author | hoelzl |
Thu, 17 Jan 2013 11:59:12 +0100 | |
changeset 50936 | b28f258ebc1a |
parent 50134 | 13211e07d931 |
child 53239 | 2f21813cf2f0 |
permissions | -rw-r--r-- |
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
1 |
(* Title: HOL/Library/Infinite_Set.thy |
20809 | 2 |
Author: Stephan Merz |
3 |
*) |
|
4 |
||
5 |
header {* Infinite Sets and Related Concepts *} |
|
6 |
||
7 |
theory Infinite_Set |
|
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
29901
diff
changeset
|
8 |
imports Main |
20809 | 9 |
begin |
10 |
||
11 |
subsection "Infinite Sets" |
|
12 |
||
13 |
text {* |
|
14 |
Some elementary facts about infinite sets, mostly by Stefan Merz. |
|
15 |
Beware! Because "infinite" merely abbreviates a negation, these |
|
16 |
lemmas may not work well with @{text "blast"}. |
|
17 |
*} |
|
18 |
||
19 |
abbreviation |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21256
diff
changeset
|
20 |
infinite :: "'a set \<Rightarrow> bool" where |
20809 | 21 |
"infinite S == \<not> finite S" |
22 |
||
23 |
text {* |
|
24 |
Infinite sets are non-empty, and if we remove some elements from an |
|
25 |
infinite set, the result is still infinite. |
|
26 |
*} |
|
27 |
||
28 |
lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}" |
|
29 |
by auto |
|
30 |
||
31 |
lemma infinite_remove: |
|
32 |
"infinite S \<Longrightarrow> infinite (S - {a})" |
|
33 |
by simp |
|
34 |
||
35 |
lemma Diff_infinite_finite: |
|
36 |
assumes T: "finite T" and S: "infinite S" |
|
37 |
shows "infinite (S - T)" |
|
38 |
using T |
|
39 |
proof induct |
|
40 |
from S |
|
41 |
show "infinite (S - {})" by auto |
|
42 |
next |
|
43 |
fix T x |
|
44 |
assume ih: "infinite (S - T)" |
|
45 |
have "S - (insert x T) = (S - T) - {x}" |
|
46 |
by (rule Diff_insert) |
|
47 |
with ih |
|
48 |
show "infinite (S - (insert x T))" |
|
49 |
by (simp add: infinite_remove) |
|
50 |
qed |
|
51 |
||
52 |
lemma Un_infinite: "infinite S \<Longrightarrow> infinite (S \<union> T)" |
|
53 |
by simp |
|
54 |
||
35844
65258d2c3214
added lemma infinite_Un
Christian Urban <urbanc@in.tum.de>
parents:
35056
diff
changeset
|
55 |
lemma infinite_Un: "infinite (S \<union> T) \<longleftrightarrow> infinite S \<or> infinite T" |
65258d2c3214
added lemma infinite_Un
Christian Urban <urbanc@in.tum.de>
parents:
35056
diff
changeset
|
56 |
by simp |
65258d2c3214
added lemma infinite_Un
Christian Urban <urbanc@in.tum.de>
parents:
35056
diff
changeset
|
57 |
|
20809 | 58 |
lemma infinite_super: |
59 |
assumes T: "S \<subseteq> T" and S: "infinite S" |
|
60 |
shows "infinite T" |
|
61 |
proof |
|
62 |
assume "finite T" |
|
63 |
with T have "finite S" by (simp add: finite_subset) |
|
64 |
with S show False by simp |
|
65 |
qed |
|
66 |
||
67 |
text {* |
|
68 |
As a concrete example, we prove that the set of natural numbers is |
|
69 |
infinite. |
|
70 |
*} |
|
71 |
||
72 |
lemma finite_nat_bounded: |
|
73 |
assumes S: "finite (S::nat set)" |
|
74 |
shows "\<exists>k. S \<subseteq> {..<k}" (is "\<exists>k. ?bounded S k") |
|
75 |
using S |
|
76 |
proof induct |
|
77 |
have "?bounded {} 0" by simp |
|
78 |
then show "\<exists>k. ?bounded {} k" .. |
|
79 |
next |
|
80 |
fix S x |
|
81 |
assume "\<exists>k. ?bounded S k" |
|
82 |
then obtain k where k: "?bounded S k" .. |
|
83 |
show "\<exists>k. ?bounded (insert x S) k" |
|
84 |
proof (cases "x < k") |
|
85 |
case True |
|
86 |
with k show ?thesis by auto |
|
87 |
next |
|
88 |
case False |
|
89 |
with k have "?bounded S (Suc x)" by auto |
|
90 |
then show ?thesis by auto |
|
91 |
qed |
|
92 |
qed |
|
93 |
||
94 |
lemma finite_nat_iff_bounded: |
|
95 |
"finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})" (is "?lhs = ?rhs") |
|
96 |
proof |
|
97 |
assume ?lhs |
|
98 |
then show ?rhs by (rule finite_nat_bounded) |
|
99 |
next |
|
100 |
assume ?rhs |
|
101 |
then obtain k where "S \<subseteq> {..<k}" .. |
|
102 |
then show "finite S" |
|
103 |
by (rule finite_subset) simp |
|
104 |
qed |
|
105 |
||
106 |
lemma finite_nat_iff_bounded_le: |
|
107 |
"finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})" (is "?lhs = ?rhs") |
|
108 |
proof |
|
109 |
assume ?lhs |
|
110 |
then obtain k where "S \<subseteq> {..<k}" |
|
111 |
by (blast dest: finite_nat_bounded) |
|
112 |
then have "S \<subseteq> {..k}" by auto |
|
113 |
then show ?rhs .. |
|
114 |
next |
|
115 |
assume ?rhs |
|
116 |
then obtain k where "S \<subseteq> {..k}" .. |
|
117 |
then show "finite S" |
|
118 |
by (rule finite_subset) simp |
|
119 |
qed |
|
120 |
||
121 |
lemma infinite_nat_iff_unbounded: |
|
122 |
"infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)" |
|
123 |
(is "?lhs = ?rhs") |
|
124 |
proof |
|
125 |
assume ?lhs |
|
126 |
show ?rhs |
|
127 |
proof (rule ccontr) |
|
128 |
assume "\<not> ?rhs" |
|
129 |
then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast |
|
130 |
then have "S \<subseteq> {..m}" |
|
131 |
by (auto simp add: sym [OF linorder_not_less]) |
|
132 |
with `?lhs` show False |
|
133 |
by (simp add: finite_nat_iff_bounded_le) |
|
134 |
qed |
|
135 |
next |
|
136 |
assume ?rhs |
|
137 |
show ?lhs |
|
138 |
proof |
|
139 |
assume "finite S" |
|
140 |
then obtain m where "S \<subseteq> {..m}" |
|
141 |
by (auto simp add: finite_nat_iff_bounded_le) |
|
142 |
then have "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto |
|
143 |
with `?rhs` show False by blast |
|
144 |
qed |
|
145 |
qed |
|
146 |
||
147 |
lemma infinite_nat_iff_unbounded_le: |
|
148 |
"infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)" |
|
149 |
(is "?lhs = ?rhs") |
|
150 |
proof |
|
151 |
assume ?lhs |
|
152 |
show ?rhs |
|
153 |
proof |
|
154 |
fix m |
|
155 |
from `?lhs` obtain n where "m<n \<and> n\<in>S" |
|
156 |
by (auto simp add: infinite_nat_iff_unbounded) |
|
157 |
then have "m\<le>n \<and> n\<in>S" by simp |
|
158 |
then show "\<exists>n. m \<le> n \<and> n \<in> S" .. |
|
159 |
qed |
|
160 |
next |
|
161 |
assume ?rhs |
|
162 |
show ?lhs |
|
163 |
proof (auto simp add: infinite_nat_iff_unbounded) |
|
164 |
fix m |
|
165 |
from `?rhs` obtain n where "Suc m \<le> n \<and> n\<in>S" |
|
166 |
by blast |
|
167 |
then have "m<n \<and> n\<in>S" by simp |
|
168 |
then show "\<exists>n. m < n \<and> n \<in> S" .. |
|
169 |
qed |
|
170 |
qed |
|
171 |
||
172 |
text {* |
|
173 |
For a set of natural numbers to be infinite, it is enough to know |
|
174 |
that for any number larger than some @{text k}, there is some larger |
|
175 |
number that is an element of the set. |
|
176 |
*} |
|
177 |
||
178 |
lemma unbounded_k_infinite: |
|
179 |
assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)" |
|
180 |
shows "infinite (S::nat set)" |
|
181 |
proof - |
|
182 |
{ |
|
183 |
fix m have "\<exists>n. m<n \<and> n\<in>S" |
|
184 |
proof (cases "k<m") |
|
185 |
case True |
|
186 |
with k show ?thesis by blast |
|
187 |
next |
|
188 |
case False |
|
189 |
from k obtain n where "Suc k < n \<and> n\<in>S" by auto |
|
190 |
with False have "m<n \<and> n\<in>S" by auto |
|
191 |
then show ?thesis .. |
|
192 |
qed |
|
193 |
} |
|
194 |
then show ?thesis |
|
195 |
by (auto simp add: infinite_nat_iff_unbounded) |
|
196 |
qed |
|
197 |
||
35056 | 198 |
(* duplicates Finite_Set.infinite_UNIV_nat *) |
199 |
lemma nat_infinite: "infinite (UNIV :: nat set)" |
|
20809 | 200 |
by (auto simp add: infinite_nat_iff_unbounded) |
201 |
||
35056 | 202 |
lemma nat_not_finite: "finite (UNIV::nat set) \<Longrightarrow> R" |
20809 | 203 |
by simp |
204 |
||
205 |
text {* |
|
206 |
Every infinite set contains a countable subset. More precisely we |
|
207 |
show that a set @{text S} is infinite if and only if there exists an |
|
208 |
injective function from the naturals into @{text S}. |
|
209 |
*} |
|
210 |
||
211 |
lemma range_inj_infinite: |
|
212 |
"inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)" |
|
213 |
proof |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
214 |
assume "finite (range f)" and "inj f" |
20809 | 215 |
then have "finite (UNIV::nat set)" |
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
216 |
by (rule finite_imageD) |
20809 | 217 |
then show False by simp |
218 |
qed |
|
219 |
||
22226 | 220 |
lemma int_infinite [simp]: |
221 |
shows "infinite (UNIV::int set)" |
|
222 |
proof - |
|
223 |
from inj_int have "infinite (range int)" by (rule range_inj_infinite) |
|
224 |
moreover |
|
225 |
have "range int \<subseteq> (UNIV::int set)" by simp |
|
226 |
ultimately show "infinite (UNIV::int set)" by (simp add: infinite_super) |
|
227 |
qed |
|
228 |
||
20809 | 229 |
text {* |
230 |
The ``only if'' direction is harder because it requires the |
|
231 |
construction of a sequence of pairwise different elements of an |
|
232 |
infinite set @{text S}. The idea is to construct a sequence of |
|
233 |
non-empty and infinite subsets of @{text S} obtained by successively |
|
234 |
removing elements of @{text S}. |
|
235 |
*} |
|
236 |
||
237 |
lemma linorder_injI: |
|
238 |
assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y" |
|
239 |
shows "inj f" |
|
240 |
proof (rule inj_onI) |
|
241 |
fix x y |
|
242 |
assume f_eq: "f x = f y" |
|
243 |
show "x = y" |
|
244 |
proof (rule linorder_cases) |
|
245 |
assume "x < y" |
|
246 |
with hyp have "f x \<noteq> f y" by blast |
|
247 |
with f_eq show ?thesis by simp |
|
248 |
next |
|
249 |
assume "x = y" |
|
250 |
then show ?thesis . |
|
251 |
next |
|
252 |
assume "y < x" |
|
253 |
with hyp have "f y \<noteq> f x" by blast |
|
254 |
with f_eq show ?thesis by simp |
|
255 |
qed |
|
256 |
qed |
|
257 |
||
258 |
lemma infinite_countable_subset: |
|
259 |
assumes inf: "infinite (S::'a set)" |
|
260 |
shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S" |
|
261 |
proof - |
|
262 |
def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {SOME e. e \<in> T})" |
|
263 |
def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)" |
|
264 |
have Sseq_inf: "\<And>n. infinite (Sseq n)" |
|
265 |
proof - |
|
266 |
fix n |
|
267 |
show "infinite (Sseq n)" |
|
268 |
proof (induct n) |
|
269 |
from inf show "infinite (Sseq 0)" |
|
270 |
by (simp add: Sseq_def) |
|
271 |
next |
|
272 |
fix n |
|
273 |
assume "infinite (Sseq n)" then show "infinite (Sseq (Suc n))" |
|
274 |
by (simp add: Sseq_def infinite_remove) |
|
275 |
qed |
|
276 |
qed |
|
277 |
have Sseq_S: "\<And>n. Sseq n \<subseteq> S" |
|
278 |
proof - |
|
279 |
fix n |
|
280 |
show "Sseq n \<subseteq> S" |
|
281 |
by (induct n) (auto simp add: Sseq_def) |
|
282 |
qed |
|
283 |
have Sseq_pick: "\<And>n. pick n \<in> Sseq n" |
|
284 |
proof - |
|
285 |
fix n |
|
286 |
show "pick n \<in> Sseq n" |
|
287 |
proof (unfold pick_def, rule someI_ex) |
|
288 |
from Sseq_inf have "infinite (Sseq n)" . |
|
289 |
then have "Sseq n \<noteq> {}" by auto |
|
290 |
then show "\<exists>x. x \<in> Sseq n" by auto |
|
291 |
qed |
|
292 |
qed |
|
293 |
with Sseq_S have rng: "range pick \<subseteq> S" |
|
294 |
by auto |
|
295 |
have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)" |
|
296 |
proof - |
|
297 |
fix n m |
|
298 |
show "pick n \<notin> Sseq (n + Suc m)" |
|
299 |
by (induct m) (auto simp add: Sseq_def pick_def) |
|
300 |
qed |
|
301 |
have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)" |
|
302 |
proof - |
|
303 |
fix n m |
|
304 |
from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" . |
|
305 |
moreover from pick_Sseq_gt |
|
306 |
have "pick n \<notin> Sseq (n + Suc m)" . |
|
307 |
ultimately show "pick n \<noteq> pick (n + Suc m)" |
|
308 |
by auto |
|
309 |
qed |
|
310 |
have inj: "inj pick" |
|
311 |
proof (rule linorder_injI) |
|
312 |
fix i j :: nat |
|
313 |
assume "i < j" |
|
314 |
show "pick i \<noteq> pick j" |
|
315 |
proof |
|
316 |
assume eq: "pick i = pick j" |
|
317 |
from `i < j` obtain k where "j = i + Suc k" |
|
318 |
by (auto simp add: less_iff_Suc_add) |
|
319 |
with pick_pick have "pick i \<noteq> pick j" by simp |
|
320 |
with eq show False by simp |
|
321 |
qed |
|
322 |
qed |
|
323 |
from rng inj show ?thesis by auto |
|
324 |
qed |
|
325 |
||
326 |
lemma infinite_iff_countable_subset: |
|
327 |
"infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)" |
|
328 |
by (auto simp add: infinite_countable_subset range_inj_infinite infinite_super) |
|
329 |
||
330 |
text {* |
|
331 |
For any function with infinite domain and finite range there is some |
|
332 |
element that is the image of infinitely many domain elements. In |
|
333 |
particular, any infinite sequence of elements from a finite set |
|
334 |
contains some element that occurs infinitely often. |
|
335 |
*} |
|
336 |
||
337 |
lemma inf_img_fin_dom: |
|
338 |
assumes img: "finite (f`A)" and dom: "infinite A" |
|
339 |
shows "\<exists>y \<in> f`A. infinite (f -` {y})" |
|
340 |
proof (rule ccontr) |
|
341 |
assume "\<not> ?thesis" |
|
40786
0a54cfc9add3
gave more standard finite set rules simp and intro attribute
nipkow
parents:
35844
diff
changeset
|
342 |
with img have "finite (UN y:f`A. f -` {y})" by blast |
20809 | 343 |
moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto |
344 |
moreover note dom |
|
345 |
ultimately show False by (simp add: infinite_super) |
|
346 |
qed |
|
347 |
||
348 |
lemma inf_img_fin_domE: |
|
349 |
assumes "finite (f`A)" and "infinite A" |
|
350 |
obtains y where "y \<in> f`A" and "infinite (f -` {y})" |
|
23394 | 351 |
using assms by (blast dest: inf_img_fin_dom) |
20809 | 352 |
|
353 |
||
354 |
subsection "Infinitely Many and Almost All" |
|
355 |
||
356 |
text {* |
|
357 |
We often need to reason about the existence of infinitely many |
|
358 |
(resp., all but finitely many) objects satisfying some predicate, so |
|
359 |
we introduce corresponding binders and their proof rules. |
|
360 |
*} |
|
361 |
||
362 |
definition |
|
22432
1d00d26fee0d
Renamed INF to INFM to avoid clash with INF operator defined in FixedPoint theory.
berghofe
parents:
22226
diff
changeset
|
363 |
Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "INFM " 10) where |
20809 | 364 |
"Inf_many P = infinite {x. P x}" |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21256
diff
changeset
|
365 |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21256
diff
changeset
|
366 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21256
diff
changeset
|
367 |
Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "MOST " 10) where |
22432
1d00d26fee0d
Renamed INF to INFM to avoid clash with INF operator defined in FixedPoint theory.
berghofe
parents:
22226
diff
changeset
|
368 |
"Alm_all P = (\<not> (INFM x. \<not> P x))" |
20809 | 369 |
|
21210 | 370 |
notation (xsymbols) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21256
diff
changeset
|
371 |
Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and |
20809 | 372 |
Alm_all (binder "\<forall>\<^sub>\<infinity>" 10) |
373 |
||
21210 | 374 |
notation (HTML output) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21256
diff
changeset
|
375 |
Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and |
20809 | 376 |
Alm_all (binder "\<forall>\<^sub>\<infinity>" 10) |
377 |
||
34112 | 378 |
lemma INFM_iff_infinite: "(INFM x. P x) \<longleftrightarrow> infinite {x. P x}" |
379 |
unfolding Inf_many_def .. |
|
380 |
||
381 |
lemma MOST_iff_cofinite: "(MOST x. P x) \<longleftrightarrow> finite {x. \<not> P x}" |
|
382 |
unfolding Alm_all_def Inf_many_def by simp |
|
383 |
||
384 |
(* legacy name *) |
|
385 |
lemmas MOST_iff_finiteNeg = MOST_iff_cofinite |
|
386 |
||
387 |
lemma not_INFM [simp]: "\<not> (INFM x. P x) \<longleftrightarrow> (MOST x. \<not> P x)" |
|
388 |
unfolding Alm_all_def not_not .. |
|
20809 | 389 |
|
34112 | 390 |
lemma not_MOST [simp]: "\<not> (MOST x. P x) \<longleftrightarrow> (INFM x. \<not> P x)" |
391 |
unfolding Alm_all_def not_not .. |
|
392 |
||
393 |
lemma INFM_const [simp]: "(INFM x::'a. P) \<longleftrightarrow> P \<and> infinite (UNIV::'a set)" |
|
394 |
unfolding Inf_many_def by simp |
|
395 |
||
396 |
lemma MOST_const [simp]: "(MOST x::'a. P) \<longleftrightarrow> P \<or> finite (UNIV::'a set)" |
|
397 |
unfolding Alm_all_def by simp |
|
398 |
||
399 |
lemma INFM_EX: "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)" |
|
400 |
by (erule contrapos_pp, simp) |
|
20809 | 401 |
|
402 |
lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x" |
|
34112 | 403 |
by simp |
404 |
||
405 |
lemma INFM_E: assumes "INFM x. P x" obtains x where "P x" |
|
406 |
using INFM_EX [OF assms] by (rule exE) |
|
407 |
||
408 |
lemma MOST_I: assumes "\<And>x. P x" shows "MOST x. P x" |
|
409 |
using assms by simp |
|
20809 | 410 |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
411 |
lemma INFM_mono: |
20809 | 412 |
assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x" |
413 |
shows "\<exists>\<^sub>\<infinity>x. Q x" |
|
414 |
proof - |
|
415 |
from inf have "infinite {x. P x}" unfolding Inf_many_def . |
|
416 |
moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto |
|
417 |
ultimately show ?thesis |
|
418 |
by (simp add: Inf_many_def infinite_super) |
|
419 |
qed |
|
420 |
||
421 |
lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x" |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
422 |
unfolding Alm_all_def by (blast intro: INFM_mono) |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
423 |
|
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
424 |
lemma INFM_disj_distrib: |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
425 |
"(\<exists>\<^sub>\<infinity>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>\<infinity>x. P x) \<or> (\<exists>\<^sub>\<infinity>x. Q x)" |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
426 |
unfolding Inf_many_def by (simp add: Collect_disj_eq) |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
427 |
|
34112 | 428 |
lemma INFM_imp_distrib: |
429 |
"(INFM x. P x \<longrightarrow> Q x) \<longleftrightarrow> ((MOST x. P x) \<longrightarrow> (INFM x. Q x))" |
|
430 |
by (simp only: imp_conv_disj INFM_disj_distrib not_MOST) |
|
431 |
||
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
432 |
lemma MOST_conj_distrib: |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
433 |
"(\<forall>\<^sub>\<infinity>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>\<^sub>\<infinity>x. P x) \<and> (\<forall>\<^sub>\<infinity>x. Q x)" |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
434 |
unfolding Alm_all_def by (simp add: INFM_disj_distrib del: disj_not1) |
20809 | 435 |
|
34112 | 436 |
lemma MOST_conjI: |
437 |
"MOST x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> MOST x. P x \<and> Q x" |
|
438 |
by (simp add: MOST_conj_distrib) |
|
439 |
||
34113 | 440 |
lemma INFM_conjI: |
441 |
"INFM x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> INFM x. P x \<and> Q x" |
|
442 |
unfolding MOST_iff_cofinite INFM_iff_infinite |
|
443 |
apply (drule (1) Diff_infinite_finite) |
|
444 |
apply (simp add: Collect_conj_eq Collect_neg_eq) |
|
445 |
done |
|
446 |
||
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
447 |
lemma MOST_rev_mp: |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
448 |
assumes "\<forall>\<^sub>\<infinity>x. P x" and "\<forall>\<^sub>\<infinity>x. P x \<longrightarrow> Q x" |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
449 |
shows "\<forall>\<^sub>\<infinity>x. Q x" |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
450 |
proof - |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
451 |
have "\<forall>\<^sub>\<infinity>x. P x \<and> (P x \<longrightarrow> Q x)" |
34112 | 452 |
using assms by (rule MOST_conjI) |
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
453 |
thus ?thesis by (rule MOST_mono) simp |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
454 |
qed |
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
455 |
|
34112 | 456 |
lemma MOST_imp_iff: |
457 |
assumes "MOST x. P x" |
|
458 |
shows "(MOST x. P x \<longrightarrow> Q x) \<longleftrightarrow> (MOST x. Q x)" |
|
459 |
proof |
|
460 |
assume "MOST x. P x \<longrightarrow> Q x" |
|
461 |
with assms show "MOST x. Q x" by (rule MOST_rev_mp) |
|
462 |
next |
|
463 |
assume "MOST x. Q x" |
|
464 |
then show "MOST x. P x \<longrightarrow> Q x" by (rule MOST_mono) simp |
|
465 |
qed |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
466 |
|
34112 | 467 |
lemma INFM_MOST_simps [simp]: |
468 |
"\<And>P Q. (INFM x. P x \<and> Q) \<longleftrightarrow> (INFM x. P x) \<and> Q" |
|
469 |
"\<And>P Q. (INFM x. P \<and> Q x) \<longleftrightarrow> P \<and> (INFM x. Q x)" |
|
470 |
"\<And>P Q. (MOST x. P x \<or> Q) \<longleftrightarrow> (MOST x. P x) \<or> Q" |
|
471 |
"\<And>P Q. (MOST x. P \<or> Q x) \<longleftrightarrow> P \<or> (MOST x. Q x)" |
|
472 |
"\<And>P Q. (MOST x. P x \<longrightarrow> Q) \<longleftrightarrow> ((INFM x. P x) \<longrightarrow> Q)" |
|
473 |
"\<And>P Q. (MOST x. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (MOST x. Q x))" |
|
474 |
unfolding Alm_all_def Inf_many_def |
|
475 |
by (simp_all add: Collect_conj_eq) |
|
476 |
||
477 |
text {* Properties of quantifiers with injective functions. *} |
|
478 |
||
479 |
lemma INFM_inj: |
|
480 |
"INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x" |
|
481 |
unfolding INFM_iff_infinite |
|
482 |
by (clarify, drule (1) finite_vimageI, simp) |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
483 |
|
34112 | 484 |
lemma MOST_inj: |
485 |
"MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)" |
|
486 |
unfolding MOST_iff_cofinite |
|
487 |
by (drule (1) finite_vimageI, simp) |
|
488 |
||
489 |
text {* Properties of quantifiers with singletons. *} |
|
490 |
||
491 |
lemma not_INFM_eq [simp]: |
|
492 |
"\<not> (INFM x. x = a)" |
|
493 |
"\<not> (INFM x. a = x)" |
|
494 |
unfolding INFM_iff_infinite by simp_all |
|
495 |
||
496 |
lemma MOST_neq [simp]: |
|
497 |
"MOST x. x \<noteq> a" |
|
498 |
"MOST x. a \<noteq> x" |
|
499 |
unfolding MOST_iff_cofinite by simp_all |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
500 |
|
34112 | 501 |
lemma INFM_neq [simp]: |
502 |
"(INFM x::'a. x \<noteq> a) \<longleftrightarrow> infinite (UNIV::'a set)" |
|
503 |
"(INFM x::'a. a \<noteq> x) \<longleftrightarrow> infinite (UNIV::'a set)" |
|
504 |
unfolding INFM_iff_infinite by simp_all |
|
505 |
||
506 |
lemma MOST_eq [simp]: |
|
507 |
"(MOST x::'a. x = a) \<longleftrightarrow> finite (UNIV::'a set)" |
|
508 |
"(MOST x::'a. a = x) \<longleftrightarrow> finite (UNIV::'a set)" |
|
509 |
unfolding MOST_iff_cofinite by simp_all |
|
510 |
||
511 |
lemma MOST_eq_imp: |
|
512 |
"MOST x. x = a \<longrightarrow> P x" |
|
513 |
"MOST x. a = x \<longrightarrow> P x" |
|
514 |
unfolding MOST_iff_cofinite by simp_all |
|
515 |
||
516 |
text {* Properties of quantifiers over the naturals. *} |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
517 |
|
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
518 |
lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)" |
20809 | 519 |
by (simp add: Inf_many_def infinite_nat_iff_unbounded) |
520 |
||
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
521 |
lemma INFM_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)" |
20809 | 522 |
by (simp add: Inf_many_def infinite_nat_iff_unbounded_le) |
523 |
||
524 |
lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)" |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
525 |
by (simp add: Alm_all_def INFM_nat) |
20809 | 526 |
|
527 |
lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)" |
|
27407
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
huffman
parents:
27368
diff
changeset
|
528 |
by (simp add: Alm_all_def INFM_nat_le) |
20809 | 529 |
|
530 |
||
531 |
subsection "Enumeration of an Infinite Set" |
|
532 |
||
533 |
text {* |
|
534 |
The set's element type must be wellordered (e.g. the natural numbers). |
|
535 |
*} |
|
536 |
||
34941 | 537 |
primrec (in wellorder) enumerate :: "'a set \<Rightarrow> nat \<Rightarrow> 'a" where |
538 |
enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)" |
|
539 |
| enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n" |
|
20809 | 540 |
|
541 |
lemma enumerate_Suc': |
|
542 |
"enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n" |
|
543 |
by simp |
|
544 |
||
545 |
lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n : S" |
|
29901 | 546 |
apply (induct n arbitrary: S) |
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44454
diff
changeset
|
547 |
apply (fastforce intro: LeastI dest!: infinite_imp_nonempty) |
29901 | 548 |
apply simp |
44454 | 549 |
apply (metis DiffE infinite_remove) |
29901 | 550 |
done |
20809 | 551 |
|
552 |
declare enumerate_0 [simp del] enumerate_Suc [simp del] |
|
553 |
||
554 |
lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)" |
|
555 |
apply (induct n arbitrary: S) |
|
556 |
apply (rule order_le_neq_trans) |
|
557 |
apply (simp add: enumerate_0 Least_le enumerate_in_set) |
|
558 |
apply (simp only: enumerate_Suc') |
|
559 |
apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 : S - {enumerate S 0}") |
|
560 |
apply (blast intro: sym) |
|
561 |
apply (simp add: enumerate_in_set del: Diff_iff) |
|
562 |
apply (simp add: enumerate_Suc') |
|
563 |
done |
|
564 |
||
565 |
lemma enumerate_mono: "m<n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n" |
|
566 |
apply (erule less_Suc_induct) |
|
567 |
apply (auto intro: enumerate_step) |
|
568 |
done |
|
569 |
||
570 |
||
50134 | 571 |
lemma le_enumerate: |
572 |
assumes S: "infinite S" |
|
573 |
shows "n \<le> enumerate S n" |
|
574 |
using S |
|
575 |
proof (induct n) |
|
576 |
case (Suc n) |
|
577 |
then have "n \<le> enumerate S n" by simp |
|
578 |
also note enumerate_mono[of n "Suc n", OF _ `infinite S`] |
|
579 |
finally show ?case by simp |
|
580 |
qed simp |
|
581 |
||
582 |
lemma enumerate_Suc'': |
|
583 |
fixes S :: "'a::wellorder set" |
|
584 |
shows "infinite S \<Longrightarrow> enumerate S (Suc n) = (LEAST s. s \<in> S \<and> enumerate S n < s)" |
|
585 |
proof (induct n arbitrary: S) |
|
586 |
case 0 |
|
587 |
then have "\<forall>s\<in>S. enumerate S 0 \<le> s" |
|
588 |
by (auto simp: enumerate.simps intro: Least_le) |
|
589 |
then show ?case |
|
590 |
unfolding enumerate_Suc' enumerate_0[of "S - {enumerate S 0}"] |
|
591 |
by (intro arg_cong[where f=Least] ext) auto |
|
592 |
next |
|
593 |
case (Suc n S) |
|
594 |
show ?case |
|
595 |
using enumerate_mono[OF zero_less_Suc `infinite S`, of n] `infinite S` |
|
596 |
apply (subst (1 2) enumerate_Suc') |
|
597 |
apply (subst Suc) |
|
598 |
apply (insert `infinite S`, simp) |
|
599 |
by (intro arg_cong[where f=Least] ext) |
|
600 |
(auto simp: enumerate_Suc'[symmetric]) |
|
601 |
qed |
|
602 |
||
603 |
lemma enumerate_Ex: |
|
604 |
assumes S: "infinite (S::nat set)" |
|
605 |
shows "s \<in> S \<Longrightarrow> \<exists>n. enumerate S n = s" |
|
606 |
proof (induct s rule: less_induct) |
|
607 |
case (less s) |
|
608 |
show ?case |
|
609 |
proof cases |
|
610 |
let ?y = "Max {s'\<in>S. s' < s}" |
|
611 |
assume "\<exists>y\<in>S. y < s" |
|
612 |
then have y: "\<And>x. ?y < x \<longleftrightarrow> (\<forall>s'\<in>S. s' < s \<longrightarrow> s' < x)" by (subst Max_less_iff) auto |
|
613 |
then have y_in: "?y \<in> {s'\<in>S. s' < s}" by (intro Max_in) auto |
|
614 |
with less.hyps[of ?y] obtain n where "enumerate S n = ?y" by auto |
|
615 |
with S have "enumerate S (Suc n) = s" |
|
616 |
by (auto simp: y less enumerate_Suc'' intro!: Least_equality) |
|
617 |
then show ?case by auto |
|
618 |
next |
|
619 |
assume *: "\<not> (\<exists>y\<in>S. y < s)" |
|
620 |
then have "\<forall>t\<in>S. s \<le> t" by auto |
|
621 |
with `s \<in> S` show ?thesis |
|
622 |
by (auto intro!: exI[of _ 0] Least_equality simp: enumerate_0) |
|
623 |
qed |
|
624 |
qed |
|
625 |
||
626 |
lemma bij_enumerate: |
|
627 |
fixes S :: "nat set" |
|
628 |
assumes S: "infinite S" |
|
629 |
shows "bij_betw (enumerate S) UNIV S" |
|
630 |
proof - |
|
631 |
have "\<And>n m. n \<noteq> m \<Longrightarrow> enumerate S n \<noteq> enumerate S m" |
|
632 |
using enumerate_mono[OF _ `infinite S`] by (auto simp: neq_iff) |
|
633 |
then have "inj (enumerate S)" |
|
634 |
by (auto simp: inj_on_def) |
|
635 |
moreover have "\<forall>s\<in>S. \<exists>i. enumerate S i = s" |
|
636 |
using enumerate_Ex[OF S] by auto |
|
637 |
moreover note `infinite S` |
|
638 |
ultimately show ?thesis |
|
639 |
unfolding bij_betw_def by (auto intro: enumerate_in_set) |
|
640 |
qed |
|
641 |
||
20809 | 642 |
subsection "Miscellaneous" |
643 |
||
644 |
text {* |
|
645 |
A few trivial lemmas about sets that contain at most one element. |
|
646 |
These simplify the reasoning about deterministic automata. |
|
647 |
*} |
|
648 |
||
649 |
definition |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21256
diff
changeset
|
650 |
atmost_one :: "'a set \<Rightarrow> bool" where |
20809 | 651 |
"atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)" |
652 |
||
653 |
lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S" |
|
654 |
by (simp add: atmost_one_def) |
|
655 |
||
656 |
lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S" |
|
657 |
by (simp add: atmost_one_def) |
|
658 |
||
659 |
lemma atmost_one_unique [elim]: "atmost_one S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> y = x" |
|
660 |
by (simp add: atmost_one_def) |
|
661 |
||
662 |
end |
|
46783 | 663 |