author | haftmann |
Tue, 20 Oct 2009 16:13:01 +0200 | |
changeset 33037 | b22e44496dc2 |
parent 30937 | 1fe5a573b552 |
child 33038 | 8f9594c31de4 |
permissions | -rw-r--r-- |
13516 | 1 |
(* Title: Provers/Arith/cancel_div_mod.ML |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, TU Muenchen |
|
4 |
||
5 |
Cancel div and mod terms: |
|
6 |
||
7 |
A + n*(m div n) + B + (m mod n) + C == A + B + C + m |
|
8 |
||
22997 | 9 |
FIXME: Is parameterized but assumes for simplicity that + and * are named |
10 |
HOL.plus and HOL.minus |
|
13516 | 11 |
*) |
12 |
||
13 |
signature CANCEL_DIV_MOD_DATA = |
|
14 |
sig |
|
15 |
(*abstract syntax*) |
|
16 |
val div_name: string |
|
17 |
val mod_name: string |
|
18 |
val mk_binop: string -> term * term -> term |
|
19 |
val mk_sum: term list -> term |
|
20 |
val dest_sum: term -> term list |
|
21 |
(*logic*) |
|
22 |
val div_mod_eqs: thm list |
|
23 |
(* (n*(m div n) + m mod n) + k == m + k and |
|
24 |
((m div n)*n + m mod n) + k == m + k *) |
|
20044
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
wenzelm
parents:
19233
diff
changeset
|
25 |
val prove_eq_sums: simpset -> term * term -> thm |
13516 | 26 |
(* must prove ac0-equivalence of sums *) |
27 |
end; |
|
28 |
||
29 |
signature CANCEL_DIV_MOD = |
|
30 |
sig |
|
20044
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
wenzelm
parents:
19233
diff
changeset
|
31 |
val proc: simpset -> term -> thm option |
13516 | 32 |
end; |
33 |
||
34 |
||
35 |
functor CancelDivModFun(Data: CANCEL_DIV_MOD_DATA): CANCEL_DIV_MOD = |
|
36 |
struct |
|
37 |
||
22997 | 38 |
fun coll_div_mod (Const(@{const_name HOL.plus},_) $ s $ t) dms = |
13516 | 39 |
coll_div_mod t (coll_div_mod s dms) |
22997 | 40 |
| coll_div_mod (Const(@{const_name HOL.times},_) $ m $ (Const(d,_) $ s $ n)) |
13516 | 41 |
(dms as (divs,mods)) = |
42 |
if d = Data.div_name andalso m=n then ((s,n)::divs,mods) else dms |
|
22997 | 43 |
| coll_div_mod (Const(@{const_name HOL.times},_) $ (Const(d,_) $ s $ n) $ m) |
13516 | 44 |
(dms as (divs,mods)) = |
45 |
if d = Data.div_name andalso m=n then ((s,n)::divs,mods) else dms |
|
46 |
| coll_div_mod (Const(m,_) $ s $ n) (dms as (divs,mods)) = |
|
47 |
if m = Data.mod_name then (divs,(s,n)::mods) else dms |
|
48 |
| coll_div_mod _ dms = dms; |
|
49 |
||
50 |
||
51 |
(* Proof principle: |
|
52 |
1. (...div...)+(...mod...) == (div + mod) + rest |
|
53 |
in function rearrange |
|
54 |
2. (div + mod) + ?x = d + ?x |
|
55 |
Data.div_mod_eq |
|
56 |
==> thesis by transitivity |
|
57 |
*) |
|
58 |
||
22997 | 59 |
val mk_plus = Data.mk_binop @{const_name HOL.plus}; |
60 |
val mk_times = Data.mk_binop @{const_name HOL.times}; |
|
13516 | 61 |
|
62 |
fun rearrange t pq = |
|
63 |
let val ts = Data.dest_sum t; |
|
64 |
val dpq = Data.mk_binop Data.div_name pq |
|
65 |
val d1 = mk_times (snd pq,dpq) and d2 = mk_times (dpq,snd pq) |
|
66 |
val d = if d1 mem ts then d1 else d2 |
|
67 |
val m = Data.mk_binop Data.mod_name pq |
|
68 |
in mk_plus(mk_plus(d,m),Data.mk_sum(ts \ d \ m)) end |
|
69 |
||
20044
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
wenzelm
parents:
19233
diff
changeset
|
70 |
fun cancel ss t pq = |
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
wenzelm
parents:
19233
diff
changeset
|
71 |
let val teqt' = Data.prove_eq_sums ss (t, rearrange t pq) |
30937 | 72 |
in hd (Data.div_mod_eqs RL [teqt' RS transitive_thm]) end; |
13516 | 73 |
|
20044
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
wenzelm
parents:
19233
diff
changeset
|
74 |
fun proc ss t = |
13516 | 75 |
let val (divs,mods) = coll_div_mod t ([],[]) |
15531 | 76 |
in if null divs orelse null mods then NONE |
33037
b22e44496dc2
replaced old_style infixes eq_set, subset, union, inter and variants by generic versions
haftmann
parents:
30937
diff
changeset
|
77 |
else case gen_inter (op =) (divs, mods) of |
20044
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
wenzelm
parents:
19233
diff
changeset
|
78 |
pq :: _ => SOME (cancel ss t pq) |
15531 | 79 |
| [] => NONE |
13516 | 80 |
end |
81 |
||
17613 | 82 |
end |