norRRset m" | 
| 13833 | 195 | apply (unfold RRset2norRR_def, simp) | 
| 196 | apply (rule aux_some, simp_all) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 197 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 198 | |
| 45605 | 199 | lemmas RRset2norRR_correct1 = RRset2norRR_correct [THEN conjunct1] | 
| 200 | lemmas RRset2norRR_correct2 = RRset2norRR_correct [THEN conjunct2] | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 201 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 202 | lemma RsetR_fin: "A \<in> RsetR m ==> finite A" | 
| 18369 | 203 | by (induct set: RsetR) auto | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 204 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 205 | lemma RRset_zcong_eq [rule_format]: | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 206 | "1 < m ==> | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 207 | is_RRset A m ==> [a = b] (mod m) ==> a \<in> A --> b \<in> A --> a = b" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 208 | apply (unfold is_RRset_def) | 
| 46008 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
45605diff
changeset | 209 | apply (rule RsetR.induct) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 210 | apply (auto simp add: zcong_sym) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 211 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 212 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 213 | lemma aux: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 214 | "P (SOME a. P a) ==> Q (SOME a. Q a) ==> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 215 | (SOME a. P a) = (SOME a. Q a) ==> \<exists>a. P a \<and> Q a" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 216 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 217 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 218 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 219 | lemma RRset2norRR_inj: | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 220 | "1 < m ==> is_RRset A m ==> inj_on (RRset2norRR A m) A" | 
| 13833 | 221 | apply (unfold RRset2norRR_def inj_on_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 222 | apply (subgoal_tac "\<exists>b. ([x = b] (mod m) \<and> b \<in> norRRset m) \<and> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 223 | ([y = b] (mod m) \<and> b \<in> norRRset m)") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 224 | apply (rule_tac [2] aux) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 225 | apply (rule_tac [3] aux_some) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 226 | apply (rule_tac [2] aux_some) | 
| 13833 | 227 | apply (rule RRset_zcong_eq, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 228 | apply (rule_tac b = b in zcong_trans) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 229 | apply (simp_all add: zcong_sym) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 230 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 231 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 232 | lemma RRset2norRR_eq_norR: | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 233 | "1 < m ==> is_RRset A m ==> RRset2norRR A m ` A = norRRset m" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 234 | apply (rule card_seteq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 235 | prefer 3 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 236 | apply (subst card_image) | 
| 15402 | 237 | apply (rule_tac RRset2norRR_inj, auto) | 
| 238 | apply (rule_tac [3] RRset2norRR_correct2, auto) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 239 | apply (unfold is_RRset_def phi_def norRRset_def) | 
| 15402 | 240 | apply (auto simp add: Bnor_fin) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 241 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 242 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 243 | |
| 13524 | 244 | lemma Bnor_prod_power_aux: "a \<notin> A ==> inj f ==> f a \<notin> f ` A" | 
| 13833 | 245 | by (unfold inj_on_def, auto) | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 246 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 247 | lemma Bnor_prod_power [rule_format]: | 
| 35440 | 248 | "x \<noteq> 0 ==> a < m --> \<Prod>((\<lambda>a. a * x) ` BnorRset a m) = | 
| 249 | \<Prod>(BnorRset a m) * x^card (BnorRset a m)" | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 250 | apply (induct a m rule: BnorRset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 251 | prefer 2 | 
| 15481 | 252 |    apply (simplesubst BnorRset.simps)  --{*multiple redexes*}
 | 
| 13833 | 253 | apply (unfold Let_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 254 | apply (simp add: Bnor_fin Bnor_mem_zle_swap) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 255 | apply (subst setprod_insert) | 
| 13524 | 256 | apply (rule_tac [2] Bnor_prod_power_aux) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 257 | apply (unfold inj_on_def) | 
| 44766 | 258 | apply (simp_all add: mult_ac Bnor_fin Bnor_mem_zle_swap) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 259 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 260 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 261 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 262 | subsection {* Fermat *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 263 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 264 | lemma bijzcong_zcong_prod: | 
| 15392 | 265 | "(A, B) \<in> bijR (zcongm m) ==> [\<Prod>A = \<Prod>B] (mod m)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 266 | apply (unfold zcongm_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 267 | apply (erule bijR.induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 268 | apply (subgoal_tac [2] "a \<notin> A \<and> b \<notin> B \<and> finite A \<and> finite B") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 269 | apply (auto intro: fin_bijRl fin_bijRr zcong_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 270 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 271 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 272 | lemma Bnor_prod_zgcd [rule_format]: | 
| 35440 | 273 | "a < m --> zgcd (\<Prod>(BnorRset a m)) m = 1" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 274 | apply (induct a m rule: BnorRset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 275 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 276 | apply (subst BnorRset.simps) | 
| 13833 | 277 | apply (unfold Let_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 278 | apply (simp add: Bnor_fin Bnor_mem_zle_swap) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 279 | apply (blast intro: zgcd_zgcd_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 280 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 281 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 282 | theorem Euler_Fermat: | 
| 27556 | 283 | "0 < m ==> zgcd x m = 1 ==> [x^(phi m) = 1] (mod m)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 284 | apply (unfold norRRset_def phi_def) | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 285 | apply (case_tac "x = 0") | 
| 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11704diff
changeset | 286 | apply (case_tac [2] "m = 1") | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 287 | apply (rule_tac [3] iffD1) | 
| 35440 | 288 | apply (rule_tac [3] k = "\<Prod>(BnorRset (m - 1) m)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 289 | in zcong_cancel2) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 290 | prefer 5 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 291 | apply (subst Bnor_prod_power [symmetric]) | 
| 13833 | 292 | apply (rule_tac [7] Bnor_prod_zgcd, simp_all) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 293 | apply (rule bijzcong_zcong_prod) | 
| 35440 | 294 | apply (fold norRRset_def, fold noXRRset_def) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 295 | apply (subst RRset2norRR_eq_norR [symmetric]) | 
| 13833 | 296 | apply (rule_tac [3] inj_func_bijR, auto) | 
| 13187 | 297 | apply (unfold zcongm_def) | 
| 298 | apply (rule_tac [2] RRset2norRR_correct1) | |
| 299 | apply (rule_tac [5] RRset2norRR_inj) | |
| 300 | apply (auto intro: order_less_le [THEN iffD2] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 301 | simp add: noX_is_RRset) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 302 | apply (unfold noXRRset_def norRRset_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 303 | apply (rule finite_imageI) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 304 | apply (rule Bnor_fin) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 305 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 306 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16663diff
changeset | 307 | lemma Bnor_prime: | 
| 35440 | 308 | "\<lbrakk> zprime p; a < p \<rbrakk> \<Longrightarrow> card (BnorRset a p) = nat a" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 309 | apply (induct a p rule: BnorRset.induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 310 | apply (subst BnorRset.simps) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16663diff
changeset | 311 | apply (unfold Let_def, auto simp add:zless_zprime_imp_zrelprime) | 
| 35440 | 312 | apply (subgoal_tac "finite (BnorRset (a - 1) m)") | 
| 313 | apply (subgoal_tac "a ~: BnorRset (a - 1) m") | |
| 13833 | 314 | apply (auto simp add: card_insert_disjoint Suc_nat_eq_nat_zadd1) | 
| 315 | apply (frule Bnor_mem_zle, arith) | |
| 316 | apply (frule Bnor_fin) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 317 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 318 | |
| 16663 | 319 | lemma phi_prime: "zprime p ==> phi p = nat (p - 1)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 320 | apply (unfold phi_def norRRset_def) | 
| 13833 | 321 | apply (rule Bnor_prime, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 322 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 323 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 324 | theorem Little_Fermat: | 
| 16663 | 325 | "zprime p ==> \<not> p dvd x ==> [x^(nat (p - 1)) = 1] (mod p)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 326 | apply (subst phi_prime [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 327 | apply (rule_tac [2] Euler_Fermat) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 328 | apply (erule_tac [3] zprime_imp_zrelprime) | 
| 13833 | 329 | apply (unfold zprime_def, auto) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
10834diff
changeset | 330 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 331 | |
| 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 332 | end |