| author | kuncar | 
| Wed, 04 Apr 2012 19:20:52 +0200 | |
| changeset 47362 | b1f099bdfbba | 
| parent 46355 | 42a01315d998 | 
| permissions | -rw-r--r-- | 
| 45111 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 3 | theory Abs_Int0 | |
| 4 | imports Abs_State | |
| 5 | begin | |
| 6 | ||
| 7 | subsection "Computable Abstract Interpretation" | |
| 8 | ||
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 9 | text{* Abstract interpretation over type @{text st} instead of
 | 
| 45111 | 10 | functions. *} | 
| 11 | ||
| 46346 
10c18630612a
removed duplicate definitions that made locale inconsistent
 nipkow parents: 
46334diff
changeset | 12 | context Gamma | 
| 45111 | 13 | begin | 
| 14 | ||
| 46063 | 15 | fun aval' :: "aexp \<Rightarrow> 'av st \<Rightarrow> 'av" where | 
| 46039 | 16 | "aval' (N n) S = num' n" | | 
| 45111 | 17 | "aval' (V x) S = lookup S x" | | 
| 18 | "aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)" | |
| 19 | ||
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 20 | lemma aval'_sound: "s : \<gamma>\<^isub>f S \<Longrightarrow> aval a s : \<gamma>(aval' a S)" | 
| 46334 | 21 | by (induction a) (auto simp: gamma_num' gamma_plus' \<gamma>_st_def lookup_def) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 22 | |
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 23 | end | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 24 | |
| 46063 | 25 | text{* The for-clause (here and elsewhere) only serves the purpose of fixing
 | 
| 26 | the name of the type parameter @{typ 'av} which would otherwise be renamed to
 | |
| 27 | @{typ 'a}. *}
 | |
| 28 | ||
| 46346 
10c18630612a
removed duplicate definitions that made locale inconsistent
 nipkow parents: 
46334diff
changeset | 29 | locale Abs_Int = Gamma where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set" | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 30 | begin | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 31 | |
| 46063 | 32 | fun step' :: "'av st option \<Rightarrow> 'av st option acom \<Rightarrow> 'av st option acom" where | 
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 33 | "step' S (SKIP {P}) = (SKIP {S})" |
 | 
| 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 34 | "step' S (x ::= e {P}) =
 | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 35 |   x ::= e {case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))}" |
 | 
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 36 | "step' S (c1; c2) = step' S c1; step' (post c1) c2" | | 
| 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 37 | "step' S (IF b THEN c1 ELSE c2 {P}) =
 | 
| 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 38 | (let c1' = step' S c1; c2' = step' S c2 | 
| 45111 | 39 |    in IF b THEN c1' ELSE c2' {post c1 \<squnion> post c2})" |
 | 
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 40 | "step' S ({Inv} WHILE b DO c {P}) =
 | 
| 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 41 |    {S \<squnion> post c} WHILE b DO step' Inv c {Inv}"
 | 
| 45111 | 42 | |
| 46063 | 43 | definition AI :: "com \<Rightarrow> 'av st option acom option" where | 
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 44 | "AI = lpfp\<^isub>c (step' \<top>)" | 
| 45127 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 45 | |
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 46 | |
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 47 | lemma strip_step'[simp]: "strip(step' S c) = strip c" | 
| 45111 | 48 | by(induct c arbitrary: S) (simp_all add: Let_def) | 
| 49 | ||
| 50 | ||
| 45127 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 51 | text{* Soundness: *}
 | 
| 45111 | 52 | |
| 46039 | 53 | lemma in_gamma_update: | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 54 | "\<lbrakk> s : \<gamma>\<^isub>f S; i : \<gamma> a \<rbrakk> \<Longrightarrow> s(x := i) : \<gamma>\<^isub>f(update S x a)" | 
| 46039 | 55 | by(simp add: \<gamma>_st_def lookup_update) | 
| 45111 | 56 | |
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 57 | text{* The soundness proofs are textually identical to the ones for the step
 | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 58 | function operating on states as functions. *} | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 59 | |
| 46068 | 60 | lemma step_preserves_le: | 
| 46334 | 61 | "\<lbrakk> S \<subseteq> \<gamma>\<^isub>o S'; c \<le> \<gamma>\<^isub>c c' \<rbrakk> \<Longrightarrow> step S c \<le> \<gamma>\<^isub>c (step' S' c')" | 
| 62 | proof(induction c arbitrary: c' S S') | |
| 46068 | 63 | case SKIP thus ?case by(auto simp:SKIP_le map_acom_SKIP) | 
| 45111 | 64 | next | 
| 65 | case Assign thus ?case | |
| 46068 | 66 | by (fastforce simp: Assign_le map_acom_Assign intro: aval'_sound in_gamma_update | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 67 | split: option.splits del:subsetD) | 
| 45111 | 68 | next | 
| 46068 | 69 | case Semi thus ?case apply (auto simp: Semi_le map_acom_Semi) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 70 | by (metis le_post post_map_acom) | 
| 45111 | 71 | next | 
| 46334 | 72 | case (If b c1 c2 P) | 
| 73 | then obtain c1' c2' P' where | |
| 74 |       "c' = IF b THEN c1' ELSE c2' {P'}"
 | |
| 75 | "P \<subseteq> \<gamma>\<^isub>o P'" "c1 \<le> \<gamma>\<^isub>c c1'" "c2 \<le> \<gamma>\<^isub>c c2'" | |
| 46068 | 76 | by (fastforce simp: If_le map_acom_If) | 
| 46334 | 77 | moreover have "post c1 \<subseteq> \<gamma>\<^isub>o(post c1' \<squnion> post c2')" | 
| 78 | by (metis (no_types) `c1 \<le> \<gamma>\<^isub>c c1'` join_ge1 le_post mono_gamma_o order_trans post_map_acom) | |
| 79 | moreover have "post c2 \<subseteq> \<gamma>\<^isub>o(post c1' \<squnion> post c2')" | |
| 80 | by (metis (no_types) `c2 \<le> \<gamma>\<^isub>c c2'` join_ge2 le_post mono_gamma_o order_trans post_map_acom) | |
| 46068 | 81 | ultimately show ?case using `S \<subseteq> \<gamma>\<^isub>o S'` by (simp add: If.IH subset_iff) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 82 | next | 
| 46334 | 83 | case (While I b c1 P) | 
| 84 | then obtain c1' I' P' where | |
| 85 |     "c' = {I'} WHILE b DO c1' {P'}"
 | |
| 86 | "I \<subseteq> \<gamma>\<^isub>o I'" "P \<subseteq> \<gamma>\<^isub>o P'" "c1 \<le> \<gamma>\<^isub>c c1'" | |
| 46068 | 87 | by (fastforce simp: map_acom_While While_le) | 
| 46334 | 88 | moreover have "S \<union> post c1 \<subseteq> \<gamma>\<^isub>o (S' \<squnion> post c1')" | 
| 89 | using `S \<subseteq> \<gamma>\<^isub>o S'` le_post[OF `c1 \<le> \<gamma>\<^isub>c c1'`, simplified] | |
| 46039 | 90 | by (metis (no_types) join_ge1 join_ge2 le_sup_iff mono_gamma_o order_trans) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 91 | ultimately show ?case by (simp add: While.IH subset_iff) | 
| 45111 | 92 | qed | 
| 93 | ||
| 46070 | 94 | lemma AI_sound: "AI c = Some c' \<Longrightarrow> CS c \<le> \<gamma>\<^isub>c c'" | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 95 | proof(simp add: CS_def AI_def) | 
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 96 | assume 1: "lpfp\<^isub>c (step' \<top>) c = Some c'" | 
| 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 97 | have 2: "step' \<top> c' \<sqsubseteq> c'" by(rule lpfpc_pfp[OF 1]) | 
| 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 98 | have 3: "strip (\<gamma>\<^isub>c (step' \<top> c')) = c" | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 99 | by(simp add: strip_lpfpc[OF _ 1]) | 
| 46066 | 100 | have "lfp (step UNIV) c \<le> \<gamma>\<^isub>c (step' \<top> c')" | 
| 45903 | 101 | proof(rule lfp_lowerbound[simplified,OF 3]) | 
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 102 | show "step UNIV (\<gamma>\<^isub>c (step' \<top> c')) \<le> \<gamma>\<^isub>c (step' \<top> c')" | 
| 46068 | 103 | proof(rule step_preserves_le[OF _ _]) | 
| 46039 | 104 | show "UNIV \<subseteq> \<gamma>\<^isub>o \<top>" by simp | 
| 105 | show "\<gamma>\<^isub>c (step' \<top> c') \<le> \<gamma>\<^isub>c c'" by(rule mono_gamma_c[OF 2]) | |
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 106 | qed | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 107 | qed | 
| 46066 | 108 | from this 2 show "lfp (step UNIV) c \<le> \<gamma>\<^isub>c c'" | 
| 46039 | 109 | by (blast intro: mono_gamma_c order_trans) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: 
45127diff
changeset | 110 | qed | 
| 45111 | 111 | |
| 112 | end | |
| 113 | ||
| 114 | ||
| 45127 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 115 | subsubsection "Monotonicity" | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 116 | |
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 117 | locale Abs_Int_mono = Abs_Int + | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 118 | assumes mono_plus': "a1 \<sqsubseteq> b1 \<Longrightarrow> a2 \<sqsubseteq> b2 \<Longrightarrow> plus' a1 a2 \<sqsubseteq> plus' b1 b2" | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 119 | begin | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 120 | |
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 121 | lemma mono_aval': "S \<sqsubseteq> S' \<Longrightarrow> aval' e S \<sqsubseteq> aval' e S'" | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 122 | by(induction e) (auto simp: le_st_def lookup_def mono_plus') | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 123 | |
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 124 | lemma mono_update: "a \<sqsubseteq> a' \<Longrightarrow> S \<sqsubseteq> S' \<Longrightarrow> update S x a \<sqsubseteq> update S' x a'" | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 125 | by(auto simp add: le_st_def lookup_def update_def) | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 126 | |
| 46153 | 127 | lemma mono_step': "S \<sqsubseteq> S' \<Longrightarrow> c \<sqsubseteq> c' \<Longrightarrow> step' S c \<sqsubseteq> step' S' c'" | 
| 128 | apply(induction c c' arbitrary: S S' rule: le_acom.induct) | |
| 129 | apply (auto simp: Let_def mono_update mono_aval' mono_post le_join_disj | |
| 130 | split: option.split) | |
| 45127 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 131 | done | 
| 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 132 | |
| 45111 | 133 | end | 
| 45127 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 134 | |
| 46158 | 135 | |
| 136 | subsubsection "Ascending Chain Condition" | |
| 137 | ||
| 46334 | 138 | hide_const (open) acc | 
| 46158 | 139 | |
| 140 | abbreviation "strict r == r \<inter> -(r^-1)" | |
| 141 | abbreviation "acc r == wf((strict r)^-1)" | |
| 142 | ||
| 143 | lemma strict_inv_image: "strict(inv_image r f) = inv_image (strict r) f" | |
| 144 | by(auto simp: inv_image_def) | |
| 145 | ||
| 146 | lemma acc_inv_image: | |
| 147 | "acc r \<Longrightarrow> acc (inv_image r f)" | |
| 148 | by (metis converse_inv_image strict_inv_image wf_inv_image) | |
| 149 | ||
| 150 | text{* ACC for option type: *}
 | |
| 151 | ||
| 152 | lemma acc_option: assumes "acc {(x,y::'a::preord). x \<sqsubseteq> y}"
 | |
| 46355 
42a01315d998
removed accidental dependance of abstract interpreter on gamma
 nipkow parents: 
46346diff
changeset | 153 | shows "acc {(x,y::'a::preord option). x \<sqsubseteq> y}"
 | 
| 46158 | 154 | proof(auto simp: wf_eq_minimal) | 
| 155 | fix xo :: "'a option" and Qo assume "xo : Qo" | |
| 156 |   let ?Q = "{x. Some x \<in> Qo}"
 | |
| 157 | show "\<exists>yo\<in>Qo. \<forall>zo. yo \<sqsubseteq> zo \<and> ~ zo \<sqsubseteq> yo \<longrightarrow> zo \<notin> Qo" (is "\<exists>zo\<in>Qo. ?P zo") | |
| 158 | proof cases | |
| 159 |     assume "?Q = {}"
 | |
| 160 | hence "?P None" by auto | |
| 161 |     moreover have "None \<in> Qo" using `?Q = {}` `xo : Qo`
 | |
| 162 | by auto (metis not_Some_eq) | |
| 163 | ultimately show ?thesis by blast | |
| 164 | next | |
| 165 |     assume "?Q \<noteq> {}"
 | |
| 166 | with assms show ?thesis | |
| 167 | apply(auto simp: wf_eq_minimal) | |
| 168 | apply(erule_tac x="?Q" in allE) | |
| 169 | apply auto | |
| 170 | apply(rule_tac x = "Some z" in bexI) | |
| 171 | by auto | |
| 172 | qed | |
| 173 | qed | |
| 174 | ||
| 175 | text{* ACC for abstract states, via measure functions. *}
 | |
| 176 | ||
| 177 | (*FIXME mv*) | |
| 178 | lemma setsum_strict_mono1: | |
| 179 | fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add, ordered_cancel_ab_semigroup_add}"
 | |
| 180 | assumes "finite A" and "ALL x:A. f x \<le> g x" and "EX a:A. f a < g a" | |
| 181 | shows "setsum f A < setsum g A" | |
| 182 | proof- | |
| 183 | from assms(3) obtain a where a: "a:A" "f a < g a" by blast | |
| 184 |   have "setsum f A = setsum f ((A-{a}) \<union> {a})"
 | |
| 185 | by(simp add:insert_absorb[OF `a:A`]) | |
| 186 |   also have "\<dots> = setsum f (A-{a}) + setsum f {a}"
 | |
| 187 | using `finite A` by(subst setsum_Un_disjoint) auto | |
| 188 |   also have "setsum f (A-{a}) \<le> setsum g (A-{a})"
 | |
| 189 | by(rule setsum_mono)(simp add: assms(2)) | |
| 190 |   also have "setsum f {a} < setsum g {a}" using a by simp
 | |
| 191 |   also have "setsum g (A - {a}) + setsum g {a} = setsum g((A-{a}) \<union> {a})"
 | |
| 192 | using `finite A` by(subst setsum_Un_disjoint[symmetric]) auto | |
| 193 | also have "\<dots> = setsum g A" by(simp add:insert_absorb[OF `a:A`]) | |
| 194 | finally show ?thesis by (metis add_right_mono add_strict_left_mono) | |
| 195 | qed | |
| 196 | ||
| 197 | lemma measure_st: assumes "(strict{(x,y::'a::SL_top). x \<sqsubseteq> y})^-1 <= measure m"
 | |
| 46355 
42a01315d998
removed accidental dependance of abstract interpreter on gamma
 nipkow parents: 
46346diff
changeset | 198 | and "\<forall>x y::'a::SL_top. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m x = m y" | 
| 
42a01315d998
removed accidental dependance of abstract interpreter on gamma
 nipkow parents: 
46346diff
changeset | 199 | shows "(strict{(S,S'::'a::SL_top st). S \<sqsubseteq> S'})^-1 \<subseteq>
 | 
| 46158 | 200 | measure(%fd. \<Sum>x| x\<in>set(dom fd) \<and> ~ \<top> \<sqsubseteq> fun fd x. m(fun fd x)+1)" | 
| 201 | proof- | |
| 202 |   { fix S S' :: "'a st" assume "S \<sqsubseteq> S'" "~ S' \<sqsubseteq> S"
 | |
| 203 | let ?X = "set(dom S)" let ?Y = "set(dom S')" | |
| 204 | let ?f = "fun S" let ?g = "fun S'" | |
| 205 |     let ?X' = "{x:?X. ~ \<top> \<sqsubseteq> ?f x}" let ?Y' = "{y:?Y. ~ \<top> \<sqsubseteq> ?g y}"
 | |
| 206 | from `S \<sqsubseteq> S'` have "ALL y:?Y'\<inter>?X. ?f y \<sqsubseteq> ?g y" | |
| 207 | by(auto simp: le_st_def lookup_def) | |
| 208 | hence 1: "ALL y:?Y'\<inter>?X. m(?g y)+1 \<le> m(?f y)+1" | |
| 209 | using assms(1,2) by(fastforce) | |
| 210 | from `~ S' \<sqsubseteq> S` obtain u where u: "u : ?X" "~ lookup S' u \<sqsubseteq> ?f u" | |
| 211 | by(auto simp: le_st_def) | |
| 212 | hence "u : ?X'" by simp (metis preord_class.le_trans top) | |
| 213 |     have "?Y'-?X = {}" using `S \<sqsubseteq> S'` by(fastforce simp: le_st_def lookup_def)
 | |
| 214 | have "?Y'\<inter>?X <= ?X'" apply auto | |
| 215 | apply (metis `S \<sqsubseteq> S'` le_st_def lookup_def preord_class.le_trans) | |
| 216 | done | |
| 217 | have "(\<Sum>y\<in>?Y'. m(?g y)+1) = (\<Sum>y\<in>(?Y'-?X) \<union> (?Y'\<inter>?X). m(?g y)+1)" | |
| 218 | by (metis Un_Diff_Int) | |
| 219 | also have "\<dots> = (\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1)" | |
| 220 |       using `?Y'-?X = {}` by (metis Un_empty_left)
 | |
| 221 | also have "\<dots> < (\<Sum>x\<in>?X'. m(?f x)+1)" | |
| 222 | proof cases | |
| 223 | assume "u \<in> ?Y'" | |
| 224 | hence "m(?g u) < m(?f u)" using assms(1) `S \<sqsubseteq> S'` u | |
| 225 | by (fastforce simp: le_st_def lookup_def) | |
| 226 | have "(\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1) < (\<Sum>y\<in>?Y'\<inter>?X. m(?f y)+1)" | |
| 227 | using `u:?X` `u:?Y'` `m(?g u) < m(?f u)` | |
| 228 | by(fastforce intro!: setsum_strict_mono1[OF _ 1]) | |
| 229 | also have "\<dots> \<le> (\<Sum>y\<in>?X'. m(?f y)+1)" | |
| 230 | by(simp add: setsum_mono3[OF _ `?Y'\<inter>?X <= ?X'`]) | |
| 231 | finally show ?thesis . | |
| 232 | next | |
| 233 | assume "u \<notin> ?Y'" | |
| 234 |       with `?Y'\<inter>?X <= ?X'` have "?Y'\<inter>?X - {u} <= ?X' - {u}" by blast
 | |
| 235 |       have "(\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1) = (\<Sum>y\<in>?Y'\<inter>?X - {u}. m(?g y)+1)"
 | |
| 236 | proof- | |
| 237 |         have "?Y'\<inter>?X = ?Y'\<inter>?X - {u}" using `u \<notin> ?Y'` by auto
 | |
| 238 | thus ?thesis by metis | |
| 239 | qed | |
| 240 |       also have "\<dots> < (\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?g y)+1) + (\<Sum>y\<in>{u}. m(?f y)+1)" by simp
 | |
| 241 |       also have "(\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?g y)+1) \<le> (\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?f y)+1)"
 | |
| 242 | using 1 by(blast intro: setsum_mono) | |
| 243 |       also have "\<dots> \<le> (\<Sum>y\<in>?X'-{u}. m(?f y)+1)"
 | |
| 244 |         by(simp add: setsum_mono3[OF _ `?Y'\<inter>?X-{u} <= ?X'-{u}`])
 | |
| 245 |       also have "\<dots> + (\<Sum>y\<in>{u}. m(?f y)+1)= (\<Sum>y\<in>(?X'-{u}) \<union> {u}. m(?f y)+1)"
 | |
| 246 | using `u:?X'` by(subst setsum_Un_disjoint[symmetric]) auto | |
| 247 | also have "\<dots> = (\<Sum>x\<in>?X'. m(?f x)+1)" | |
| 248 | using `u : ?X'` by(simp add:insert_absorb) | |
| 249 | finally show ?thesis by (blast intro: add_right_mono) | |
| 250 | qed | |
| 251 | finally have "(\<Sum>y\<in>?Y'. m(?g y)+1) < (\<Sum>x\<in>?X'. m(?f x)+1)" . | |
| 252 | } thus ?thesis by(auto simp add: measure_def inv_image_def) | |
| 253 | qed | |
| 254 | ||
| 255 | text{* ACC for acom. First the ordering on acom is related to an ordering on
 | |
| 256 | lists of annotations. *} | |
| 257 | ||
| 258 | (* FIXME mv and add [simp] *) | |
| 259 | lemma listrel_Cons_iff: | |
| 260 | "(x#xs, y#ys) : listrel r \<longleftrightarrow> (x,y) \<in> r \<and> (xs,ys) \<in> listrel r" | |
| 261 | by (blast intro:listrel.Cons) | |
| 262 | ||
| 263 | lemma listrel_app: "(xs1,ys1) : listrel r \<Longrightarrow> (xs2,ys2) : listrel r | |
| 264 | \<Longrightarrow> (xs1@xs2, ys1@ys2) : listrel r" | |
| 265 | by(auto simp add: listrel_iff_zip) | |
| 266 | ||
| 267 | lemma listrel_app_same_size: "size xs1 = size ys1 \<Longrightarrow> size xs2 = size ys2 \<Longrightarrow> | |
| 268 | (xs1@xs2, ys1@ys2) : listrel r \<longleftrightarrow> | |
| 269 | (xs1,ys1) : listrel r \<and> (xs2,ys2) : listrel r" | |
| 270 | by(auto simp add: listrel_iff_zip) | |
| 271 | ||
| 272 | lemma listrel_converse: "listrel(r^-1) = (listrel r)^-1" | |
| 273 | proof- | |
| 274 |   { fix xs ys
 | |
| 275 | have "(xs,ys) : listrel(r^-1) \<longleftrightarrow> (ys,xs) : listrel r" | |
| 276 | apply(induct xs arbitrary: ys) | |
| 277 | apply (fastforce simp: listrel.Nil) | |
| 278 | apply (fastforce simp: listrel_Cons_iff) | |
| 279 | done | |
| 280 | } thus ?thesis by auto | |
| 281 | qed | |
| 282 | ||
| 283 | (* It would be nice to get rid of refl & trans and build them into the proof *) | |
| 284 | lemma acc_listrel: fixes r :: "('a*'a)set" assumes "refl r" and "trans r"
 | |
| 285 | and "acc r" shows "acc (listrel r - {([],[])})"
 | |
| 286 | proof- | |
| 287 | have refl: "!!x. (x,x) : r" using `refl r` unfolding refl_on_def by blast | |
| 288 | have trans: "!!x y z. (x,y) : r \<Longrightarrow> (y,z) : r \<Longrightarrow> (x,z) : r" | |
| 289 | using `trans r` unfolding trans_def by blast | |
| 290 | from assms(3) obtain mx :: "'a set \<Rightarrow> 'a" where | |
| 291 | mx: "!!S x. x:S \<Longrightarrow> mx S : S \<and> (\<forall>y. (mx S,y) : strict r \<longrightarrow> y \<notin> S)" | |
| 292 | by(simp add: wf_eq_minimal) metis | |
| 293 |   let ?R = "listrel r - {([], [])}"
 | |
| 294 |   { fix Q and xs :: "'a list"
 | |
| 295 | have "xs \<in> Q \<Longrightarrow> \<exists>ys. ys\<in>Q \<and> (\<forall>zs. (ys, zs) \<in> strict ?R \<longrightarrow> zs \<notin> Q)" | |
| 296 | (is "_ \<Longrightarrow> \<exists>ys. ?P Q ys") | |
| 297 | proof(induction xs arbitrary: Q rule: length_induct) | |
| 298 | case (1 xs) | |
| 299 |       { have "!!ys Q. size ys < size xs \<Longrightarrow> ys : Q \<Longrightarrow> EX ms. ?P Q ms"
 | |
| 300 | using "1.IH" by blast | |
| 301 | } note IH = this | |
| 302 | show ?case | |
| 303 | proof(cases xs) | |
| 304 | case Nil with `xs : Q` have "?P Q []" by auto | |
| 305 | thus ?thesis by blast | |
| 306 | next | |
| 307 | case (Cons x ys) | |
| 308 |         let ?Q1 = "{a. \<exists>bs. size bs = size ys \<and> a#bs : Q}"
 | |
| 309 | have "x : ?Q1" using `xs : Q` Cons by auto | |
| 310 | from mx[OF this] obtain m1 where | |
| 311 | 1: "m1 \<in> ?Q1 \<and> (\<forall>y. (m1,y) \<in> strict r \<longrightarrow> y \<notin> ?Q1)" by blast | |
| 312 | then obtain ms1 where "size ms1 = size ys" "m1#ms1 : Q" by blast+ | |
| 313 | hence "size ms1 < size xs" using Cons by auto | |
| 314 |         let ?Q2 = "{bs. \<exists>m1'. (m1',m1):r \<and> (m1,m1'):r \<and> m1'#bs : Q \<and> size bs = size ms1}"
 | |
| 315 | have "ms1 : ?Q2" using `m1#ms1 : Q` by(blast intro: refl) | |
| 316 | from IH[OF `size ms1 < size xs` this] | |
| 317 | obtain ms where 2: "?P ?Q2 ms" by auto | |
| 318 | then obtain m1' where m1': "(m1',m1) : r \<and> (m1,m1') : r \<and> m1'#ms : Q" | |
| 319 | by blast | |
| 320 | hence "\<forall>ab. (m1'#ms,ab) : strict ?R \<longrightarrow> ab \<notin> Q" using 1 2 | |
| 321 | apply (auto simp: listrel_Cons_iff) | |
| 322 | apply (metis `length ms1 = length ys` listrel_eq_len trans) | |
| 323 | by (metis `length ms1 = length ys` listrel_eq_len trans) | |
| 324 | with m1' show ?thesis by blast | |
| 325 | qed | |
| 326 | qed | |
| 327 | } | |
| 328 | thus ?thesis unfolding wf_eq_minimal by (metis converse_iff) | |
| 329 | qed | |
| 330 | ||
| 331 | ||
| 332 | fun annos :: "'a acom \<Rightarrow> 'a list" where | |
| 333 | "annos (SKIP {a}) = [a]" |
 | |
| 334 | "annos (x::=e {a}) = [a]" |
 | |
| 335 | "annos (c1;c2) = annos c1 @ annos c2" | | |
| 336 | "annos (IF b THEN c1 ELSE c2 {a}) = a #  annos c1 @ annos c2" |
 | |
| 337 | "annos ({i} WHILE b DO c {a}) = i # a # annos c"
 | |
| 338 | ||
| 339 | lemma size_annos_same: "strip c1 = strip c2 \<Longrightarrow> size(annos c1) = size(annos c2)" | |
| 340 | apply(induct c2 arbitrary: c1) | |
| 341 | apply (auto simp: strip_eq_SKIP strip_eq_Assign strip_eq_Semi strip_eq_If strip_eq_While) | |
| 342 | done | |
| 343 | ||
| 46246 | 344 | lemmas size_annos_same2 = eqTrueI[OF size_annos_same] | 
| 345 | ||
| 346 | lemma set_annos_anno: "set (annos (anno a c)) = {a}"
 | |
| 347 | by(induction c)(auto) | |
| 348 | ||
| 46158 | 349 | lemma le_iff_le_annos: "c1 \<sqsubseteq> c2 \<longleftrightarrow> | 
| 350 |  (annos c1, annos c2) : listrel{(x,y). x \<sqsubseteq> y} \<and> strip c1 = strip c2"
 | |
| 351 | apply(induct c1 c2 rule: le_acom.induct) | |
| 46246 | 352 | apply (auto simp: listrel.Nil listrel_Cons_iff listrel_app size_annos_same2) | 
| 46158 | 353 | apply (metis listrel_app_same_size size_annos_same)+ | 
| 354 | done | |
| 355 | ||
| 356 | lemma le_acom_subset_same_annos: | |
| 357 |  "(strict{(c,c'::'a::preord acom). c \<sqsubseteq> c'})^-1 \<subseteq>
 | |
| 358 |   (strict(inv_image (listrel{(a,a'::'a). a \<sqsubseteq> a'} - {([],[])}) annos))^-1"
 | |
| 359 | by(auto simp: le_iff_le_annos) | |
| 360 | ||
| 361 | lemma acc_acom: "acc {(a,a'::'a::preord). a \<sqsubseteq> a'} \<Longrightarrow>
 | |
| 362 |   acc {(c,c'::'a acom). c \<sqsubseteq> c'}"
 | |
| 363 | apply(rule wf_subset[OF _ le_acom_subset_same_annos]) | |
| 364 | apply(rule acc_inv_image[OF acc_listrel]) | |
| 365 | apply(auto simp: refl_on_def trans_def intro: le_trans) | |
| 366 | done | |
| 367 | ||
| 368 | text{* Termination of the fixed-point finders, assuming monotone functions: *}
 | |
| 369 | ||
| 370 | lemma pfp_termination: | |
| 371 | fixes x0 :: "'a::preord" | |
| 372 | assumes mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y" and "acc {(x::'a,y). x \<sqsubseteq> y}"
 | |
| 373 | and "x0 \<sqsubseteq> f x0" shows "EX x. pfp f x0 = Some x" | |
| 374 | proof(simp add: pfp_def, rule wf_while_option_Some[where P = "%x. x \<sqsubseteq> f x"]) | |
| 375 |   show "wf {(x, s). (s \<sqsubseteq> f s \<and> \<not> f s \<sqsubseteq> s) \<and> x = f s}"
 | |
| 376 | by(rule wf_subset[OF assms(2)]) auto | |
| 377 | next | |
| 378 | show "x0 \<sqsubseteq> f x0" by(rule assms) | |
| 379 | next | |
| 380 | fix x assume "x \<sqsubseteq> f x" thus "f x \<sqsubseteq> f(f x)" by(rule mono) | |
| 381 | qed | |
| 382 | ||
| 383 | lemma lpfpc_termination: | |
| 384 |   fixes f :: "(('a::SL_top)option acom \<Rightarrow> 'a option acom)"
 | |
| 385 |   assumes "acc {(x::'a,y). x \<sqsubseteq> y}" and "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
 | |
| 386 | and "\<And>c. strip(f c) = strip c" | |
| 387 | shows "\<exists>c'. lpfp\<^isub>c f c = Some c'" | |
| 388 | unfolding lpfp\<^isub>c_def | |
| 389 | apply(rule pfp_termination) | |
| 390 | apply(erule assms(2)) | |
| 391 | apply(rule acc_acom[OF acc_option[OF assms(1)]]) | |
| 392 | apply(simp add: bot_acom assms(3)) | |
| 393 | done | |
| 394 | ||
| 46334 | 395 | context Abs_Int_mono | 
| 396 | begin | |
| 397 | ||
| 398 | lemma AI_Some_measure: | |
| 399 | assumes "(strict{(x,y::'a). x \<sqsubseteq> y})^-1 <= measure m"
 | |
| 400 | and "\<forall>x y::'a. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m x = m y" | |
| 401 | shows "\<exists>c'. AI c = Some c'" | |
| 402 | unfolding AI_def | |
| 403 | apply(rule lpfpc_termination) | |
| 404 | apply(rule wf_subset[OF wf_measure measure_st[OF assms]]) | |
| 405 | apply(erule mono_step'[OF le_refl]) | |
| 406 | apply(rule strip_step') | |
| 407 | done | |
| 46158 | 408 | |
| 45127 
d2eb07a1e01b
separated monotonicity reasoning and defined narrowing with while_option
 nipkow parents: 
45111diff
changeset | 409 | end | 
| 46334 | 410 | |
| 411 | end |