| author | paulson | 
| Wed, 05 Mar 2003 16:03:33 +0100 | |
| changeset 13846 | b2c494d76012 | 
| parent 12018 | ec054019c910 | 
| child 14268 | 5cf13e80be0e | 
| permissions | -rw-r--r-- | 
| 10751 | 1 | (* Title: Real/Hyperreal/HyperOrd.ML | 
| 2 | Author: Jacques D. Fleuriot | |
| 3 | Copyright: 1998 University of Cambridge | |
| 4 | 2000 University of Edinburgh | |
| 5 | Description: Type "hypreal" is a linear order and also | |
| 6 | satisfies plus_ac0: + is an AC-operator with zero | |
| 7 | *) | |
| 8 | ||
| 9 | (**** The simproc abel_cancel ****) | |
| 10 | ||
| 11 | (*** Two lemmas needed for the simprocs ***) | |
| 12 | ||
| 13 | (*Deletion of other terms in the formula, seeking the -x at the front of z*) | |
| 14 | Goal "((x::hypreal) + (y + z) = y + u) = ((x + z) = u)"; | |
| 15 | by (stac hypreal_add_left_commute 1); | |
| 16 | by (rtac hypreal_add_left_cancel 1); | |
| 17 | qed "hypreal_add_cancel_21"; | |
| 18 | ||
| 19 | (*A further rule to deal with the case that | |
| 20 | everything gets cancelled on the right.*) | |
| 21 | Goal "((x::hypreal) + (y + z) = y) = (x = -z)"; | |
| 22 | by (stac hypreal_add_left_commute 1); | |
| 23 | by (res_inst_tac [("t", "y")] (hypreal_add_zero_right RS subst) 1
 | |
| 24 | THEN stac hypreal_add_left_cancel 1); | |
| 25 | by (simp_tac (simpset() addsimps [hypreal_eq_diff_eq RS sym]) 1); | |
| 26 | qed "hypreal_add_cancel_end"; | |
| 27 | ||
| 28 | ||
| 29 | structure Hyperreal_Cancel_Data = | |
| 30 | struct | |
| 31 | val ss = HOL_ss | |
| 32 | val eq_reflection = eq_reflection | |
| 33 | ||
| 34 | val sg_ref = Sign.self_ref (Theory.sign_of (the_context ())) | |
| 35 |   val T			= Type("HyperDef.hypreal",[])
 | |
| 36 |   val zero		= Const ("0", T)
 | |
| 37 | val restrict_to_left = restrict_to_left | |
| 38 | val add_cancel_21 = hypreal_add_cancel_21 | |
| 39 | val add_cancel_end = hypreal_add_cancel_end | |
| 40 | val add_left_cancel = hypreal_add_left_cancel | |
| 41 | val add_assoc = hypreal_add_assoc | |
| 42 | val add_commute = hypreal_add_commute | |
| 43 | val add_left_commute = hypreal_add_left_commute | |
| 44 | val add_0 = hypreal_add_zero_left | |
| 45 | val add_0_right = hypreal_add_zero_right | |
| 46 | ||
| 47 | val eq_diff_eq = hypreal_eq_diff_eq | |
| 48 | val eqI_rules = [hypreal_less_eqI, hypreal_eq_eqI, hypreal_le_eqI] | |
| 49 | fun dest_eqI th = | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
10919diff
changeset | 50 | #1 (HOLogic.dest_bin "op =" HOLogic.boolT | 
| 10751 | 51 | (HOLogic.dest_Trueprop (concl_of th))) | 
| 52 | ||
| 53 | val diff_def = hypreal_diff_def | |
| 54 | val minus_add_distrib = hypreal_minus_add_distrib | |
| 55 | val minus_minus = hypreal_minus_minus | |
| 56 | val minus_0 = hypreal_minus_zero | |
| 57 | val add_inverses = [hypreal_add_minus, hypreal_add_minus_left] | |
| 58 | val cancel_simps = [hypreal_add_minus_cancelA, hypreal_minus_add_cancelA] | |
| 59 | end; | |
| 60 | ||
| 61 | structure Hyperreal_Cancel = Abel_Cancel (Hyperreal_Cancel_Data); | |
| 62 | ||
| 63 | Addsimprocs [Hyperreal_Cancel.sum_conv, Hyperreal_Cancel.rel_conv]; | |
| 64 | ||
| 65 | Goal "- (z - y) = y - (z::hypreal)"; | |
| 66 | by (Simp_tac 1); | |
| 67 | qed "hypreal_minus_diff_eq"; | |
| 68 | Addsimps [hypreal_minus_diff_eq]; | |
| 69 | ||
| 70 | ||
| 71 | Goal "((x::hypreal) < y) = (-y < -x)"; | |
| 72 | by (stac hypreal_less_minus_iff 1); | |
| 73 | by (res_inst_tac [("x1","x")] (hypreal_less_minus_iff RS ssubst) 1);
 | |
| 74 | by (simp_tac (simpset() addsimps [hypreal_add_commute]) 1); | |
| 75 | qed "hypreal_less_swap_iff"; | |
| 76 | ||
| 77 | Goalw [hypreal_zero_def] | |
| 78 | "((0::hypreal) < x) = (-x < x)"; | |
| 79 | by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
 | |
| 80 | by (auto_tac (claset(), simpset() addsimps [hypreal_less, hypreal_minus])); | |
| 81 | by (ALLGOALS(Ultra_tac)); | |
| 82 | qed "hypreal_gt_zero_iff"; | |
| 83 | ||
| 84 | Goal "(A::hypreal) < B ==> A + C < B + C"; | |
| 85 | by (res_inst_tac [("z","A")] eq_Abs_hypreal 1);
 | |
| 86 | by (res_inst_tac [("z","B")] eq_Abs_hypreal 1);
 | |
| 87 | by (res_inst_tac [("z","C")] eq_Abs_hypreal 1);
 | |
| 88 | by (auto_tac (claset() addSIs [exI], | |
| 89 | simpset() addsimps [hypreal_less_def,hypreal_add])); | |
| 90 | by (Ultra_tac 1); | |
| 91 | qed "hypreal_add_less_mono1"; | |
| 92 | ||
| 93 | Goal "!!(A::hypreal). A < B ==> C + A < C + B"; | |
| 94 | by (auto_tac (claset() addIs [hypreal_add_less_mono1], | |
| 95 | simpset() addsimps [hypreal_add_commute])); | |
| 96 | qed "hypreal_add_less_mono2"; | |
| 97 | ||
| 98 | Goal "(x < (0::hypreal)) = (x < -x)"; | |
| 99 | by (rtac (hypreal_minus_zero_less_iff RS subst) 1); | |
| 100 | by (stac hypreal_gt_zero_iff 1); | |
| 101 | by (Full_simp_tac 1); | |
| 102 | qed "hypreal_lt_zero_iff"; | |
| 103 | ||
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 104 | Goalw [hypreal_zero_def] "[| 0 < x; 0 < y |] ==> (0::hypreal) < x + y"; | 
| 10751 | 105 | by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
 | 
| 106 | by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
 | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 107 | by (auto_tac (claset(), | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 108 | simpset() addsimps [hypreal_less_def,hypreal_add])); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 109 | by (auto_tac (claset() addSIs [exI], | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 110 | simpset() addsimps [hypreal_less_def,hypreal_add])); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 111 | by (ultra_tac (claset() addIs [real_add_order], simpset()) 1); | 
| 10751 | 112 | qed "hypreal_add_order"; | 
| 113 | ||
| 114 | Goal "[| 0 < x; 0 <= y |] ==> (0::hypreal) < x + y"; | |
| 115 | by (auto_tac (claset() addDs [sym, order_le_imp_less_or_eq] | |
| 116 | addIs [hypreal_add_order], | |
| 117 | simpset())); | |
| 118 | qed "hypreal_add_order_le"; | |
| 119 | ||
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 120 | Goalw [hypreal_zero_def] "[| 0 < x; 0 < y |] ==> (0::hypreal) < x * y"; | 
| 10751 | 121 | by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
 | 
| 122 | by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
 | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 123 | by (auto_tac (claset() addSIs [exI], | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 124 | simpset() addsimps [hypreal_less_def,hypreal_mult])); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 125 | by (ultra_tac (claset() addIs [real_mult_order], simpset()) 1); | 
| 10751 | 126 | qed "hypreal_mult_order"; | 
| 127 | ||
| 128 | Goal "[| x < 0; y < 0 |] ==> (0::hypreal) < x * y"; | |
| 129 | by (REPEAT(dtac (hypreal_minus_zero_less_iff RS iffD2) 1)); | |
| 130 | by (dtac hypreal_mult_order 1 THEN assume_tac 1); | |
| 131 | by (Asm_full_simp_tac 1); | |
| 132 | qed "hypreal_mult_less_zero1"; | |
| 133 | ||
| 134 | Goal "[| 0 < x; y < 0 |] ==> x*y < (0::hypreal)"; | |
| 135 | by (dtac (hypreal_minus_zero_less_iff RS iffD2) 1); | |
| 136 | by (dtac hypreal_mult_order 1 THEN assume_tac 1); | |
| 137 | by (rtac (hypreal_minus_zero_less_iff RS iffD1) 1); | |
| 138 | by (Asm_full_simp_tac 1); | |
| 139 | qed "hypreal_mult_less_zero"; | |
| 140 | ||
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 141 | Goalw [hypreal_one_def,hypreal_zero_def,hypreal_less_def] "0 < (1::hypreal)"; | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 142 | by (res_inst_tac [("x","%n. 0")] exI 1);
 | 
| 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 143 | by (res_inst_tac [("x","%n. 1")] exI 1);
 | 
| 10751 | 144 | by (auto_tac (claset(), | 
| 145 | simpset() addsimps [real_zero_less_one, FreeUltrafilterNat_Nat_set])); | |
| 146 | qed "hypreal_zero_less_one"; | |
| 147 | ||
| 148 | Goal "[| 0 <= x; 0 <= y |] ==> (0::hypreal) <= x + y"; | |
| 149 | by (REPEAT(dtac order_le_imp_less_or_eq 1)); | |
| 150 | by (auto_tac (claset() addIs [hypreal_add_order, order_less_imp_le], | |
| 151 | simpset())); | |
| 152 | qed "hypreal_le_add_order"; | |
| 153 | ||
| 154 | (*** Monotonicity results ***) | |
| 155 | ||
| 156 | Goal "(v+z < w+z) = (v < (w::hypreal))"; | |
| 157 | by (Simp_tac 1); | |
| 158 | qed "hypreal_add_right_cancel_less"; | |
| 159 | ||
| 160 | Goal "(z+v < z+w) = (v < (w::hypreal))"; | |
| 161 | by (Simp_tac 1); | |
| 162 | qed "hypreal_add_left_cancel_less"; | |
| 163 | ||
| 164 | Addsimps [hypreal_add_right_cancel_less, | |
| 165 | hypreal_add_left_cancel_less]; | |
| 166 | ||
| 167 | Goal "(v+z <= w+z) = (v <= (w::hypreal))"; | |
| 168 | by (Simp_tac 1); | |
| 169 | qed "hypreal_add_right_cancel_le"; | |
| 170 | ||
| 171 | Goal "(z+v <= z+w) = (v <= (w::hypreal))"; | |
| 172 | by (Simp_tac 1); | |
| 173 | qed "hypreal_add_left_cancel_le"; | |
| 174 | ||
| 175 | Addsimps [hypreal_add_right_cancel_le, hypreal_add_left_cancel_le]; | |
| 176 | ||
| 177 | Goal "[| (z1::hypreal) < y1; z2 < y2 |] ==> z1 + z2 < y1 + y2"; | |
| 178 | by (dtac (hypreal_less_minus_iff RS iffD1) 1); | |
| 179 | by (dtac (hypreal_less_minus_iff RS iffD1) 1); | |
| 180 | by (dtac hypreal_add_order 1 THEN assume_tac 1); | |
| 181 | by (thin_tac "0 < y2 + - z2" 1); | |
| 182 | by (dres_inst_tac [("C","z1 + z2")] hypreal_add_less_mono1 1);
 | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 183 | by (auto_tac (claset(), | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 184 | simpset() addsimps [hypreal_minus_add_distrib RS sym] @ hypreal_add_ac | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 185 | delsimps [hypreal_minus_add_distrib])); | 
| 10751 | 186 | qed "hypreal_add_less_mono"; | 
| 187 | ||
| 188 | Goal "(q1::hypreal) <= q2 ==> x + q1 <= x + q2"; | |
| 189 | by (dtac order_le_imp_less_or_eq 1); | |
| 190 | by (Step_tac 1); | |
| 191 | by (auto_tac (claset() addSIs [order_less_imp_le,hypreal_add_less_mono1], | |
| 192 | simpset() addsimps [hypreal_add_commute])); | |
| 193 | qed "hypreal_add_left_le_mono1"; | |
| 194 | ||
| 195 | Goal "(q1::hypreal) <= q2 ==> q1 + x <= q2 + x"; | |
| 196 | by (auto_tac (claset() addDs [hypreal_add_left_le_mono1], | |
| 197 | simpset() addsimps [hypreal_add_commute])); | |
| 198 | qed "hypreal_add_le_mono1"; | |
| 199 | ||
| 200 | Goal "[|(i::hypreal)<=j; k<=l |] ==> i + k <= j + l"; | |
| 201 | by (etac (hypreal_add_le_mono1 RS order_trans) 1); | |
| 202 | by (Simp_tac 1); | |
| 203 | qed "hypreal_add_le_mono"; | |
| 204 | ||
| 205 | Goal "[|(i::hypreal)<j; k<=l |] ==> i + k < j + l"; | |
| 206 | by (auto_tac (claset() addSDs [order_le_imp_less_or_eq] | |
| 207 | addIs [hypreal_add_less_mono1,hypreal_add_less_mono], | |
| 208 | simpset())); | |
| 209 | qed "hypreal_add_less_le_mono"; | |
| 210 | ||
| 211 | Goal "[|(i::hypreal)<=j; k<l |] ==> i + k < j + l"; | |
| 212 | by (auto_tac (claset() addSDs [order_le_imp_less_or_eq] | |
| 213 | addIs [hypreal_add_less_mono2,hypreal_add_less_mono], | |
| 214 | simpset())); | |
| 215 | qed "hypreal_add_le_less_mono"; | |
| 216 | ||
| 217 | Goal "(A::hypreal) + C < B + C ==> A < B"; | |
| 218 | by (Full_simp_tac 1); | |
| 219 | qed "hypreal_less_add_right_cancel"; | |
| 220 | ||
| 221 | Goal "(C::hypreal) + A < C + B ==> A < B"; | |
| 222 | by (Full_simp_tac 1); | |
| 223 | qed "hypreal_less_add_left_cancel"; | |
| 224 | ||
| 225 | Goal "[|r < x; (0::hypreal) <= y|] ==> r < x + y"; | |
| 226 | by (auto_tac (claset() addDs [hypreal_add_less_le_mono], | |
| 227 | simpset())); | |
| 228 | qed "hypreal_add_zero_less_le_mono"; | |
| 229 | ||
| 230 | Goal "!!(A::hypreal). A + C <= B + C ==> A <= B"; | |
| 231 | by (dres_inst_tac [("x","-C")] hypreal_add_le_mono1 1);
 | |
| 232 | by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc]) 1); | |
| 233 | qed "hypreal_le_add_right_cancel"; | |
| 234 | ||
| 235 | Goal "!!(A::hypreal). C + A <= C + B ==> A <= B"; | |
| 236 | by (dres_inst_tac [("x","-C")] hypreal_add_left_le_mono1 1);
 | |
| 237 | by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1); | |
| 238 | qed "hypreal_le_add_left_cancel"; | |
| 239 | ||
| 240 | Goal "(0::hypreal) <= x*x"; | |
| 241 | by (res_inst_tac [("x","0"),("y","x")] hypreal_linear_less2 1);
 | |
| 242 | by (auto_tac (claset() addIs [hypreal_mult_order, | |
| 243 | hypreal_mult_less_zero1,order_less_imp_le], | |
| 244 | simpset())); | |
| 245 | qed "hypreal_le_square"; | |
| 246 | Addsimps [hypreal_le_square]; | |
| 247 | ||
| 248 | Goalw [hypreal_le_def] "- (x*x) <= (0::hypreal)"; | |
| 249 | by (auto_tac (claset() addSDs [hypreal_le_square RS order_le_less_trans], | |
| 250 | simpset() addsimps [hypreal_minus_zero_less_iff])); | |
| 251 | qed "hypreal_less_minus_square"; | |
| 252 | Addsimps [hypreal_less_minus_square]; | |
| 253 | ||
| 254 | Goal "(0*x<r)=((0::hypreal)<r)"; | |
| 255 | by (Simp_tac 1); | |
| 256 | qed "hypreal_mult_0_less"; | |
| 257 | ||
| 258 | Goal "[| (0::hypreal) < z; x < y |] ==> x*z < y*z"; | |
| 259 | by (rotate_tac 1 1); | |
| 260 | by (dtac (hypreal_less_minus_iff RS iffD1) 1); | |
| 261 | by (rtac (hypreal_less_minus_iff RS iffD2) 1); | |
| 262 | by (dtac hypreal_mult_order 1 THEN assume_tac 1); | |
| 263 | by (asm_full_simp_tac (simpset() addsimps [hypreal_add_mult_distrib2, | |
| 264 | hypreal_mult_commute ]) 1); | |
| 265 | qed "hypreal_mult_less_mono1"; | |
| 266 | ||
| 267 | Goal "[| (0::hypreal)<z; x<y |] ==> z*x<z*y"; | |
| 268 | by (asm_simp_tac (simpset() addsimps [hypreal_mult_commute,hypreal_mult_less_mono1]) 1); | |
| 269 | qed "hypreal_mult_less_mono2"; | |
| 270 | ||
| 271 | Goal "[| (0::hypreal)<=z; x<y |] ==> x*z<=y*z"; | |
| 272 | by (EVERY1 [rtac hypreal_less_or_eq_imp_le, dtac order_le_imp_less_or_eq]); | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 273 | by (auto_tac (claset() addIs [hypreal_mult_less_mono1], simpset())); | 
| 10751 | 274 | qed "hypreal_mult_le_less_mono1"; | 
| 275 | ||
| 276 | Goal "[| (0::hypreal)<=z; x<y |] ==> z*x<=z*y"; | |
| 277 | by (asm_simp_tac (simpset() addsimps [hypreal_mult_commute, | |
| 278 | hypreal_mult_le_less_mono1]) 1); | |
| 279 | qed "hypreal_mult_le_less_mono2"; | |
| 280 | ||
| 281 | val prem1::prem2::prem3::rest = goal thy | |
| 282 | "[| (0::hypreal)<y; x<r; y*r<t*s |] ==> y*x<t*s"; | |
| 283 | by (rtac ([[prem1,prem2] MRS hypreal_mult_less_mono2, prem3] | |
| 284 | MRS order_less_trans) 1); | |
| 285 | qed "hypreal_mult_less_trans"; | |
| 286 | ||
| 287 | Goal "[| 0<=y; x<r; y*r<t*s; (0::hypreal)<t*s|] ==> y*x<t*s"; | |
| 288 | by (dtac order_le_imp_less_or_eq 1); | |
| 289 | by (fast_tac (HOL_cs addEs [hypreal_mult_0_less RS iffD2, | |
| 290 | hypreal_mult_less_trans]) 1); | |
| 291 | qed "hypreal_mult_le_less_trans"; | |
| 292 | ||
| 293 | Goal "[| 0 <= y; x <= r; y*r < t*s; (0::hypreal) < t*s|] ==> y*x < t*s"; | |
| 294 | by (dres_inst_tac [("x","x")] order_le_imp_less_or_eq 1);
 | |
| 295 | by (fast_tac (claset() addIs [hypreal_mult_le_less_trans]) 1); | |
| 296 | qed "hypreal_mult_le_le_trans"; | |
| 297 | ||
| 298 | Goal "[| u<v; x<y; (0::hypreal) < v; 0 < x |] ==> u*x < v* y"; | |
| 299 | by (etac (hypreal_mult_less_mono1 RS order_less_trans) 1); | |
| 300 | by (assume_tac 1); | |
| 301 | by (etac hypreal_mult_less_mono2 1); | |
| 302 | by (assume_tac 1); | |
| 303 | qed "hypreal_mult_less_mono"; | |
| 304 | ||
| 305 | (*UNUSED at present but possibly more useful than hypreal_mult_less_mono*) | |
| 306 | Goal "[| x < y; r1 < r2; (0::hypreal) <= r1; 0 <= x|] ==> r1 * x < r2 * y"; | |
| 307 | by (subgoal_tac "0<r2" 1); | |
| 308 | by (blast_tac (claset() addIs [order_le_less_trans]) 2); | |
| 309 | by (case_tac "x=0" 1); | |
| 310 | by (auto_tac (claset() addSDs [order_le_imp_less_or_eq] | |
| 311 | addIs [hypreal_mult_less_mono, hypreal_mult_order], | |
| 312 | simpset())); | |
| 313 | qed "hypreal_mult_less_mono'"; | |
| 314 | ||
| 315 | Goal "0 < x ==> 0 < inverse (x::hypreal)"; | |
| 316 | by (EVERY1[rtac ccontr, dtac hypreal_leI]); | |
| 317 | by (forward_tac [hypreal_minus_zero_less_iff2 RS iffD2] 1); | |
| 318 | by (forward_tac [hypreal_not_refl2 RS not_sym] 1); | |
| 319 | by (dtac (hypreal_not_refl2 RS not_sym RS hypreal_inverse_not_zero) 1); | |
| 320 | by (EVERY1[dtac order_le_imp_less_or_eq, Step_tac]); | |
| 321 | by (dtac hypreal_mult_less_zero1 1 THEN assume_tac 1); | |
| 322 | by (auto_tac (claset() addIs [hypreal_zero_less_one RS hypreal_less_asym], | |
| 323 | simpset() addsimps [hypreal_minus_zero_less_iff])); | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 324 | qed "hypreal_inverse_gt_0"; | 
| 10751 | 325 | |
| 326 | Goal "x < 0 ==> inverse (x::hypreal) < 0"; | |
| 327 | by (ftac hypreal_not_refl2 1); | |
| 328 | by (dtac (hypreal_minus_zero_less_iff RS iffD2) 1); | |
| 329 | by (rtac (hypreal_minus_zero_less_iff RS iffD1) 1); | |
| 330 | by (stac (hypreal_minus_inverse RS sym) 1); | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 331 | by (auto_tac (claset() addIs [hypreal_inverse_gt_0], simpset())); | 
| 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 332 | qed "hypreal_inverse_less_0"; | 
| 10751 | 333 | |
| 334 | Goal "(x::hypreal)*x <= x*x + y*y"; | |
| 335 | by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
 | |
| 336 | by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
 | |
| 337 | by (auto_tac (claset(), | |
| 338 | simpset() addsimps [hypreal_mult,hypreal_add,hypreal_le])); | |
| 339 | qed "hypreal_self_le_add_pos"; | |
| 340 | Addsimps [hypreal_self_le_add_pos]; | |
| 341 | ||
| 342 | (*lcp: new lemma unfortunately needed...*) | |
| 343 | Goal "-(x*x) <= (y*y::real)"; | |
| 344 | by (rtac order_trans 1); | |
| 345 | by (rtac real_le_square 2); | |
| 346 | by Auto_tac; | |
| 347 | qed "minus_square_le_square"; | |
| 348 | ||
| 349 | Goal "(x::hypreal)*x <= x*x + y*y + z*z"; | |
| 350 | by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
 | |
| 351 | by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
 | |
| 352 | by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
 | |
| 353 | by (auto_tac (claset(), | |
| 354 | simpset() addsimps [hypreal_mult, hypreal_add, hypreal_le, | |
| 355 | minus_square_le_square])); | |
| 356 | qed "hypreal_self_le_add_pos2"; | |
| 357 | Addsimps [hypreal_self_le_add_pos2]; | |
| 358 | ||
| 359 | ||
| 360 | (*---------------------------------------------------------------------------- | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 361 | Existence of infinite hyperreal number | 
| 10751 | 362 | ----------------------------------------------------------------------------*) | 
| 363 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 364 | Goalw [omega_def] "Rep_hypreal(omega) : hypreal"; | 
| 10751 | 365 | by (rtac Rep_hypreal 1); | 
| 366 | qed "Rep_hypreal_omega"; | |
| 367 | ||
| 368 | (* existence of infinite number not corresponding to any real number *) | |
| 369 | (* use assumption that member FreeUltrafilterNat is not finite *) | |
| 370 | (* a few lemmas first *) | |
| 371 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 372 | Goal "{n::nat. x = real n} = {} | \
 | 
| 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 373 | \     (EX y. {n::nat. x = real n} = {y})";
 | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 374 | by (auto_tac (claset() addDs [inj_real_of_nat RS injD], simpset())); | 
| 10751 | 375 | qed "lemma_omega_empty_singleton_disj"; | 
| 376 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 377 | Goal "finite {n::nat. x = real n}";
 | 
| 10751 | 378 | by (cut_inst_tac [("x","x")] lemma_omega_empty_singleton_disj 1);
 | 
| 379 | by Auto_tac; | |
| 380 | qed "lemma_finite_omega_set"; | |
| 381 | ||
| 382 | Goalw [omega_def,hypreal_of_real_def] | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 383 | "~ (EX x. hypreal_of_real x = omega)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 384 | by (auto_tac (claset(), | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 385 | simpset() addsimps [real_of_nat_Suc, real_diff_eq_eq RS sym, | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 386 | lemma_finite_omega_set RS FreeUltrafilterNat_finite])); | 
| 10751 | 387 | qed "not_ex_hypreal_of_real_eq_omega"; | 
| 388 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 389 | Goal "hypreal_of_real x ~= omega"; | 
| 10751 | 390 | by (cut_facts_tac [not_ex_hypreal_of_real_eq_omega] 1); | 
| 391 | by Auto_tac; | |
| 392 | qed "hypreal_of_real_not_eq_omega"; | |
| 393 | ||
| 394 | (* existence of infinitesimal number also not *) | |
| 395 | (* corresponding to any real number *) | |
| 396 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 397 | Goal "inverse (real (x::nat)) = inverse (real y) ==> x = y"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 398 | by (rtac (inj_real_of_nat RS injD) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 399 | by (Asm_full_simp_tac 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 400 | qed "real_of_nat_inverse_inj"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 401 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 402 | Goal "{n::nat. x = inverse(real(Suc n))} = {} | \
 | 
| 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 403 | \     (EX y. {n::nat. x = inverse(real(Suc n))} = {y})";
 | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 404 | by (auto_tac (claset(), simpset() addsimps [inj_real_of_nat RS inj_eq])); | 
| 10751 | 405 | qed "lemma_epsilon_empty_singleton_disj"; | 
| 406 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 407 | Goal "finite {n. x = inverse(real(Suc n))}";
 | 
| 10751 | 408 | by (cut_inst_tac [("x","x")] lemma_epsilon_empty_singleton_disj 1);
 | 
| 409 | by Auto_tac; | |
| 410 | qed "lemma_finite_epsilon_set"; | |
| 411 | ||
| 412 | Goalw [epsilon_def,hypreal_of_real_def] | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 413 | "~ (EX x. hypreal_of_real x = epsilon)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 414 | by (auto_tac (claset(), | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 415 | simpset() addsimps [lemma_finite_epsilon_set RS FreeUltrafilterNat_finite])); | 
| 10751 | 416 | qed "not_ex_hypreal_of_real_eq_epsilon"; | 
| 417 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 418 | Goal "hypreal_of_real x ~= epsilon"; | 
| 10751 | 419 | by (cut_facts_tac [not_ex_hypreal_of_real_eq_epsilon] 1); | 
| 420 | by Auto_tac; | |
| 421 | qed "hypreal_of_real_not_eq_epsilon"; | |
| 422 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 423 | Goalw [epsilon_def,hypreal_zero_def] "epsilon ~= 0"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 424 | by Auto_tac; | 
| 10751 | 425 | by (auto_tac (claset(), | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 426 | simpset() addsimps [real_of_nat_Suc_gt_zero RS real_not_refl2 RS not_sym])); | 
| 10751 | 427 | qed "hypreal_epsilon_not_zero"; | 
| 428 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 429 | Goal "epsilon = inverse(omega)"; | 
| 10751 | 430 | by (asm_full_simp_tac (simpset() addsimps | 
| 431 | [hypreal_inverse, omega_def, epsilon_def]) 1); | |
| 432 | qed "hypreal_epsilon_inverse_omega"; | |
| 433 | ||
| 434 | ||
| 435 | (* this proof is so much simpler than one for reals!! *) | |
| 436 | Goal "[| 0 < r; r < x |] ==> inverse x < inverse (r::hypreal)"; | |
| 437 | by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
 | |
| 438 | by (res_inst_tac [("z","r")] eq_Abs_hypreal 1);
 | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 439 | by (auto_tac (claset(), | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 440 | simpset() addsimps [hypreal_inverse, hypreal_less,hypreal_zero_def])); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 441 | by (ultra_tac (claset() addIs [real_inverse_less_swap], simpset()) 1); | 
| 10751 | 442 | qed "hypreal_inverse_less_swap"; | 
| 443 | ||
| 444 | Goal "[| 0 < r; 0 < x|] ==> (r < x) = (inverse x < inverse (r::hypreal))"; | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10751diff
changeset | 445 | by (auto_tac (claset() addIs [hypreal_inverse_less_swap], simpset())); | 
| 10751 | 446 | by (res_inst_tac [("t","r")] (hypreal_inverse_inverse RS subst) 1);
 | 
| 447 | by (res_inst_tac [("t","x")] (hypreal_inverse_inverse RS subst) 1);
 | |
| 448 | by (rtac hypreal_inverse_less_swap 1); | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 449 | by (auto_tac (claset(), simpset() addsimps [hypreal_inverse_gt_0])); | 
| 10751 | 450 | qed "hypreal_inverse_less_iff"; | 
| 451 | ||
| 452 | Goal "[| 0 < z; x < y |] ==> x * inverse z < y * inverse (z::hypreal)"; | |
| 453 | by (blast_tac (claset() addSIs [hypreal_mult_less_mono1, | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 454 | hypreal_inverse_gt_0]) 1); | 
| 10751 | 455 | qed "hypreal_mult_inverse_less_mono1"; | 
| 456 | ||
| 457 | Goal "[| 0 < z; x < y |] ==> inverse z * x < inverse (z::hypreal) * y"; | |
| 458 | by (blast_tac (claset() addSIs [hypreal_mult_less_mono2, | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 459 | hypreal_inverse_gt_0]) 1); | 
| 10751 | 460 | qed "hypreal_mult_inverse_less_mono2"; | 
| 461 | ||
| 462 | Goal "[| (0::hypreal) < z; x*z < y*z |] ==> x < y"; | |
| 463 | by (forw_inst_tac [("x","x*z")] hypreal_mult_inverse_less_mono1 1);
 | |
| 464 | by (dtac (hypreal_not_refl2 RS not_sym) 2); | |
| 465 | by (auto_tac (claset() addSDs [hypreal_mult_inverse], | |
| 466 | simpset() addsimps hypreal_mult_ac)); | |
| 467 | qed "hypreal_less_mult_right_cancel"; | |
| 468 | ||
| 469 | Goal "[| (0::hypreal) < z; z*x < z*y |] ==> x < y"; | |
| 470 | by (auto_tac (claset() addIs [hypreal_less_mult_right_cancel], | |
| 471 | simpset() addsimps [hypreal_mult_commute])); | |
| 472 | qed "hypreal_less_mult_left_cancel"; | |
| 473 | ||
| 474 | Goal "[| 0 < r; (0::hypreal) < ra; r < x; ra < y |] ==> r*ra < x*y"; | |
| 475 | by (forw_inst_tac [("y","r")] order_less_trans 1);
 | |
| 476 | by (dres_inst_tac [("z","ra"),("x","r")] hypreal_mult_less_mono1 2);
 | |
| 477 | by (dres_inst_tac [("z","x"),("x","ra")] hypreal_mult_less_mono2 3);
 | |
| 478 | by (auto_tac (claset() addIs [order_less_trans], simpset())); | |
| 479 | qed "hypreal_mult_less_gt_zero"; | |
| 480 | ||
| 481 | Goal "[| 0 < r; (0::hypreal) < ra; r <= x; ra <= y |] ==> r*ra <= x*y"; | |
| 482 | by (REPEAT(dtac order_le_imp_less_or_eq 1)); | |
| 483 | by (rtac hypreal_less_or_eq_imp_le 1); | |
| 484 | by (auto_tac (claset() addIs [hypreal_mult_less_mono1, | |
| 485 | hypreal_mult_less_mono2,hypreal_mult_less_gt_zero], | |
| 486 | simpset())); | |
| 487 | qed "hypreal_mult_le_ge_zero"; | |
| 488 | ||
| 489 | (*---------------------------------------------------------------------------- | |
| 490 | Some convenient biconditionals for products of signs | |
| 491 | ----------------------------------------------------------------------------*) | |
| 492 | ||
| 493 | Goal "((0::hypreal) < x*y) = (0 < x & 0 < y | x < 0 & y < 0)"; | |
| 494 | by (auto_tac (claset(), | |
| 495 | simpset() addsimps [order_le_less, linorder_not_less, | |
| 496 | hypreal_mult_order, hypreal_mult_less_zero1])); | |
| 497 | by (ALLGOALS (rtac ccontr)); | |
| 498 | by (auto_tac (claset(), | |
| 499 | simpset() addsimps [order_le_less, linorder_not_less])); | |
| 500 | by (ALLGOALS (etac rev_mp)); | |
| 501 | by (ALLGOALS (dtac hypreal_mult_less_zero THEN' assume_tac)); | |
| 502 | by (auto_tac (claset() addDs [order_less_not_sym], | |
| 503 | simpset() addsimps [hypreal_mult_commute])); | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 504 | qed "hypreal_0_less_mult_iff"; | 
| 10751 | 505 | |
| 506 | Goal "((0::hypreal) <= x*y) = (0 <= x & 0 <= y | x <= 0 & y <= 0)"; | |
| 507 | by (auto_tac (claset() addDs [hypreal_mult_zero_disj], | |
| 508 | simpset() addsimps [order_le_less, linorder_not_less, | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 509 | hypreal_0_less_mult_iff])); | 
| 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 510 | qed "hypreal_0_le_mult_iff"; | 
| 10751 | 511 | |
| 512 | Goal "(x*y < (0::hypreal)) = (0 < x & y < 0 | x < 0 & 0 < y)"; | |
| 513 | by (auto_tac (claset(), | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 514 | simpset() addsimps [hypreal_0_le_mult_iff, | 
| 10751 | 515 | linorder_not_le RS sym])); | 
| 516 | by (auto_tac (claset() addDs [order_less_not_sym], | |
| 517 | simpset() addsimps [linorder_not_le])); | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 518 | qed "hypreal_mult_less_0_iff"; | 
| 10751 | 519 | |
| 520 | Goal "(x*y <= (0::hypreal)) = (0 <= x & y <= 0 | x <= 0 & 0 <= y)"; | |
| 521 | by (auto_tac (claset() addDs [order_less_not_sym], | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 522 | simpset() addsimps [hypreal_0_less_mult_iff, | 
| 10751 | 523 | linorder_not_less RS sym])); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 524 | qed "hypreal_mult_le_0_iff"; | 
| 10751 | 525 |