48188
|
1 |
(* Title: HOL/Library/Function_Division.thy
|
|
2 |
Author: Florian Haftmann, TUM
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* Pointwise instantiation of functions to division *}
|
|
6 |
|
|
7 |
theory Function_Division
|
|
8 |
imports Function_Algebras
|
|
9 |
begin
|
|
10 |
|
|
11 |
subsection {* Syntactic with division *}
|
|
12 |
|
|
13 |
instantiation "fun" :: (type, inverse) inverse
|
|
14 |
begin
|
|
15 |
|
|
16 |
definition "inverse f = inverse \<circ> f"
|
|
17 |
|
|
18 |
definition "(f / g) = (\<lambda>x. f x / g x)"
|
|
19 |
|
|
20 |
instance ..
|
|
21 |
|
|
22 |
end
|
|
23 |
|
|
24 |
lemma inverse_fun_apply [simp]:
|
|
25 |
"inverse f x = inverse (f x)"
|
|
26 |
by (simp add: inverse_fun_def)
|
|
27 |
|
|
28 |
lemma divide_fun_apply [simp]:
|
|
29 |
"(f / g) x = f x / g x"
|
|
30 |
by (simp add: divide_fun_def)
|
|
31 |
|
|
32 |
text {*
|
|
33 |
Unfortunately, we cannot lift this operations to algebraic type
|
|
34 |
classes for division: being different from the constant
|
|
35 |
zero function @{term "f \<noteq> 0"} is too weak as precondition.
|
|
36 |
So we must introduce our own set of lemmas.
|
|
37 |
*}
|
|
38 |
|
|
39 |
abbreviation zero_free :: "('b \<Rightarrow> 'a::field) \<Rightarrow> bool" where
|
|
40 |
"zero_free f \<equiv> \<not> (\<exists>x. f x = 0)"
|
|
41 |
|
|
42 |
lemma fun_left_inverse:
|
|
43 |
fixes f :: "'b \<Rightarrow> 'a::field"
|
|
44 |
shows "zero_free f \<Longrightarrow> inverse f * f = 1"
|
|
45 |
by (simp add: fun_eq_iff)
|
|
46 |
|
|
47 |
lemma fun_right_inverse:
|
|
48 |
fixes f :: "'b \<Rightarrow> 'a::field"
|
|
49 |
shows "zero_free f \<Longrightarrow> f * inverse f = 1"
|
|
50 |
by (simp add: fun_eq_iff)
|
|
51 |
|
|
52 |
lemma fun_divide_inverse:
|
|
53 |
fixes f g :: "'b \<Rightarrow> 'a::field"
|
|
54 |
shows "f / g = f * inverse g"
|
|
55 |
by (simp add: fun_eq_iff divide_inverse)
|
|
56 |
|
|
57 |
text {* Feel free to extend this. *}
|
|
58 |
|
|
59 |
text {*
|
|
60 |
Another possibility would be a reformulation of the division type
|
|
61 |
classes to user a @{term zero_free} predicate rather than
|
|
62 |
a direct @{term "a \<noteq> 0"} condition.
|
|
63 |
*}
|
|
64 |
|
|
65 |
end
|
|
66 |
|