| 0 |      1 | (*  Title: 	ZF/ex/equiv.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1993  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Equivalence relations in Zermelo-Fraenkel Set Theory 
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | Equiv = Trancl +
 | 
|  |     10 | consts
 | 
|  |     11 |     refl,equiv 	::      "[i,i]=>o"
 | 
|  |     12 |     sym         ::      "i=>o"
 | 
|  |     13 |     "'/"        ::      "[i,i]=>i"  (infixl 90)  (*set of equiv classes*)
 | 
|  |     14 |     congruent	::	"[i,i=>i]=>o"
 | 
|  |     15 |     congruent2  ::      "[i,[i,i]=>i]=>o"
 | 
|  |     16 | 
 | 
|  |     17 | rules
 | 
|  |     18 |     refl_def      "refl(A,r) == r <= (A*A) & (ALL x: A. <x,x> : r)"
 | 
|  |     19 |     sym_def       "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
 | 
|  |     20 |     equiv_def     "equiv(A,r) == refl(A,r) & sym(r) & trans(r)"
 | 
|  |     21 |     quotient_def  "A/r == {r``{x} . x:A}"
 | 
|  |     22 |     congruent_def "congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
 | 
|  |     23 | 
 | 
|  |     24 |     congruent2_def
 | 
|  |     25 |        "congruent2(r,b) == ALL y1 z1 y2 z2. \
 | 
|  |     26 | \           <y1,z1>:r --> <y2,z2>:r --> b(y1,y2) = b(z1,z2)"
 | 
|  |     27 | 
 | 
|  |     28 | end
 |