| 7998 |      1 | (*
 | 
|  |      2 |     Ring homomorphism
 | 
|  |      3 |     $Id$
 | 
|  |      4 |     Author: Clemens Ballarin, started 15 April 1997
 | 
|  |      5 | *)
 | 
|  |      6 | 
 | 
| 21423 |      7 | header {* Ring homomorphism *}
 | 
|  |      8 | 
 | 
| 27541 |      9 | theory RingHomo
 | 
|  |     10 | imports Ring2
 | 
|  |     11 | begin
 | 
| 7998 |     12 | 
 | 
| 21423 |     13 | definition
 | 
|  |     14 |   homo :: "('a::ring => 'b::ring) => bool" where
 | 
|  |     15 |   "homo f \<longleftrightarrow> (ALL a b. f (a + b) = f a + f b &
 | 
| 17479 |     16 |                                    f (a * b) = f a * f b) &
 | 
|  |     17 |                                    f 1 = 1"
 | 
| 7998 |     18 | 
 | 
| 21423 |     19 | 
 | 
|  |     20 | lemma homoI:
 | 
|  |     21 |   "!! f. [| !! a b. f (a + b) = f a + f b; !! a b. f (a * b) = f a * f b;  
 | 
|  |     22 |             f 1 = 1 |] ==> homo f"
 | 
|  |     23 |   unfolding homo_def by blast
 | 
|  |     24 | 
 | 
|  |     25 | lemma homo_add [simp]: "!! f. homo f ==> f (a + b) = f a + f b"
 | 
|  |     26 |   unfolding homo_def by blast
 | 
|  |     27 | 
 | 
|  |     28 | lemma homo_mult [simp]: "!! f. homo f ==> f (a * b) = f a * f b"
 | 
|  |     29 |   unfolding homo_def by blast
 | 
|  |     30 | 
 | 
|  |     31 | lemma homo_one [simp]: "!! f. homo f ==> f 1 = 1"
 | 
|  |     32 |   unfolding homo_def by blast
 | 
|  |     33 | 
 | 
|  |     34 | lemma homo_zero [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f 0 = 0"
 | 
|  |     35 |   apply (rule_tac a = "f 0" in a_lcancel)
 | 
|  |     36 |   apply (simp (no_asm_simp) add: homo_add [symmetric])
 | 
|  |     37 |   done
 | 
|  |     38 | 
 | 
|  |     39 | lemma homo_uminus [simp]:
 | 
|  |     40 |   "!! f::('a::ring=>'b::ring). homo f ==> f (-a) = - f a"
 | 
|  |     41 |   apply (rule_tac a = "f a" in a_lcancel)
 | 
|  |     42 |   apply (frule homo_zero)
 | 
|  |     43 |   apply (simp (no_asm_simp) add: homo_add [symmetric])
 | 
|  |     44 |   done
 | 
|  |     45 | 
 | 
|  |     46 | lemma homo_power [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f (a ^ n) = f a ^ n"
 | 
|  |     47 |   apply (induct_tac n)
 | 
|  |     48 |    apply (drule homo_one)
 | 
|  |     49 |    apply simp
 | 
|  |     50 |   apply (drule_tac a = "a^n" and b = "a" in homo_mult)
 | 
|  |     51 |   apply simp
 | 
|  |     52 |   done
 | 
|  |     53 | 
 | 
|  |     54 | lemma homo_SUM [simp]:
 | 
|  |     55 |   "!! f::('a::ring=>'b::ring).  
 | 
|  |     56 |     homo f ==> f (setsum g {..n::nat}) = setsum (f o g) {..n}"
 | 
|  |     57 |   apply (induct_tac n)
 | 
|  |     58 |    apply simp
 | 
|  |     59 |   apply simp
 | 
|  |     60 |   done
 | 
|  |     61 | 
 | 
|  |     62 | lemma id_homo [simp]: "homo (%x. x)"
 | 
|  |     63 |   by (blast intro!: homoI)
 | 
|  |     64 | 
 | 
| 7998 |     65 | end
 |