author | paulson |
Wed, 02 Apr 1997 15:30:44 +0200 | |
changeset 2874 | b1e7e2179597 |
parent 2467 | 357adb429fda |
child 3191 | 14bd6e5985f1 |
permissions | -rw-r--r-- |
2112 | 1 |
structure FastRules : Rules_sig = |
2 |
struct |
|
3 |
||
4 |
open Utils; |
|
5 |
open Mask; |
|
6 |
infix 7 |->; |
|
7 |
||
8 |
structure USyntax = USyntax; |
|
9 |
structure S = USyntax; |
|
10 |
structure U = Utils; |
|
11 |
structure D = Dcterm; |
|
12 |
||
13 |
type Type = USyntax.Type |
|
14 |
type Preterm = USyntax.Preterm |
|
15 |
type Term = USyntax.Term |
|
16 |
type Thm = Thm.thm |
|
17 |
type Tactic = tactic; |
|
18 |
||
19 |
fun RULES_ERR{func,mesg} = Utils.ERR{module = "FastRules",func=func,mesg=mesg}; |
|
20 |
||
21 |
nonfix ##; val ## = Utils.##; infix 4 ##; |
|
22 |
||
23 |
fun cconcl thm = D.drop_prop(#prop(crep_thm thm)); |
|
24 |
fun chyps thm = map D.drop_prop(#hyps(crep_thm thm)); |
|
25 |
||
26 |
fun dest_thm thm = |
|
27 |
let val drop = S.drop_Trueprop |
|
28 |
val {prop,hyps,...} = rep_thm thm |
|
29 |
in (map drop hyps, drop prop) |
|
30 |
end; |
|
31 |
||
32 |
||
33 |
||
34 |
(* Inference rules *) |
|
35 |
||
36 |
(*--------------------------------------------------------------------------- |
|
37 |
* Equality (one step) |
|
38 |
*---------------------------------------------------------------------------*) |
|
39 |
fun REFL tm = Thm.reflexive tm RS meta_eq_to_obj_eq; |
|
40 |
fun SYM thm = thm RS sym; |
|
41 |
||
42 |
fun ALPHA thm ctm1 = |
|
43 |
let val ctm2 = cprop_of thm |
|
44 |
val ctm2_eq = reflexive ctm2 |
|
45 |
val ctm1_eq = reflexive ctm1 |
|
46 |
in equal_elim (transitive ctm2_eq ctm1_eq) thm |
|
47 |
end; |
|
48 |
||
49 |
val BETA_RULE = Utils.I; |
|
50 |
||
51 |
||
52 |
(*---------------------------------------------------------------------------- |
|
53 |
* Type instantiation |
|
54 |
*---------------------------------------------------------------------------*) |
|
55 |
fun INST_TYPE blist thm = |
|
56 |
let val {sign,...} = rep_thm thm |
|
57 |
val blist' = map (fn (TVar(idx,_) |-> B) => (idx, ctyp_of sign B)) blist |
|
58 |
in Thm.instantiate (blist',[]) thm |
|
59 |
end |
|
60 |
handle _ => raise RULES_ERR{func = "INST_TYPE", mesg = ""}; |
|
61 |
||
62 |
||
63 |
(*---------------------------------------------------------------------------- |
|
64 |
* Implication and the assumption list |
|
65 |
* |
|
66 |
* Assumptions get stuck on the meta-language assumption list. Implications |
|
67 |
* are in the object language, so discharging an assumption "A" from theorem |
|
68 |
* "B" results in something that looks like "A --> B". |
|
69 |
*---------------------------------------------------------------------------*) |
|
70 |
fun ASSUME ctm = Thm.assume (D.mk_prop ctm); |
|
71 |
||
72 |
||
73 |
(*--------------------------------------------------------------------------- |
|
74 |
* Implication in TFL is -->. Meta-language implication (==>) is only used |
|
75 |
* in the implementation of some of the inference rules below. |
|
76 |
*---------------------------------------------------------------------------*) |
|
77 |
fun MP th1 th2 = th2 RS (th1 RS mp); |
|
78 |
||
79 |
fun DISCH tm thm = Thm.implies_intr (D.mk_prop tm) thm COMP impI; |
|
80 |
||
81 |
fun DISCH_ALL thm = Utils.itlist DISCH (#hyps (crep_thm thm)) thm; |
|
82 |
||
83 |
||
84 |
fun FILTER_DISCH_ALL P thm = |
|
85 |
let fun check tm = U.holds P (S.drop_Trueprop (#t(rep_cterm tm))) |
|
86 |
in U.itlist (fn tm => fn th => if (check tm) then DISCH tm th else th) |
|
87 |
(chyps thm) thm |
|
88 |
end; |
|
89 |
||
90 |
(* freezeT expensive! *) |
|
91 |
fun UNDISCH thm = |
|
92 |
let val tm = D.mk_prop(#1(D.dest_imp(cconcl (freezeT thm)))) |
|
93 |
in implies_elim (thm RS mp) (ASSUME tm) |
|
94 |
end |
|
95 |
handle _ => raise RULES_ERR{func = "UNDISCH", mesg = ""}; |
|
96 |
||
97 |
fun PROVE_HYP ath bth = MP (DISCH (cconcl ath) bth) ath; |
|
98 |
||
99 |
local val [p1,p2] = goal HOL.thy "(A-->B) ==> (B --> C) ==> (A-->C)" |
|
100 |
val _ = by (rtac impI 1) |
|
101 |
val _ = by (rtac (p2 RS mp) 1) |
|
102 |
val _ = by (rtac (p1 RS mp) 1) |
|
103 |
val _ = by (assume_tac 1) |
|
104 |
val imp_trans = result() |
|
105 |
in |
|
106 |
fun IMP_TRANS th1 th2 = th2 RS (th1 RS imp_trans) |
|
107 |
end; |
|
108 |
||
109 |
(*---------------------------------------------------------------------------- |
|
110 |
* Conjunction |
|
111 |
*---------------------------------------------------------------------------*) |
|
112 |
fun CONJUNCT1 thm = (thm RS conjunct1) |
|
113 |
fun CONJUNCT2 thm = (thm RS conjunct2); |
|
114 |
fun CONJUNCTS th = (CONJUNCTS (CONJUNCT1 th) @ CONJUNCTS (CONJUNCT2 th)) |
|
115 |
handle _ => [th]; |
|
116 |
||
117 |
fun LIST_CONJ [] = raise RULES_ERR{func = "LIST_CONJ", mesg = "empty list"} |
|
118 |
| LIST_CONJ [th] = th |
|
119 |
| LIST_CONJ (th::rst) = MP(MP(conjI COMP (impI RS impI)) th) (LIST_CONJ rst); |
|
120 |
||
121 |
||
122 |
(*---------------------------------------------------------------------------- |
|
123 |
* Disjunction |
|
124 |
*---------------------------------------------------------------------------*) |
|
125 |
local val {prop,sign,...} = rep_thm disjI1 |
|
126 |
val [P,Q] = term_vars prop |
|
127 |
val disj1 = forall_intr (cterm_of sign Q) disjI1 |
|
128 |
in |
|
129 |
fun DISJ1 thm tm = thm RS (forall_elim (D.drop_prop tm) disj1) |
|
130 |
end; |
|
131 |
||
132 |
local val {prop,sign,...} = rep_thm disjI2 |
|
133 |
val [P,Q] = term_vars prop |
|
134 |
val disj2 = forall_intr (cterm_of sign P) disjI2 |
|
135 |
in |
|
136 |
fun DISJ2 tm thm = thm RS (forall_elim (D.drop_prop tm) disj2) |
|
137 |
end; |
|
138 |
||
139 |
||
140 |
(*---------------------------------------------------------------------------- |
|
141 |
* |
|
142 |
* A1 |- M1, ..., An |- Mn |
|
143 |
* --------------------------------------------------- |
|
144 |
* [A1 |- M1 \/ ... \/ Mn, ..., An |- M1 \/ ... \/ Mn] |
|
145 |
* |
|
146 |
*---------------------------------------------------------------------------*) |
|
147 |
||
148 |
||
149 |
fun EVEN_ORS thms = |
|
150 |
let fun blue ldisjs [] _ = [] |
|
151 |
| blue ldisjs (th::rst) rdisjs = |
|
152 |
let val tail = tl rdisjs |
|
153 |
val rdisj_tl = D.list_mk_disj tail |
|
154 |
in itlist DISJ2 ldisjs (DISJ1 th rdisj_tl) |
|
155 |
:: blue (ldisjs@[cconcl th]) rst tail |
|
156 |
end handle _ => [itlist DISJ2 ldisjs th] |
|
157 |
in |
|
158 |
blue [] thms (map cconcl thms) |
|
159 |
end; |
|
160 |
||
161 |
||
162 |
(*---------------------------------------------------------------------------- |
|
163 |
* |
|
164 |
* A |- P \/ Q B,P |- R C,Q |- R |
|
165 |
* --------------------------------------------------- |
|
166 |
* A U B U C |- R |
|
167 |
* |
|
168 |
*---------------------------------------------------------------------------*) |
|
169 |
local val [p1,p2,p3] = goal HOL.thy "(P | Q) ==> (P --> R) ==> (Q --> R) ==> R" |
|
170 |
val _ = by (rtac (p1 RS disjE) 1) |
|
171 |
val _ = by (rtac (p2 RS mp) 1) |
|
172 |
val _ = by (assume_tac 1) |
|
173 |
val _ = by (rtac (p3 RS mp) 1) |
|
174 |
val _ = by (assume_tac 1) |
|
175 |
val tfl_exE = result() |
|
176 |
in |
|
177 |
fun DISJ_CASES th1 th2 th3 = |
|
178 |
let val c = D.drop_prop(cconcl th1) |
|
179 |
val (disj1,disj2) = D.dest_disj c |
|
180 |
val th2' = DISCH disj1 th2 |
|
181 |
val th3' = DISCH disj2 th3 |
|
182 |
in |
|
183 |
th3' RS (th2' RS (th1 RS tfl_exE)) |
|
184 |
end |
|
185 |
end; |
|
186 |
||
187 |
||
188 |
(*----------------------------------------------------------------------------- |
|
189 |
* |
|
190 |
* |- A1 \/ ... \/ An [A1 |- M, ..., An |- M] |
|
191 |
* --------------------------------------------------- |
|
192 |
* |- M |
|
193 |
* |
|
194 |
* Note. The list of theorems may be all jumbled up, so we have to |
|
195 |
* first organize it to align with the first argument (the disjunctive |
|
196 |
* theorem). |
|
197 |
*---------------------------------------------------------------------------*) |
|
198 |
||
199 |
fun organize eq = (* a bit slow - analogous to insertion sort *) |
|
200 |
let fun extract a alist = |
|
201 |
let fun ex (_,[]) = raise RULES_ERR{func = "organize", |
|
202 |
mesg = "not a permutation.1"} |
|
203 |
| ex(left,h::t) = if (eq h a) then (h,rev left@t) else ex(h::left,t) |
|
204 |
in ex ([],alist) |
|
205 |
end |
|
206 |
fun place [] [] = [] |
|
207 |
| place (a::rst) alist = |
|
208 |
let val (item,next) = extract a alist |
|
209 |
in item::place rst next |
|
210 |
end |
|
211 |
| place _ _ = raise RULES_ERR{func = "organize", |
|
212 |
mesg = "not a permutation.2"} |
|
213 |
in place |
|
214 |
end; |
|
215 |
(* freezeT expensive! *) |
|
216 |
fun DISJ_CASESL disjth thl = |
|
217 |
let val c = cconcl disjth |
|
218 |
fun eq th atm = exists (D.caconv atm) (chyps th) |
|
219 |
val tml = D.strip_disj c |
|
220 |
fun DL th [] = raise RULES_ERR{func="DISJ_CASESL",mesg="no cases"} |
|
221 |
| DL th [th1] = PROVE_HYP th th1 |
|
222 |
| DL th [th1,th2] = DISJ_CASES th th1 th2 |
|
223 |
| DL th (th1::rst) = |
|
224 |
let val tm = #2(D.dest_disj(D.drop_prop(cconcl th))) |
|
225 |
in DISJ_CASES th th1 (DL (ASSUME tm) rst) end |
|
226 |
in DL (freezeT disjth) (organize eq tml thl) |
|
227 |
end; |
|
228 |
||
229 |
||
230 |
(*---------------------------------------------------------------------------- |
|
231 |
* Universals |
|
232 |
*---------------------------------------------------------------------------*) |
|
233 |
local (* this is fragile *) |
|
234 |
val {prop,sign,...} = rep_thm spec |
|
235 |
val x = hd (tl (term_vars prop)) |
|
236 |
val (TVar (indx,_)) = type_of x |
|
237 |
val gspec = forall_intr (cterm_of sign x) spec |
|
238 |
in |
|
239 |
fun SPEC tm thm = |
|
240 |
let val {sign,T,...} = rep_cterm tm |
|
241 |
val gspec' = instantiate([(indx,ctyp_of sign T)],[]) gspec |
|
242 |
in thm RS (forall_elim tm gspec') |
|
243 |
end |
|
244 |
end; |
|
245 |
||
246 |
fun SPEC_ALL thm = rev_itlist SPEC (#1(D.strip_forall(cconcl thm))) thm; |
|
247 |
||
248 |
val ISPEC = SPEC |
|
249 |
val ISPECL = rev_itlist ISPEC; |
|
250 |
||
251 |
(* Not optimized! Too complicated. *) |
|
252 |
local val {prop,sign,...} = rep_thm allI |
|
253 |
val [P] = add_term_vars (prop, []) |
|
254 |
fun cty_theta s = map (fn (i,ty) => (i, ctyp_of s ty)) |
|
255 |
fun ctm_theta s = map (fn (i,tm2) => |
|
256 |
let val ctm2 = cterm_of s tm2 |
|
257 |
in (cterm_of s (Var(i,#T(rep_cterm ctm2))), ctm2) |
|
258 |
end) |
|
259 |
fun certify s (ty_theta,tm_theta) = (cty_theta s ty_theta, |
|
260 |
ctm_theta s tm_theta) |
|
261 |
in |
|
262 |
fun GEN v th = |
|
263 |
let val gth = forall_intr v th |
|
264 |
val {prop=Const("all",_)$Abs(x,ty,rst),sign,...} = rep_thm gth |
|
265 |
val P' = Abs(x,ty, S.drop_Trueprop rst) (* get rid of trueprop *) |
|
266 |
val tsig = #tsig(Sign.rep_sg sign) |
|
267 |
val theta = Pattern.match tsig (P,P') |
|
268 |
val allI2 = instantiate (certify sign theta) allI |
|
269 |
val thm = implies_elim allI2 gth |
|
270 |
val {prop = tp $ (A $ Abs(_,_,M)),sign,...} = rep_thm thm |
|
271 |
val prop' = tp $ (A $ Abs(x,ty,M)) |
|
272 |
in ALPHA thm (cterm_of sign prop') |
|
273 |
end |
|
274 |
end; |
|
275 |
||
276 |
val GENL = itlist GEN; |
|
277 |
||
278 |
fun GEN_ALL thm = |
|
279 |
let val {prop,sign,...} = rep_thm thm |
|
280 |
val tycheck = cterm_of sign |
|
281 |
val vlist = map tycheck (add_term_vars (prop, [])) |
|
282 |
in GENL vlist thm |
|
283 |
end; |
|
284 |
||
285 |
||
286 |
local fun string_of(s,_) = s |
|
287 |
in |
|
288 |
fun freeze th = |
|
289 |
let val fth = freezeT th |
|
290 |
val {prop,sign,...} = rep_thm fth |
|
291 |
fun mk_inst (Var(v,T)) = |
|
292 |
(cterm_of sign (Var(v,T)), |
|
293 |
cterm_of sign (Free(string_of v, T))) |
|
294 |
val insts = map mk_inst (term_vars prop) |
|
295 |
in instantiate ([],insts) fth |
|
296 |
end |
|
297 |
end; |
|
298 |
||
299 |
fun MATCH_MP th1 th2 = |
|
300 |
if (D.is_forall (D.drop_prop(cconcl th1))) |
|
301 |
then MATCH_MP (th1 RS spec) th2 |
|
302 |
else MP th1 th2; |
|
303 |
||
304 |
||
305 |
(*---------------------------------------------------------------------------- |
|
306 |
* Existentials |
|
307 |
*---------------------------------------------------------------------------*) |
|
308 |
||
309 |
||
310 |
||
311 |
(*--------------------------------------------------------------------------- |
|
312 |
* Existential elimination |
|
313 |
* |
|
314 |
* A1 |- ?x.t[x] , A2, "t[v]" |- t' |
|
315 |
* ------------------------------------ (variable v occurs nowhere) |
|
316 |
* A1 u A2 |- t' |
|
317 |
* |
|
318 |
*---------------------------------------------------------------------------*) |
|
319 |
||
320 |
local val [p1,p2] = goal HOL.thy "(? x. P x) ==> (!x. P x --> Q) ==> Q" |
|
321 |
val _ = by (rtac (p1 RS exE) 1) |
|
322 |
val _ = by (rtac ((p2 RS allE) RS mp) 1) |
|
323 |
val _ = by (assume_tac 2) |
|
324 |
val _ = by (assume_tac 1) |
|
325 |
val choose_thm = result() |
|
326 |
in |
|
327 |
fun CHOOSE(fvar,exth) fact = |
|
328 |
let val lam = #2(dest_comb(D.drop_prop(cconcl exth))) |
|
329 |
val redex = capply lam fvar |
|
330 |
val {sign,t,...} = rep_cterm redex |
|
331 |
val residue = cterm_of sign (S.beta_conv t) |
|
332 |
in GEN fvar (DISCH residue fact) RS (exth RS choose_thm) |
|
333 |
end |
|
334 |
end; |
|
335 |
||
336 |
||
337 |
local val {prop,sign,...} = rep_thm exI |
|
338 |
val [P,x] = term_vars prop |
|
339 |
in |
|
340 |
fun EXISTS (template,witness) thm = |
|
341 |
let val {prop,sign,...} = rep_thm thm |
|
342 |
val P' = cterm_of sign P |
|
343 |
val x' = cterm_of sign x |
|
344 |
val abstr = #2(dest_comb template) |
|
345 |
in |
|
346 |
thm RS (cterm_instantiate[(P',abstr), (x',witness)] exI) |
|
347 |
end |
|
348 |
end; |
|
349 |
||
350 |
(*---------------------------------------------------------------------------- |
|
351 |
* |
|
352 |
* A |- M |
|
353 |
* ------------------- [v_1,...,v_n] |
|
354 |
* A |- ?v1...v_n. M |
|
355 |
* |
|
356 |
*---------------------------------------------------------------------------*) |
|
357 |
||
358 |
fun EXISTL vlist th = |
|
359 |
U.itlist (fn v => fn thm => EXISTS(D.mk_exists(v,cconcl thm), v) thm) |
|
360 |
vlist th; |
|
361 |
||
362 |
||
363 |
(*---------------------------------------------------------------------------- |
|
364 |
* |
|
365 |
* A |- M[x_1,...,x_n] |
|
366 |
* ---------------------------- [(x |-> y)_1,...,(x |-> y)_n] |
|
367 |
* A |- ?y_1...y_n. M |
|
368 |
* |
|
369 |
*---------------------------------------------------------------------------*) |
|
370 |
(* Could be improved, but needs "subst" for certified terms *) |
|
371 |
||
372 |
fun IT_EXISTS blist th = |
|
373 |
let val {sign,...} = rep_thm th |
|
374 |
val tych = cterm_of sign |
|
375 |
val detype = #t o rep_cterm |
|
376 |
val blist' = map (fn (x|->y) => (detype x |-> detype y)) blist |
|
377 |
fun ?v M = cterm_of sign (S.mk_exists{Bvar=v,Body = M}) |
|
378 |
||
379 |
in |
|
380 |
U.itlist (fn (b as (r1 |-> r2)) => fn thm => |
|
381 |
EXISTS(?r2(S.subst[b] (S.drop_Trueprop(#prop(rep_thm thm)))), tych r1) |
|
382 |
thm) |
|
383 |
blist' th |
|
384 |
end; |
|
385 |
||
386 |
(*--------------------------------------------------------------------------- |
|
387 |
* Faster version, that fails for some as yet unknown reason |
|
388 |
* fun IT_EXISTS blist th = |
|
389 |
* let val {sign,...} = rep_thm th |
|
390 |
* val tych = cterm_of sign |
|
391 |
* fun detype (x |-> y) = ((#t o rep_cterm) x |-> (#t o rep_cterm) y) |
|
392 |
* in |
|
393 |
* fold (fn (b as (r1|->r2), thm) => |
|
394 |
* EXISTS(D.mk_exists(r2, tych(S.subst[detype b](#t(rep_cterm(cconcl thm))))), |
|
395 |
* r1) thm) blist th |
|
396 |
* end; |
|
397 |
*---------------------------------------------------------------------------*) |
|
398 |
||
399 |
(*---------------------------------------------------------------------------- |
|
400 |
* Rewriting |
|
401 |
*---------------------------------------------------------------------------*) |
|
402 |
||
403 |
fun SUBS thl = |
|
404 |
rewrite_rule (map (fn th => (th RS eq_reflection) handle _ => th) thl); |
|
405 |
||
406 |
val simplify = rewrite_rule; |
|
407 |
||
408 |
local fun rew_conv mss = rewrite_cterm (true,false) mss (K(K None)) |
|
409 |
in |
|
410 |
fun simpl_conv thl ctm = |
|
411 |
rew_conv (Thm.mss_of (#simps(rep_ss HOL_ss)@thl)) ctm |
|
412 |
RS meta_eq_to_obj_eq |
|
413 |
end; |
|
414 |
||
415 |
local fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]) |
|
416 |
in |
|
417 |
val RIGHT_ASSOC = rewrite_rule [prover"((a|b)|c) = (a|(b|c))" RS eq_reflection] |
|
418 |
val ASM = refl RS iffD1 |
|
419 |
end; |
|
420 |
||
421 |
||
422 |
||
423 |
||
424 |
(*--------------------------------------------------------------------------- |
|
425 |
* TERMINATION CONDITION EXTRACTION |
|
426 |
*---------------------------------------------------------------------------*) |
|
427 |
||
428 |
||
429 |
||
430 |
val bool = S.bool |
|
431 |
val prop = Type("prop",[]); |
|
432 |
||
433 |
(* Object language quantifier, i.e., "!" *) |
|
434 |
fun Forall v M = S.mk_forall{Bvar=v, Body=M}; |
|
435 |
||
436 |
||
437 |
(* Fragile: it's a cong if it is not "R y x ==> cut f R x y = f y" *) |
|
438 |
fun is_cong thm = |
|
439 |
let val {prop, ...} = rep_thm thm |
|
440 |
in case prop |
|
441 |
of (Const("==>",_)$(Const("Trueprop",_)$ _) $ |
|
442 |
(Const("==",_) $ (Const ("cut",_) $ f $ R $ a $ x) $ _)) => false |
|
443 |
| _ => true |
|
444 |
end; |
|
445 |
||
446 |
||
447 |
||
448 |
fun dest_equal(Const ("==",_) $ |
|
449 |
(Const ("Trueprop",_) $ lhs) |
|
450 |
$ (Const ("Trueprop",_) $ rhs)) = {lhs=lhs, rhs=rhs} |
|
451 |
| dest_equal(Const ("==",_) $ lhs $ rhs) = {lhs=lhs, rhs=rhs} |
|
452 |
| dest_equal tm = S.dest_eq tm; |
|
453 |
||
454 |
||
455 |
fun get_rhs tm = #rhs(dest_equal (S.drop_Trueprop tm)); |
|
456 |
fun get_lhs tm = #lhs(dest_equal (S.drop_Trueprop tm)); |
|
457 |
||
458 |
fun variants FV vlist = |
|
459 |
rev(#1(U.rev_itlist (fn v => fn (V,W) => |
|
460 |
let val v' = S.variant W v |
|
461 |
in (v'::V, v'::W) end) |
|
462 |
vlist ([],FV))); |
|
463 |
||
464 |
||
465 |
fun dest_all(Const("all",_) $ (a as Abs _)) = S.dest_abs a |
|
466 |
| dest_all _ = raise RULES_ERR{func = "dest_all", mesg = "not a !!"}; |
|
467 |
||
468 |
val is_all = Utils.can dest_all; |
|
469 |
||
470 |
fun strip_all fm = |
|
471 |
if (is_all fm) |
|
472 |
then let val {Bvar,Body} = dest_all fm |
|
473 |
val (bvs,core) = strip_all Body |
|
474 |
in ((Bvar::bvs), core) |
|
475 |
end |
|
476 |
else ([],fm); |
|
477 |
||
478 |
fun break_all(Const("all",_) $ Abs (_,_,body)) = body |
|
479 |
| break_all _ = raise RULES_ERR{func = "break_all", mesg = "not a !!"}; |
|
480 |
||
481 |
fun list_break_all(Const("all",_) $ Abs (s,ty,body)) = |
|
482 |
let val (L,core) = list_break_all body |
|
483 |
in ((s,ty)::L, core) |
|
484 |
end |
|
485 |
| list_break_all tm = ([],tm); |
|
486 |
||
487 |
(*--------------------------------------------------------------------------- |
|
488 |
* Rename a term of the form |
|
489 |
* |
|
490 |
* !!x1 ...xn. x1=M1 ==> ... ==> xn=Mn |
|
491 |
* ==> ((%v1...vn. Q) x1 ... xn = g x1 ... xn. |
|
492 |
* to one of |
|
493 |
* |
|
494 |
* !!v1 ... vn. v1=M1 ==> ... ==> vn=Mn |
|
495 |
* ==> ((%v1...vn. Q) v1 ... vn = g v1 ... vn. |
|
496 |
* |
|
497 |
* This prevents name problems in extraction, and helps the result to read |
|
498 |
* better. There is a problem with varstructs, since they can introduce more |
|
499 |
* than n variables, and some extra reasoning needs to be done. |
|
500 |
*---------------------------------------------------------------------------*) |
|
501 |
||
502 |
fun get ([],_,L) = rev L |
|
503 |
| get (ant::rst,n,L) = |
|
504 |
case (list_break_all ant) |
|
505 |
of ([],_) => get (rst, n+1,L) |
|
506 |
| (vlist,body) => |
|
507 |
let val eq = Logic.strip_imp_concl body |
|
508 |
val (f,args) = S.strip_comb (get_lhs eq) |
|
509 |
val (vstrl,_) = S.strip_abs f |
|
510 |
val names = map (#Name o S.dest_var) |
|
511 |
(variants (S.free_vars body) vstrl) |
|
512 |
in get (rst, n+1, (names,n)::L) |
|
513 |
end handle _ => get (rst, n+1, L); |
|
514 |
||
515 |
(* Note: rename_params_rule counts from 1, not 0 *) |
|
516 |
fun rename thm = |
|
517 |
let val {prop,sign,...} = rep_thm thm |
|
518 |
val tych = cterm_of sign |
|
519 |
val ants = Logic.strip_imp_prems prop |
|
520 |
val news = get (ants,1,[]) |
|
521 |
in |
|
522 |
U.rev_itlist rename_params_rule news thm |
|
523 |
end; |
|
524 |
||
525 |
||
526 |
(*--------------------------------------------------------------------------- |
|
527 |
* Beta-conversion to the rhs of an equation (taken from hol90/drule.sml) |
|
528 |
*---------------------------------------------------------------------------*) |
|
529 |
||
530 |
fun list_beta_conv tm = |
|
531 |
let fun rbeta th = transitive th (beta_conversion(#2(D.dest_eq(cconcl th)))) |
|
532 |
fun iter [] = reflexive tm |
|
533 |
| iter (v::rst) = rbeta (combination(iter rst) (reflexive v)) |
|
534 |
in iter end; |
|
535 |
||
536 |
||
537 |
(*--------------------------------------------------------------------------- |
|
538 |
* Trace information for the rewriter |
|
539 |
*---------------------------------------------------------------------------*) |
|
540 |
val term_ref = ref[] : term list ref |
|
541 |
val mss_ref = ref [] : meta_simpset list ref; |
|
542 |
val thm_ref = ref [] : thm list ref; |
|
543 |
val tracing = ref false; |
|
544 |
||
2467
357adb429fda
Conversion to Basis Library (using prs instead of output)
paulson
parents:
2112
diff
changeset
|
545 |
fun say s = if !tracing then prs s else (); |
2112 | 546 |
|
547 |
fun print_thms s L = |
|
548 |
(say s; |
|
549 |
map (fn th => say (string_of_thm th ^"\n")) L; |
|
550 |
say"\n"); |
|
551 |
||
552 |
fun print_cterms s L = |
|
553 |
(say s; |
|
554 |
map (fn th => say (string_of_cterm th ^"\n")) L; |
|
555 |
say"\n"); |
|
556 |
||
557 |
(*--------------------------------------------------------------------------- |
|
558 |
* General abstraction handlers, should probably go in USyntax. |
|
559 |
*---------------------------------------------------------------------------*) |
|
560 |
fun mk_aabs(vstr,body) = S.mk_abs{Bvar=vstr,Body=body} |
|
561 |
handle _ => S.mk_pabs{varstruct = vstr, body = body}; |
|
562 |
||
563 |
fun list_mk_aabs (vstrl,tm) = |
|
564 |
U.itlist (fn vstr => fn tm => mk_aabs(vstr,tm)) vstrl tm; |
|
565 |
||
566 |
fun dest_aabs tm = |
|
567 |
let val {Bvar,Body} = S.dest_abs tm |
|
568 |
in (Bvar,Body) |
|
569 |
end handle _ => let val {varstruct,body} = S.dest_pabs tm |
|
570 |
in (varstruct,body) |
|
571 |
end; |
|
572 |
||
573 |
fun strip_aabs tm = |
|
574 |
let val (vstr,body) = dest_aabs tm |
|
575 |
val (bvs, core) = strip_aabs body |
|
576 |
in (vstr::bvs, core) |
|
577 |
end |
|
578 |
handle _ => ([],tm); |
|
579 |
||
580 |
fun dest_combn tm 0 = (tm,[]) |
|
581 |
| dest_combn tm n = |
|
582 |
let val {Rator,Rand} = S.dest_comb tm |
|
583 |
val (f,rands) = dest_combn Rator (n-1) |
|
584 |
in (f,Rand::rands) |
|
585 |
end; |
|
586 |
||
587 |
||
588 |
||
589 |
||
590 |
local fun dest_pair M = let val {fst,snd} = S.dest_pair M in (fst,snd) end |
|
591 |
fun mk_fst tm = |
|
592 |
let val ty = S.type_of tm |
|
593 |
val {Tyop="*",Args=[fty,sty]} = S.dest_type ty |
|
594 |
val fst = S.mk_const{Name="fst",Ty = ty --> fty} |
|
595 |
in S.mk_comb{Rator=fst, Rand=tm} |
|
596 |
end |
|
597 |
fun mk_snd tm = |
|
598 |
let val ty = S.type_of tm |
|
599 |
val {Tyop="*",Args=[fty,sty]} = S.dest_type ty |
|
600 |
val snd = S.mk_const{Name="snd",Ty = ty --> sty} |
|
601 |
in S.mk_comb{Rator=snd, Rand=tm} |
|
602 |
end |
|
603 |
in |
|
604 |
fun XFILL tych x vstruct = |
|
605 |
let fun traverse p xocc L = |
|
606 |
if (S.is_var p) |
|
607 |
then tych xocc::L |
|
608 |
else let val (p1,p2) = dest_pair p |
|
609 |
in traverse p1 (mk_fst xocc) (traverse p2 (mk_snd xocc) L) |
|
610 |
end |
|
611 |
in |
|
612 |
traverse vstruct x [] |
|
613 |
end end; |
|
614 |
||
615 |
(*--------------------------------------------------------------------------- |
|
616 |
* Replace a free tuple (vstr) by a universally quantified variable (a). |
|
617 |
* Note that the notion of "freeness" for a tuple is different than for a |
|
618 |
* variable: if variables in the tuple also occur in any other place than |
|
619 |
* an occurrences of the tuple, they aren't "free" (which is thus probably |
|
620 |
* the wrong word to use). |
|
621 |
*---------------------------------------------------------------------------*) |
|
622 |
||
623 |
fun VSTRUCT_ELIM tych a vstr th = |
|
624 |
let val L = S.free_vars_lr vstr |
|
625 |
val bind1 = tych (S.mk_prop (S.mk_eq{lhs=a, rhs=vstr})) |
|
626 |
val thm1 = implies_intr bind1 (SUBS [SYM(assume bind1)] th) |
|
627 |
val thm2 = forall_intr_list (map tych L) thm1 |
|
628 |
val thm3 = forall_elim_list (XFILL tych a vstr) thm2 |
|
629 |
in refl RS |
|
630 |
rewrite_rule[symmetric (surjective_pairing RS eq_reflection)] thm3 |
|
631 |
end; |
|
632 |
||
633 |
fun PGEN tych a vstr th = |
|
634 |
let val a1 = tych a |
|
635 |
val vstr1 = tych vstr |
|
636 |
in |
|
637 |
forall_intr a1 |
|
638 |
(if (S.is_var vstr) |
|
639 |
then cterm_instantiate [(vstr1,a1)] th |
|
640 |
else VSTRUCT_ELIM tych a vstr th) |
|
641 |
end; |
|
642 |
||
643 |
||
644 |
(*--------------------------------------------------------------------------- |
|
645 |
* Takes apart a paired beta-redex, looking like "(\(x,y).N) vstr", into |
|
646 |
* |
|
647 |
* (([x,y],N),vstr) |
|
648 |
*---------------------------------------------------------------------------*) |
|
649 |
fun dest_pbeta_redex M n = |
|
650 |
let val (f,args) = dest_combn M n |
|
651 |
val _ = dest_aabs f |
|
652 |
in (strip_aabs f,args) |
|
653 |
end; |
|
654 |
||
655 |
fun pbeta_redex M n = U.can (U.C dest_pbeta_redex n) M; |
|
656 |
||
657 |
fun dest_impl tm = |
|
658 |
let val ants = Logic.strip_imp_prems tm |
|
659 |
val eq = Logic.strip_imp_concl tm |
|
660 |
in (ants,get_lhs eq) |
|
661 |
end; |
|
662 |
||
663 |
val pbeta_reduce = simpl_conv [split RS eq_reflection]; |
|
664 |
val restricted = U.can(S.find_term |
|
665 |
(U.holds(fn c => (#Name(S.dest_const c)="cut")))) |
|
666 |
||
667 |
fun CONTEXT_REWRITE_RULE(func,R){thms=[cut_lemma],congs,th} = |
|
668 |
let val tc_list = ref[]: term list ref |
|
669 |
val _ = term_ref := [] |
|
670 |
val _ = thm_ref := [] |
|
671 |
val _ = mss_ref := [] |
|
672 |
val cut_lemma' = (cut_lemma RS mp) RS eq_reflection |
|
673 |
fun prover mss thm = |
|
674 |
let fun cong_prover mss thm = |
|
675 |
let val _ = say "cong_prover:\n" |
|
676 |
val cntxt = prems_of_mss mss |
|
677 |
val _ = print_thms "cntxt:\n" cntxt |
|
678 |
val _ = say "cong rule:\n" |
|
679 |
val _ = say (string_of_thm thm^"\n") |
|
680 |
val _ = thm_ref := (thm :: !thm_ref) |
|
681 |
val _ = mss_ref := (mss :: !mss_ref) |
|
682 |
(* Unquantified eliminate *) |
|
683 |
fun uq_eliminate (thm,imp,sign) = |
|
684 |
let val tych = cterm_of sign |
|
685 |
val _ = print_cterms "To eliminate:\n" [tych imp] |
|
686 |
val ants = map tych (Logic.strip_imp_prems imp) |
|
687 |
val eq = Logic.strip_imp_concl imp |
|
688 |
val lhs = tych(get_lhs eq) |
|
689 |
val mss' = add_prems(mss, map ASSUME ants) |
|
690 |
val lhs_eq_lhs1 = rewrite_cterm(false,true)mss' prover lhs |
|
691 |
handle _ => reflexive lhs |
|
692 |
val _ = print_thms "proven:\n" [lhs_eq_lhs1] |
|
693 |
val lhs_eq_lhs2 = implies_intr_list ants lhs_eq_lhs1 |
|
694 |
val lhs_eeq_lhs2 = lhs_eq_lhs2 RS meta_eq_to_obj_eq |
|
695 |
in |
|
696 |
lhs_eeq_lhs2 COMP thm |
|
697 |
end |
|
698 |
fun pq_eliminate (thm,sign,vlist,imp_body,lhs_eq) = |
|
699 |
let val ((vstrl,_),args) = dest_pbeta_redex lhs_eq(length vlist) |
|
700 |
val true = forall (fn (tm1,tm2) => S.aconv tm1 tm2) |
|
701 |
(Utils.zip vlist args) |
|
702 |
(* val fbvs1 = variants (S.free_vars imp) fbvs *) |
|
703 |
val imp_body1 = S.subst (map (op|->) (U.zip args vstrl)) |
|
704 |
imp_body |
|
705 |
val tych = cterm_of sign |
|
706 |
val ants1 = map tych (Logic.strip_imp_prems imp_body1) |
|
707 |
val eq1 = Logic.strip_imp_concl imp_body1 |
|
708 |
val Q = get_lhs eq1 |
|
709 |
val QeqQ1 = pbeta_reduce (tych Q) |
|
710 |
val Q1 = #2(D.dest_eq(cconcl QeqQ1)) |
|
711 |
val mss' = add_prems(mss, map ASSUME ants1) |
|
712 |
val Q1eeqQ2 = rewrite_cterm (false,true) mss' prover Q1 |
|
713 |
handle _ => reflexive Q1 |
|
714 |
val Q2 = get_rhs(S.drop_Trueprop(#prop(rep_thm Q1eeqQ2))) |
|
715 |
val Q3 = tych(S.list_mk_comb(list_mk_aabs(vstrl,Q2),vstrl)) |
|
716 |
val Q2eeqQ3 = symmetric(pbeta_reduce Q3 RS eq_reflection) |
|
717 |
val thA = transitive(QeqQ1 RS eq_reflection) Q1eeqQ2 |
|
718 |
val QeeqQ3 = transitive thA Q2eeqQ3 handle _ => |
|
719 |
((Q2eeqQ3 RS meta_eq_to_obj_eq) |
|
720 |
RS ((thA RS meta_eq_to_obj_eq) RS trans)) |
|
721 |
RS eq_reflection |
|
722 |
val impth = implies_intr_list ants1 QeeqQ3 |
|
723 |
val impth1 = impth RS meta_eq_to_obj_eq |
|
724 |
(* Need to abstract *) |
|
725 |
val ant_th = U.itlist2 (PGEN tych) args vstrl impth1 |
|
726 |
in ant_th COMP thm |
|
727 |
end |
|
728 |
fun q_eliminate (thm,imp,sign) = |
|
729 |
let val (vlist,imp_body) = strip_all imp |
|
730 |
val (ants,Q) = dest_impl imp_body |
|
731 |
in if (pbeta_redex Q) (length vlist) |
|
732 |
then pq_eliminate (thm,sign,vlist,imp_body,Q) |
|
733 |
else |
|
734 |
let val tych = cterm_of sign |
|
735 |
val ants1 = map tych ants |
|
736 |
val mss' = add_prems(mss, map ASSUME ants1) |
|
737 |
val Q_eeq_Q1 = rewrite_cterm(false,true) mss' |
|
738 |
prover (tych Q) |
|
739 |
handle _ => reflexive (tych Q) |
|
740 |
val lhs_eeq_lhs2 = implies_intr_list ants1 Q_eeq_Q1 |
|
741 |
val lhs_eq_lhs2 = lhs_eeq_lhs2 RS meta_eq_to_obj_eq |
|
742 |
val ant_th = forall_intr_list(map tych vlist)lhs_eq_lhs2 |
|
743 |
in |
|
744 |
ant_th COMP thm |
|
745 |
end end |
|
746 |
||
747 |
fun eliminate thm = |
|
748 |
case (rep_thm thm) |
|
749 |
of {prop = (Const("==>",_) $ imp $ _), sign, ...} => |
|
750 |
eliminate |
|
751 |
(if not(is_all imp) |
|
752 |
then uq_eliminate (thm,imp,sign) |
|
753 |
else q_eliminate (thm,imp,sign)) |
|
754 |
(* Assume that the leading constant is ==, *) |
|
755 |
| _ => thm (* if it is not a ==> *) |
|
756 |
in Some(eliminate (rename thm)) |
|
757 |
end handle _ => None |
|
758 |
||
759 |
fun restrict_prover mss thm = |
|
760 |
let val _ = say "restrict_prover:\n" |
|
761 |
val cntxt = rev(prems_of_mss mss) |
|
762 |
val _ = print_thms "cntxt:\n" cntxt |
|
763 |
val {prop = Const("==>",_) $ (Const("Trueprop",_) $ A) $ _, |
|
764 |
sign,...} = rep_thm thm |
|
765 |
fun genl tm = let val vlist = U.set_diff (U.curry(op aconv)) |
|
766 |
(add_term_frees(tm,[])) [func,R] |
|
767 |
in U.itlist Forall vlist tm |
|
768 |
end |
|
769 |
(*-------------------------------------------------------------- |
|
770 |
* This actually isn't quite right, since it will think that |
|
771 |
* not-fully applied occs. of "f" in the context mean that the |
|
772 |
* current call is nested. The real solution is to pass in a |
|
773 |
* term "f v1..vn" which is a pattern that any full application |
|
774 |
* of "f" will match. |
|
775 |
*-------------------------------------------------------------*) |
|
776 |
val func_name = #Name(S.dest_const func handle _ => |
|
777 |
S.dest_var func) |
|
778 |
fun is_func tm = (#Name(S.dest_const tm handle _ => |
|
779 |
S.dest_var tm) = func_name) |
|
780 |
handle _ => false |
|
781 |
val nested = U.can(S.find_term is_func) |
|
782 |
val rcontext = rev cntxt |
|
783 |
val cncl = S.drop_Trueprop o #prop o rep_thm |
|
784 |
val antl = case rcontext of [] => [] |
|
785 |
| _ => [S.list_mk_conj(map cncl rcontext)] |
|
786 |
val TC = genl(S.list_mk_imp(antl, A)) |
|
787 |
val _ = print_cterms "func:\n" [cterm_of sign func] |
|
788 |
val _ = print_cterms "TC:\n" [cterm_of sign (S.mk_prop TC)] |
|
789 |
val _ = tc_list := (TC :: !tc_list) |
|
790 |
val nestedp = nested TC |
|
791 |
val _ = if nestedp then say "nested\n" else say "not_nested\n" |
|
792 |
val _ = term_ref := ([func,TC]@(!term_ref)) |
|
793 |
val th' = if nestedp then raise RULES_ERR{func = "solver", |
|
794 |
mesg = "nested function"} |
|
795 |
else let val cTC = cterm_of sign (S.mk_prop TC) |
|
796 |
in case rcontext of |
|
797 |
[] => SPEC_ALL(ASSUME cTC) |
|
798 |
| _ => MP (SPEC_ALL (ASSUME cTC)) |
|
799 |
(LIST_CONJ rcontext) |
|
800 |
end |
|
801 |
val th'' = th' RS thm |
|
802 |
in Some (th'') |
|
803 |
end handle _ => None |
|
804 |
in |
|
805 |
(if (is_cong thm) then cong_prover else restrict_prover) mss thm |
|
806 |
end |
|
807 |
val ctm = cprop_of th |
|
808 |
val th1 = rewrite_cterm(false,true) (add_congs(mss_of [cut_lemma'], congs)) |
|
809 |
prover ctm |
|
810 |
val th2 = equal_elim th1 th |
|
811 |
in |
|
812 |
(th2, U.filter (not o restricted) (!tc_list)) |
|
813 |
end; |
|
814 |
||
815 |
||
816 |
||
817 |
fun prove (tm,tac) = |
|
818 |
let val {t,sign,...} = rep_cterm tm |
|
819 |
val ptm = cterm_of sign(S.mk_prop t) |
|
820 |
in |
|
821 |
freeze(prove_goalw_cterm [] ptm (fn _ => [tac])) |
|
822 |
end; |
|
823 |
||
824 |
||
825 |
end; (* Rules *) |