| 
47654
 | 
     1  | 
(*  Title:      HOL/ex/Transfer_Int_Nat.thy
  | 
| 
 | 
     2  | 
    Author:     Brian Huffman, TU Muenchen
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
header {* Using the transfer method between nat and int *}
 | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory Transfer_Int_Nat
  | 
| 
 | 
     8  | 
imports GCD "~~/src/HOL/Library/Quotient_List"
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
subsection {* Correspondence relation *}
 | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
definition ZN :: "int \<Rightarrow> nat \<Rightarrow> bool"
  | 
| 
 | 
    14  | 
  where "ZN = (\<lambda>z n. z = of_nat n)"
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
subsection {* Transfer rules *}
 | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
lemma bi_unique_ZN [transfer_rule]: "bi_unique ZN"
  | 
| 
 | 
    19  | 
  unfolding ZN_def bi_unique_def by simp
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
lemma right_total_ZN [transfer_rule]: "right_total ZN"
  | 
| 
 | 
    22  | 
  unfolding ZN_def right_total_def by simp
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma ZN_0 [transfer_rule]: "ZN 0 0"
  | 
| 
 | 
    25  | 
  unfolding ZN_def by simp
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
lemma ZN_1 [transfer_rule]: "ZN 1 1"
  | 
| 
 | 
    28  | 
  unfolding ZN_def by simp
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemma ZN_add [transfer_rule]: "(ZN ===> ZN ===> ZN) (op +) (op +)"
  | 
| 
 | 
    31  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma ZN_mult [transfer_rule]: "(ZN ===> ZN ===> ZN) (op *) (op *)"
  | 
| 
 | 
    34  | 
  unfolding fun_rel_def ZN_def by (simp add: int_mult)
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
lemma ZN_diff [transfer_rule]: "(ZN ===> ZN ===> ZN) tsub (op -)"
  | 
| 
 | 
    37  | 
  unfolding fun_rel_def ZN_def tsub_def by (simp add: zdiff_int)
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma ZN_power [transfer_rule]: "(ZN ===> op = ===> ZN) (op ^) (op ^)"
  | 
| 
 | 
    40  | 
  unfolding fun_rel_def ZN_def by (simp add: int_power)
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma ZN_nat_id [transfer_rule]: "(ZN ===> op =) nat id"
  | 
| 
 | 
    43  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma ZN_id_int [transfer_rule]: "(ZN ===> op =) id int"
  | 
| 
 | 
    46  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma ZN_All [transfer_rule]:
  | 
| 
 | 
    49  | 
  "((ZN ===> op =) ===> op =) (Ball {0..}) All"
 | 
| 
 | 
    50  | 
  unfolding fun_rel_def ZN_def by (auto dest: zero_le_imp_eq_int)
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
lemma ZN_transfer_forall [transfer_rule]:
  | 
| 
 | 
    53  | 
  "((ZN ===> op =) ===> op =) (transfer_bforall (\<lambda>x. 0 \<le> x)) transfer_forall"
  | 
| 
 | 
    54  | 
  unfolding transfer_forall_def transfer_bforall_def
  | 
| 
 | 
    55  | 
  unfolding fun_rel_def ZN_def by (auto dest: zero_le_imp_eq_int)
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma ZN_Ex [transfer_rule]: "((ZN ===> op =) ===> op =) (Bex {0..}) Ex"
 | 
| 
 | 
    58  | 
  unfolding fun_rel_def ZN_def Bex_def atLeast_iff
  | 
| 
 | 
    59  | 
  by (metis zero_le_imp_eq_int zero_zle_int)
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma ZN_le [transfer_rule]: "(ZN ===> ZN ===> op =) (op \<le>) (op \<le>)"
  | 
| 
 | 
    62  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
lemma ZN_less [transfer_rule]: "(ZN ===> ZN ===> op =) (op <) (op <)"
  | 
| 
 | 
    65  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
lemma ZN_eq [transfer_rule]: "(ZN ===> ZN ===> op =) (op =) (op =)"
  | 
| 
 | 
    68  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
lemma ZN_Suc [transfer_rule]: "(ZN ===> ZN) (\<lambda>x. x + 1) Suc"
  | 
| 
 | 
    71  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
lemma ZN_numeral [transfer_rule]:
  | 
| 
 | 
    74  | 
  "(op = ===> ZN) numeral numeral"
  | 
| 
 | 
    75  | 
  unfolding fun_rel_def ZN_def by simp
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
lemma ZN_dvd [transfer_rule]: "(ZN ===> ZN ===> op =) (op dvd) (op dvd)"
  | 
| 
 | 
    78  | 
  unfolding fun_rel_def ZN_def by (simp add: zdvd_int)
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma ZN_div [transfer_rule]: "(ZN ===> ZN ===> ZN) (op div) (op div)"
  | 
| 
 | 
    81  | 
  unfolding fun_rel_def ZN_def by (simp add: zdiv_int)
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
lemma ZN_mod [transfer_rule]: "(ZN ===> ZN ===> ZN) (op mod) (op mod)"
  | 
| 
 | 
    84  | 
  unfolding fun_rel_def ZN_def by (simp add: zmod_int)
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
lemma ZN_gcd [transfer_rule]: "(ZN ===> ZN ===> ZN) gcd gcd"
  | 
| 
 | 
    87  | 
  unfolding fun_rel_def ZN_def by (simp add: transfer_int_nat_gcd)
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
text {* For derived operations, we can use the @{text "transfer_prover"}
 | 
| 
 | 
    90  | 
  method to help generate transfer rules. *}
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
lemma ZN_listsum [transfer_rule]: "(list_all2 ZN ===> ZN) listsum listsum"
  | 
| 
 | 
    93  | 
  unfolding listsum_def [abs_def] by transfer_prover
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
subsection {* Transfer examples *}
 | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
lemma
  | 
| 
 | 
    98  | 
  assumes "\<And>i::int. 0 \<le> i \<Longrightarrow> i + 0 = i"
  | 
| 
 | 
    99  | 
  shows "\<And>i::nat. i + 0 = i"
  | 
| 
 | 
   100  | 
apply transfer
  | 
| 
 | 
   101  | 
apply fact
  | 
| 
 | 
   102  | 
done
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
lemma
  | 
| 
 | 
   105  | 
  assumes "\<And>i k::int. \<lbrakk>0 \<le> i; 0 \<le> k; i < k\<rbrakk> \<Longrightarrow> \<exists>j\<in>{0..}. i + j = k"
 | 
| 
 | 
   106  | 
  shows "\<And>i k::nat. i < k \<Longrightarrow> \<exists>j. i + j = k"
  | 
| 
 | 
   107  | 
apply transfer
  | 
| 
 | 
   108  | 
apply fact
  | 
| 
 | 
   109  | 
done
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
lemma
  | 
| 
 | 
   112  | 
  assumes "\<forall>x\<in>{0::int..}. \<forall>y\<in>{0..}. x * y div y = x"
 | 
| 
 | 
   113  | 
  shows "\<forall>x y :: nat. x * y div y = x"
  | 
| 
 | 
   114  | 
apply transfer
  | 
| 
 | 
   115  | 
apply fact
  | 
| 
 | 
   116  | 
done
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
lemma
  | 
| 
 | 
   119  | 
  assumes "\<And>m n::int. \<lbrakk>0 \<le> m; 0 \<le> n; m * n = 0\<rbrakk> \<Longrightarrow> m = 0 \<or> n = 0"
  | 
| 
 | 
   120  | 
  shows "m * n = (0::nat) \<Longrightarrow> m = 0 \<or> n = 0"
  | 
| 
 | 
   121  | 
apply transfer
  | 
| 
 | 
   122  | 
apply fact
  | 
| 
 | 
   123  | 
done
  | 
| 
 | 
   124  | 
  | 
| 
 | 
   125  | 
lemma
  | 
| 
 | 
   126  | 
  assumes "\<forall>x\<in>{0::int..}. \<exists>y\<in>{0..}. \<exists>z\<in>{0..}. x + 3 * y = 5 * z"
 | 
| 
 | 
   127  | 
  shows "\<forall>x::nat. \<exists>y z. x + 3 * y = 5 * z"
  | 
| 
 | 
   128  | 
apply transfer
  | 
| 
 | 
   129  | 
apply fact
  | 
| 
 | 
   130  | 
done
  | 
| 
 | 
   131  | 
  | 
| 
 | 
   132  | 
text {* The @{text "fixing"} option prevents generalization over the free
 | 
| 
 | 
   133  | 
  variable @{text "n"}, allowing the local transfer rule to be used. *}
 | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
lemma
  | 
| 
 | 
   136  | 
  assumes [transfer_rule]: "ZN x n"
  | 
| 
 | 
   137  | 
  assumes "\<forall>i\<in>{0..}. i < x \<longrightarrow> 2 * i < 3 * x"
 | 
| 
 | 
   138  | 
  shows "\<forall>i. i < n \<longrightarrow> 2 * i < 3 * n"
  | 
| 
 | 
   139  | 
apply (transfer fixing: n)
  | 
| 
 | 
   140  | 
apply fact
  | 
| 
 | 
   141  | 
done
  | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
lemma
  | 
| 
 | 
   144  | 
  assumes "gcd (2^i) (3^j) = (1::int)"
  | 
| 
 | 
   145  | 
  shows "gcd (2^i) (3^j) = (1::nat)"
  | 
| 
 | 
   146  | 
apply (transfer fixing: i j)
  | 
| 
 | 
   147  | 
apply fact
  | 
| 
 | 
   148  | 
done
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
lemma
  | 
| 
 | 
   151  | 
  assumes "\<And>x y z::int. \<lbrakk>0 \<le> x; 0 \<le> y; 0 \<le> z\<rbrakk> \<Longrightarrow> 
  | 
| 
 | 
   152  | 
    listsum [x, y, z] = 0 \<longleftrightarrow> list_all (\<lambda>x. x = 0) [x, y, z]"
  | 
| 
 | 
   153  | 
  shows "listsum [x, y, z] = (0::nat) \<longleftrightarrow> list_all (\<lambda>x. x = 0) [x, y, z]"
  | 
| 
 | 
   154  | 
apply transfer
  | 
| 
 | 
   155  | 
apply fact
  | 
| 
 | 
   156  | 
done
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
text {* Quantifiers over higher types (e.g. @{text "nat list"}) may
 | 
| 
 | 
   159  | 
  generate @{text "Domainp"} assumptions when transferred. *}
 | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
lemma
  | 
| 
 | 
   162  | 
  assumes "\<And>xs::int list. Domainp (list_all2 ZN) xs \<Longrightarrow>
  | 
| 
 | 
   163  | 
    (listsum xs = 0) = list_all (\<lambda>x. x = 0) xs"
  | 
| 
 | 
   164  | 
  shows "listsum xs = (0::nat) \<longleftrightarrow> list_all (\<lambda>x. x = 0) xs"
  | 
| 
 | 
   165  | 
apply transfer
  | 
| 
 | 
   166  | 
apply fact
  | 
| 
 | 
   167  | 
done
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
text {* Equality on a higher type can be transferred if the relations
 | 
| 
 | 
   170  | 
  involved are bi-unique. *}
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
lemma
  | 
| 
 | 
   173  | 
  assumes "\<And>xs\<Colon>int list. \<lbrakk>Domainp (list_all2 ZN) xs; xs \<noteq> []\<rbrakk> \<Longrightarrow>
  | 
| 
 | 
   174  | 
    listsum xs < listsum (map (\<lambda>x. x + 1) xs)"
  | 
| 
 | 
   175  | 
  shows "xs \<noteq> [] \<Longrightarrow> listsum xs < listsum (map Suc xs)"
  | 
| 
 | 
   176  | 
apply transfer
  | 
| 
 | 
   177  | 
apply fact
  | 
| 
 | 
   178  | 
done
  | 
| 
 | 
   179  | 
  | 
| 
 | 
   180  | 
end
  |