16759
|
1 |
(* Title: HOL/GCD.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Christophe Tabacznyj and Lawrence C Paulson
|
|
4 |
Copyright 1996 University of Cambridge
|
|
5 |
|
|
6 |
Builds on Integ/Parity mainly because that contains recdef, which we
|
|
7 |
need, but also because we may want to include gcd on integers in here
|
|
8 |
as well in the future.
|
|
9 |
*)
|
|
10 |
|
|
11 |
header {* The Greatest Common Divisor *}
|
|
12 |
|
|
13 |
theory GCD
|
|
14 |
imports Parity
|
|
15 |
begin
|
|
16 |
|
|
17 |
text {*
|
|
18 |
See \cite{davenport92}.
|
|
19 |
\bigskip
|
|
20 |
*}
|
|
21 |
|
|
22 |
consts
|
|
23 |
gcd :: "nat \<times> nat => nat" -- {* Euclid's algorithm *}
|
|
24 |
|
|
25 |
recdef gcd "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)"
|
|
26 |
"gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
|
|
27 |
|
|
28 |
constdefs
|
|
29 |
is_gcd :: "nat => nat => nat => bool" -- {* @{term gcd} as a relation *}
|
|
30 |
"is_gcd p m n == p dvd m \<and> p dvd n \<and>
|
|
31 |
(\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
|
|
32 |
|
|
33 |
|
|
34 |
lemma gcd_induct:
|
|
35 |
"(!!m. P m 0) ==>
|
|
36 |
(!!m n. 0 < n ==> P n (m mod n) ==> P m n)
|
|
37 |
==> P (m::nat) (n::nat)"
|
|
38 |
apply (induct m n rule: gcd.induct)
|
|
39 |
apply (case_tac "n = 0")
|
|
40 |
apply simp_all
|
|
41 |
done
|
|
42 |
|
|
43 |
|
|
44 |
lemma gcd_0 [simp]: "gcd (m, 0) = m"
|
|
45 |
apply simp
|
|
46 |
done
|
|
47 |
|
|
48 |
lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
|
|
49 |
apply simp
|
|
50 |
done
|
|
51 |
|
|
52 |
declare gcd.simps [simp del]
|
|
53 |
|
|
54 |
lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
|
|
55 |
apply (simp add: gcd_non_0)
|
|
56 |
done
|
|
57 |
|
|
58 |
text {*
|
|
59 |
\medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}. The
|
|
60 |
conjunctions don't seem provable separately.
|
|
61 |
*}
|
|
62 |
|
|
63 |
lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
|
|
64 |
and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
|
|
65 |
apply (induct m n rule: gcd_induct)
|
|
66 |
apply (simp_all add: gcd_non_0)
|
|
67 |
apply (blast dest: dvd_mod_imp_dvd)
|
|
68 |
done
|
|
69 |
|
|
70 |
text {*
|
|
71 |
\medskip Maximality: for all @{term m}, @{term n}, @{term k}
|
|
72 |
naturals, if @{term k} divides @{term m} and @{term k} divides
|
|
73 |
@{term n} then @{term k} divides @{term "gcd (m, n)"}.
|
|
74 |
*}
|
|
75 |
|
|
76 |
lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
|
|
77 |
apply (induct m n rule: gcd_induct)
|
|
78 |
apply (simp_all add: gcd_non_0 dvd_mod)
|
|
79 |
done
|
|
80 |
|
|
81 |
lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
|
|
82 |
apply (blast intro!: gcd_greatest intro: dvd_trans)
|
|
83 |
done
|
|
84 |
|
|
85 |
lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)"
|
|
86 |
by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
|
|
87 |
|
|
88 |
|
|
89 |
text {*
|
|
90 |
\medskip Function gcd yields the Greatest Common Divisor.
|
|
91 |
*}
|
|
92 |
|
|
93 |
lemma is_gcd: "is_gcd (gcd (m, n)) m n"
|
|
94 |
apply (simp add: is_gcd_def gcd_greatest)
|
|
95 |
done
|
|
96 |
|
|
97 |
text {*
|
|
98 |
\medskip Uniqueness of GCDs.
|
|
99 |
*}
|
|
100 |
|
|
101 |
lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
|
|
102 |
apply (simp add: is_gcd_def)
|
|
103 |
apply (blast intro: dvd_anti_sym)
|
|
104 |
done
|
|
105 |
|
|
106 |
lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
|
|
107 |
apply (auto simp add: is_gcd_def)
|
|
108 |
done
|
|
109 |
|
|
110 |
|
|
111 |
text {*
|
|
112 |
\medskip Commutativity
|
|
113 |
*}
|
|
114 |
|
|
115 |
lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
|
|
116 |
apply (auto simp add: is_gcd_def)
|
|
117 |
done
|
|
118 |
|
|
119 |
lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
|
|
120 |
apply (rule is_gcd_unique)
|
|
121 |
apply (rule is_gcd)
|
|
122 |
apply (subst is_gcd_commute)
|
|
123 |
apply (simp add: is_gcd)
|
|
124 |
done
|
|
125 |
|
|
126 |
lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
|
|
127 |
apply (rule is_gcd_unique)
|
|
128 |
apply (rule is_gcd)
|
|
129 |
apply (simp add: is_gcd_def)
|
|
130 |
apply (blast intro: dvd_trans)
|
|
131 |
done
|
|
132 |
|
|
133 |
lemma gcd_0_left [simp]: "gcd (0, m) = m"
|
|
134 |
apply (simp add: gcd_commute [of 0])
|
|
135 |
done
|
|
136 |
|
|
137 |
lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
|
|
138 |
apply (simp add: gcd_commute [of "Suc 0"])
|
|
139 |
done
|
|
140 |
|
|
141 |
|
|
142 |
text {*
|
|
143 |
\medskip Multiplication laws
|
|
144 |
*}
|
|
145 |
|
|
146 |
lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
|
|
147 |
-- {* \cite[page 27]{davenport92} *}
|
|
148 |
apply (induct m n rule: gcd_induct)
|
|
149 |
apply simp
|
|
150 |
apply (case_tac "k = 0")
|
|
151 |
apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
|
|
152 |
done
|
|
153 |
|
|
154 |
lemma gcd_mult [simp]: "gcd (k, k * n) = k"
|
|
155 |
apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
|
|
156 |
done
|
|
157 |
|
|
158 |
lemma gcd_self [simp]: "gcd (k, k) = k"
|
|
159 |
apply (rule gcd_mult [of k 1, simplified])
|
|
160 |
done
|
|
161 |
|
|
162 |
lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
|
|
163 |
apply (insert gcd_mult_distrib2 [of m k n])
|
|
164 |
apply simp
|
|
165 |
apply (erule_tac t = m in ssubst)
|
|
166 |
apply simp
|
|
167 |
done
|
|
168 |
|
|
169 |
lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
|
|
170 |
apply (blast intro: relprime_dvd_mult dvd_trans)
|
|
171 |
done
|
|
172 |
|
|
173 |
lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
|
|
174 |
apply (rule dvd_anti_sym)
|
|
175 |
apply (rule gcd_greatest)
|
|
176 |
apply (rule_tac n = k in relprime_dvd_mult)
|
|
177 |
apply (simp add: gcd_assoc)
|
|
178 |
apply (simp add: gcd_commute)
|
|
179 |
apply (simp_all add: mult_commute)
|
|
180 |
apply (blast intro: dvd_trans)
|
|
181 |
done
|
|
182 |
|
|
183 |
|
|
184 |
text {* \medskip Addition laws *}
|
|
185 |
|
|
186 |
lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
|
|
187 |
apply (case_tac "n = 0")
|
|
188 |
apply (simp_all add: gcd_non_0)
|
|
189 |
done
|
|
190 |
|
|
191 |
lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
|
|
192 |
proof -
|
|
193 |
have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute)
|
|
194 |
also have "... = gcd (n + m, m)" by (simp add: add_commute)
|
|
195 |
also have "... = gcd (n, m)" by simp
|
|
196 |
also have "... = gcd (m, n)" by (rule gcd_commute)
|
|
197 |
finally show ?thesis .
|
|
198 |
qed
|
|
199 |
|
|
200 |
lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
|
|
201 |
apply (subst add_commute)
|
|
202 |
apply (rule gcd_add2)
|
|
203 |
done
|
|
204 |
|
|
205 |
lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
|
|
206 |
apply (induct k)
|
|
207 |
apply (simp_all add: add_assoc)
|
|
208 |
done
|
|
209 |
|
|
210 |
end
|