27468
|
1 |
(* Title : CStar.thy
|
|
2 |
Author : Jacques D. Fleuriot
|
|
3 |
Copyright : 2001 University of Edinburgh
|
|
4 |
*)
|
|
5 |
|
|
6 |
header{*Star-transforms in NSA, Extending Sets of Complex Numbers
|
|
7 |
and Complex Functions*}
|
|
8 |
|
|
9 |
theory CStar
|
|
10 |
imports NSCA
|
|
11 |
begin
|
|
12 |
|
|
13 |
subsection{*Properties of the *-Transform Applied to Sets of Reals*}
|
|
14 |
|
|
15 |
lemma STARC_hcomplex_of_complex_Int:
|
|
16 |
"*s* X Int SComplex = hcomplex_of_complex ` X"
|
|
17 |
by (auto simp add: Standard_def)
|
|
18 |
|
|
19 |
lemma lemma_not_hcomplexA:
|
|
20 |
"x \<notin> hcomplex_of_complex ` A ==> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
|
|
21 |
by auto
|
|
22 |
|
|
23 |
subsection{*Theorems about Nonstandard Extensions of Functions*}
|
|
24 |
|
|
25 |
lemma starfunC_hcpow: "!!Z. ( *f* (%z. z ^ n)) Z = Z pow hypnat_of_nat n"
|
|
26 |
by transfer (rule refl)
|
|
27 |
|
|
28 |
lemma starfunCR_cmod: "*f* cmod = hcmod"
|
|
29 |
by transfer (rule refl)
|
|
30 |
|
|
31 |
subsection{*Internal Functions - Some Redundancy With *f* Now*}
|
|
32 |
|
|
33 |
(** subtraction: ( *fn) - ( *gn) = *(fn - gn) **)
|
|
34 |
(*
|
|
35 |
lemma starfun_n_diff:
|
|
36 |
"( *fn* f) z - ( *fn* g) z = ( *fn* (%i x. f i x - g i x)) z"
|
|
37 |
apply (cases z)
|
|
38 |
apply (simp add: starfun_n star_n_diff)
|
|
39 |
done
|
|
40 |
*)
|
|
41 |
(** composition: ( *fn) o ( *gn) = *(fn o gn) **)
|
|
42 |
|
|
43 |
lemma starfun_Re: "( *f* (\<lambda>x. Re (f x))) = (\<lambda>x. hRe (( *f* f) x))"
|
|
44 |
by transfer (rule refl)
|
|
45 |
|
|
46 |
lemma starfun_Im: "( *f* (\<lambda>x. Im (f x))) = (\<lambda>x. hIm (( *f* f) x))"
|
|
47 |
by transfer (rule refl)
|
|
48 |
|
|
49 |
lemma starfunC_eq_Re_Im_iff:
|
|
50 |
"(( *f* f) x = z) = ((( *f* (%x. Re(f x))) x = hRe (z)) &
|
|
51 |
(( *f* (%x. Im(f x))) x = hIm (z)))"
|
|
52 |
by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
|
|
53 |
|
|
54 |
lemma starfunC_approx_Re_Im_iff:
|
|
55 |
"(( *f* f) x @= z) = ((( *f* (%x. Re(f x))) x @= hRe (z)) &
|
|
56 |
(( *f* (%x. Im(f x))) x @= hIm (z)))"
|
|
57 |
by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
|
|
58 |
|
|
59 |
end
|