author | paulson |
Wed, 13 Jan 1999 12:08:18 +0100 | |
changeset 6113 | b321f5aaa5f4 |
parent 6092 | d9db67970c73 |
child 6214 | 0513cfd1a598 |
permissions | -rw-r--r-- |
1465 | 1 |
(* Title: HOL/HOL.ML |
923 | 2 |
ID: $Id$ |
1465 | 3 |
Author: Tobias Nipkow |
923 | 4 |
Copyright 1991 University of Cambridge |
5 |
||
6 |
Derived rules from Appendix of Mike Gordons HOL Report, Cambridge TR 68 |
|
7 |
*) |
|
8 |
||
9 |
||
10 |
(** Equality **) |
|
1660 | 11 |
section "="; |
923 | 12 |
|
13 |
qed_goal "sym" HOL.thy "s=t ==> t=s" |
|
14 |
(fn prems => [cut_facts_tac prems 1, etac subst 1, rtac refl 1]); |
|
15 |
||
16 |
(*calling "standard" reduces maxidx to 0*) |
|
17 |
bind_thm ("ssubst", (sym RS subst)); |
|
18 |
||
19 |
qed_goal "trans" HOL.thy "[| r=s; s=t |] ==> r=t" |
|
20 |
(fn prems => |
|
1465 | 21 |
[rtac subst 1, resolve_tac prems 1, resolve_tac prems 1]); |
923 | 22 |
|
5309
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
23 |
val prems = goal thy "(A == B) ==> A = B"; |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
24 |
by (rewrite_goals_tac prems); |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
25 |
by (rtac refl 1); |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
26 |
qed "def_imp_eq"; |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
27 |
|
923 | 28 |
(*Useful with eresolve_tac for proving equalties from known equalities. |
1465 | 29 |
a = b |
30 |
| | |
|
31 |
c = d *) |
|
923 | 32 |
qed_goal "box_equals" HOL.thy |
33 |
"[| a=b; a=c; b=d |] ==> c=d" |
|
34 |
(fn prems=> |
|
35 |
[ (rtac trans 1), |
|
36 |
(rtac trans 1), |
|
37 |
(rtac sym 1), |
|
38 |
(REPEAT (resolve_tac prems 1)) ]); |
|
39 |
||
1660 | 40 |
|
923 | 41 |
(** Congruence rules for meta-application **) |
1660 | 42 |
section "Congruence"; |
923 | 43 |
|
44 |
(*similar to AP_THM in Gordon's HOL*) |
|
45 |
qed_goal "fun_cong" HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)" |
|
46 |
(fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); |
|
47 |
||
48 |
(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) |
|
49 |
qed_goal "arg_cong" HOL.thy "x=y ==> f(x)=f(y)" |
|
50 |
(fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); |
|
51 |
||
52 |
qed_goal "cong" HOL.thy |
|
53 |
"[| f = g; (x::'a) = y |] ==> f(x) = g(y)" |
|
54 |
(fn [prem1,prem2] => |
|
55 |
[rtac (prem1 RS subst) 1, rtac (prem2 RS subst) 1, rtac refl 1]); |
|
56 |
||
1660 | 57 |
|
923 | 58 |
(** Equality of booleans -- iff **) |
1660 | 59 |
section "iff"; |
923 | 60 |
|
61 |
qed_goal "iffI" HOL.thy |
|
62 |
"[| P ==> Q; Q ==> P |] ==> P=Q" |
|
63 |
(fn prems=> [ (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1)) ]); |
|
64 |
||
65 |
qed_goal "iffD2" HOL.thy "[| P=Q; Q |] ==> P" |
|
66 |
(fn prems => |
|
1465 | 67 |
[rtac ssubst 1, resolve_tac prems 1, resolve_tac prems 1]); |
923 | 68 |
|
4467 | 69 |
qed_goal "rev_iffD2" HOL.thy "!!P. [| Q; P=Q |] ==> P" |
70 |
(fn _ => [etac iffD2 1, assume_tac 1]); |
|
71 |
||
72 |
bind_thm ("iffD1", sym RS iffD2); |
|
73 |
bind_thm ("rev_iffD1", sym RSN (2, rev_iffD2)); |
|
923 | 74 |
|
75 |
qed_goal "iffE" HOL.thy |
|
76 |
"[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R" |
|
77 |
(fn [p1,p2] => [REPEAT(ares_tac([p1 RS iffD2, p1 RS iffD1, p2, impI])1)]); |
|
78 |
||
1660 | 79 |
|
923 | 80 |
(** True **) |
1660 | 81 |
section "True"; |
923 | 82 |
|
83 |
qed_goalw "TrueI" HOL.thy [True_def] "True" |
|
84 |
(fn _ => [rtac refl 1]); |
|
85 |
||
4025 | 86 |
qed_goal "eqTrueI" HOL.thy "P ==> P=True" |
923 | 87 |
(fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]); |
88 |
||
89 |
qed_goal "eqTrueE" HOL.thy "P=True ==> P" |
|
90 |
(fn prems => [REPEAT(resolve_tac (prems@[TrueI,iffD2]) 1)]); |
|
91 |
||
1660 | 92 |
|
923 | 93 |
(** Universal quantifier **) |
1660 | 94 |
section "!"; |
923 | 95 |
|
96 |
qed_goalw "allI" HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)" |
|
97 |
(fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]); |
|
98 |
||
3842 | 99 |
qed_goalw "spec" HOL.thy [All_def] "! x::'a. P(x) ==> P(x)" |
923 | 100 |
(fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]); |
101 |
||
3842 | 102 |
qed_goal "allE" HOL.thy "[| !x. P(x); P(x) ==> R |] ==> R" |
923 | 103 |
(fn major::prems=> |
104 |
[ (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ]); |
|
105 |
||
106 |
qed_goal "all_dupE" HOL.thy |
|
3842 | 107 |
"[| ! x. P(x); [| P(x); ! x. P(x) |] ==> R |] ==> R" |
923 | 108 |
(fn prems => |
109 |
[ (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ]); |
|
110 |
||
111 |
||
112 |
(** False ** Depends upon spec; it is impossible to do propositional logic |
|
113 |
before quantifiers! **) |
|
1660 | 114 |
section "False"; |
923 | 115 |
|
116 |
qed_goalw "FalseE" HOL.thy [False_def] "False ==> P" |
|
117 |
(fn [major] => [rtac (major RS spec) 1]); |
|
118 |
||
119 |
qed_goal "False_neq_True" HOL.thy "False=True ==> P" |
|
120 |
(fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]); |
|
121 |
||
122 |
||
123 |
(** Negation **) |
|
1660 | 124 |
section "~"; |
923 | 125 |
|
126 |
qed_goalw "notI" HOL.thy [not_def] "(P ==> False) ==> ~P" |
|
127 |
(fn prems=> [rtac impI 1, eresolve_tac prems 1]); |
|
128 |
||
5760 | 129 |
qed_goal "False_not_True" HOL.thy "False ~= True" |
130 |
(K [rtac notI 1, etac False_neq_True 1]); |
|
131 |
||
132 |
qed_goal "True_not_False" HOL.thy "True ~= False" |
|
133 |
(K [rtac notI 1, dtac sym 1, etac False_neq_True 1]); |
|
134 |
||
923 | 135 |
qed_goalw "notE" HOL.thy [not_def] "[| ~P; P |] ==> R" |
136 |
(fn prems => [rtac (prems MRS mp RS FalseE) 1]); |
|
137 |
||
2442 | 138 |
bind_thm ("classical2", notE RS notI); |
139 |
||
1840 | 140 |
qed_goal "rev_notE" HOL.thy "!!P R. [| P; ~P |] ==> R" |
141 |
(fn _ => [REPEAT (ares_tac [notE] 1)]); |
|
142 |
||
1660 | 143 |
|
923 | 144 |
(** Implication **) |
1660 | 145 |
section "-->"; |
923 | 146 |
|
147 |
qed_goal "impE" HOL.thy "[| P-->Q; P; Q ==> R |] ==> R" |
|
148 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); |
|
149 |
||
150 |
(* Reduces Q to P-->Q, allowing substitution in P. *) |
|
151 |
qed_goal "rev_mp" HOL.thy "[| P; P --> Q |] ==> Q" |
|
152 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); |
|
153 |
||
154 |
qed_goal "contrapos" HOL.thy "[| ~Q; P==>Q |] ==> ~P" |
|
155 |
(fn [major,minor]=> |
|
156 |
[ (rtac (major RS notE RS notI) 1), |
|
157 |
(etac minor 1) ]); |
|
158 |
||
1334 | 159 |
qed_goal "rev_contrapos" HOL.thy "[| P==>Q; ~Q |] ==> ~P" |
160 |
(fn [major,minor]=> |
|
161 |
[ (rtac (minor RS contrapos) 1), (etac major 1) ]); |
|
162 |
||
923 | 163 |
(* ~(?t = ?s) ==> ~(?s = ?t) *) |
1334 | 164 |
bind_thm("not_sym", sym COMP rev_contrapos); |
923 | 165 |
|
166 |
||
167 |
(** Existential quantifier **) |
|
1660 | 168 |
section "?"; |
923 | 169 |
|
4527
4878fb3d0ac5
removed Eps_eq, ex1_Eps_eq, and some unnecessary parentheses
oheimb
parents:
4467
diff
changeset
|
170 |
qed_goalw "exI" HOL.thy [Ex_def] "P x ==> ? x::'a. P x" |
923 | 171 |
(fn prems => [rtac selectI 1, resolve_tac prems 1]); |
172 |
||
173 |
qed_goalw "exE" HOL.thy [Ex_def] |
|
3842 | 174 |
"[| ? x::'a. P(x); !!x. P(x) ==> Q |] ==> Q" |
923 | 175 |
(fn prems => [REPEAT(resolve_tac prems 1)]); |
176 |
||
177 |
||
178 |
(** Conjunction **) |
|
1660 | 179 |
section "&"; |
923 | 180 |
|
181 |
qed_goalw "conjI" HOL.thy [and_def] "[| P; Q |] ==> P&Q" |
|
182 |
(fn prems => |
|
183 |
[REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]); |
|
184 |
||
185 |
qed_goalw "conjunct1" HOL.thy [and_def] "[| P & Q |] ==> P" |
|
186 |
(fn prems => |
|
187 |
[resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]); |
|
188 |
||
189 |
qed_goalw "conjunct2" HOL.thy [and_def] "[| P & Q |] ==> Q" |
|
190 |
(fn prems => |
|
191 |
[resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]); |
|
192 |
||
193 |
qed_goal "conjE" HOL.thy "[| P&Q; [| P; Q |] ==> R |] ==> R" |
|
194 |
(fn prems => |
|
1465 | 195 |
[cut_facts_tac prems 1, resolve_tac prems 1, |
196 |
etac conjunct1 1, etac conjunct2 1]); |
|
923 | 197 |
|
1660 | 198 |
|
923 | 199 |
(** Disjunction *) |
1660 | 200 |
section "|"; |
923 | 201 |
|
202 |
qed_goalw "disjI1" HOL.thy [or_def] "P ==> P|Q" |
|
203 |
(fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); |
|
204 |
||
205 |
qed_goalw "disjI2" HOL.thy [or_def] "Q ==> P|Q" |
|
206 |
(fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); |
|
207 |
||
208 |
qed_goalw "disjE" HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R" |
|
209 |
(fn [a1,a2,a3] => |
|
1465 | 210 |
[rtac (mp RS mp) 1, rtac spec 1, rtac a1 1, |
211 |
rtac (a2 RS impI) 1, assume_tac 1, rtac (a3 RS impI) 1, assume_tac 1]); |
|
923 | 212 |
|
1660 | 213 |
|
923 | 214 |
(** CCONTR -- classical logic **) |
1660 | 215 |
section "classical logic"; |
923 | 216 |
|
217 |
qed_goalw "classical" HOL.thy [not_def] "(~P ==> P) ==> P" |
|
218 |
(fn [prem] => |
|
219 |
[rtac (True_or_False RS (disjE RS eqTrueE)) 1, assume_tac 1, |
|
220 |
rtac (impI RS prem RS eqTrueI) 1, |
|
221 |
etac subst 1, assume_tac 1]); |
|
222 |
||
223 |
val ccontr = FalseE RS classical; |
|
224 |
||
225 |
(*Double negation law*) |
|
226 |
qed_goal "notnotD" HOL.thy "~~P ==> P" |
|
227 |
(fn [major]=> |
|
228 |
[ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]); |
|
229 |
||
1660 | 230 |
qed_goal "contrapos2" HOL.thy "[| Q; ~ P ==> ~ Q |] ==> P" (fn [p1,p2] => [ |
2031 | 231 |
rtac classical 1, |
232 |
dtac p2 1, |
|
233 |
etac notE 1, |
|
234 |
rtac p1 1]); |
|
1660 | 235 |
|
236 |
qed_goal "swap2" HOL.thy "[| P; Q ==> ~ P |] ==> ~ Q" (fn [p1,p2] => [ |
|
2031 | 237 |
rtac notI 1, |
238 |
dtac p2 1, |
|
239 |
etac notE 1, |
|
240 |
rtac p1 1]); |
|
923 | 241 |
|
242 |
(** Unique existence **) |
|
1660 | 243 |
section "?!"; |
923 | 244 |
|
245 |
qed_goalw "ex1I" HOL.thy [Ex1_def] |
|
2031 | 246 |
"[| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)" |
923 | 247 |
(fn prems => |
248 |
[REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]); |
|
249 |
||
3003 | 250 |
(*Sometimes easier to use: the premises have no shared variables. Safe!*) |
251 |
qed_goal "ex_ex1I" HOL.thy |
|
3842 | 252 |
"[| ? x. P(x); !!x y. [| P(x); P(y) |] ==> x=y |] ==> ?! x. P(x)" |
3003 | 253 |
(fn [ex,eq] => [ (rtac (ex RS exE) 1), |
254 |
(REPEAT (ares_tac [ex1I,eq] 1)) ]); |
|
255 |
||
923 | 256 |
qed_goalw "ex1E" HOL.thy [Ex1_def] |
3842 | 257 |
"[| ?! x. P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R" |
923 | 258 |
(fn major::prems => |
259 |
[rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]); |
|
260 |
||
5185 | 261 |
Goal "?! x. P x ==> ? x. P x"; |
5228 | 262 |
by (etac ex1E 1); |
263 |
by (rtac exI 1); |
|
264 |
by (assume_tac 1); |
|
5185 | 265 |
qed "ex1_implies_ex"; |
266 |
||
923 | 267 |
|
268 |
(** Select: Hilbert's Epsilon-operator **) |
|
1660 | 269 |
section "@"; |
923 | 270 |
|
271 |
(*Easier to apply than selectI: conclusion has only one occurrence of P*) |
|
272 |
qed_goal "selectI2" HOL.thy |
|
4527
4878fb3d0ac5
removed Eps_eq, ex1_Eps_eq, and some unnecessary parentheses
oheimb
parents:
4467
diff
changeset
|
273 |
"[| P a; !!x. P x ==> Q x |] ==> Q (@x. P x)" |
923 | 274 |
(fn prems => [ resolve_tac prems 1, |
1465 | 275 |
rtac selectI 1, |
276 |
resolve_tac prems 1 ]); |
|
923 | 277 |
|
3646 | 278 |
(*Easier to apply than selectI2 if witness ?a comes from an EX-formula*) |
279 |
qed_goal "selectI2EX" HOL.thy |
|
4527
4878fb3d0ac5
removed Eps_eq, ex1_Eps_eq, and some unnecessary parentheses
oheimb
parents:
4467
diff
changeset
|
280 |
"[| ? a. P a; !!x. P x ==> Q x |] ==> Q (Eps P)" |
3646 | 281 |
(fn [major,minor] => [rtac (major RS exE) 1, etac selectI2 1, etac minor 1]); |
282 |
||
923 | 283 |
qed_goal "select_equality" HOL.thy |
4527
4878fb3d0ac5
removed Eps_eq, ex1_Eps_eq, and some unnecessary parentheses
oheimb
parents:
4467
diff
changeset
|
284 |
"[| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a" |
923 | 285 |
(fn prems => [ rtac selectI2 1, |
1465 | 286 |
REPEAT (ares_tac prems 1) ]); |
923 | 287 |
|
3646 | 288 |
qed_goalw "select1_equality" HOL.thy [Ex1_def] |
4527
4878fb3d0ac5
removed Eps_eq, ex1_Eps_eq, and some unnecessary parentheses
oheimb
parents:
4467
diff
changeset
|
289 |
"!!P. [| ?!x. P x; P a |] ==> (@x. P x) = a" (K [ |
4131 | 290 |
rtac select_equality 1, atac 1, |
3646 | 291 |
etac exE 1, etac conjE 1, |
292 |
rtac allE 1, atac 1, |
|
293 |
etac impE 1, atac 1, etac ssubst 1, |
|
294 |
etac allE 1, etac impE 1, atac 1, etac ssubst 1, |
|
295 |
rtac refl 1]); |
|
3436
d68dbb8f22d3
Tuned wf_iff_no_infinite_down_chain proof, based on Konrads ideas.
nipkow
parents:
3003
diff
changeset
|
296 |
|
4131 | 297 |
qed_goal "select_eq_Ex" HOL.thy "P (@ x. P x) = (? x. P x)" (K [ |
1660 | 298 |
rtac iffI 1, |
299 |
etac exI 1, |
|
300 |
etac exE 1, |
|
301 |
etac selectI 1]); |
|
302 |
||
5447
df03d330aeab
Proved and added rewrite rule (@x. x=y) = y to simpset.
nipkow
parents:
5346
diff
changeset
|
303 |
qed_goal "Eps_eq" HOL.thy "(@y. y=x) = x" (K [ |
df03d330aeab
Proved and added rewrite rule (@x. x=y) = y to simpset.
nipkow
parents:
5346
diff
changeset
|
304 |
rtac select_equality 1, |
df03d330aeab
Proved and added rewrite rule (@x. x=y) = y to simpset.
nipkow
parents:
5346
diff
changeset
|
305 |
rtac refl 1, |
df03d330aeab
Proved and added rewrite rule (@x. x=y) = y to simpset.
nipkow
parents:
5346
diff
changeset
|
306 |
atac 1]); |
df03d330aeab
Proved and added rewrite rule (@x. x=y) = y to simpset.
nipkow
parents:
5346
diff
changeset
|
307 |
|
df03d330aeab
Proved and added rewrite rule (@x. x=y) = y to simpset.
nipkow
parents:
5346
diff
changeset
|
308 |
qed_goal "Eps_sym_eq" HOL.thy "(Eps (op = x)) = x" (K [ |
5299 | 309 |
rtac select_equality 1, |
310 |
rtac refl 1, |
|
311 |
etac sym 1]); |
|
923 | 312 |
|
313 |
(** Classical intro rules for disjunction and existential quantifiers *) |
|
1660 | 314 |
section "classical intro rules"; |
923 | 315 |
|
316 |
qed_goal "disjCI" HOL.thy "(~Q ==> P) ==> P|Q" |
|
317 |
(fn prems=> |
|
318 |
[ (rtac classical 1), |
|
319 |
(REPEAT (ares_tac (prems@[disjI1,notI]) 1)), |
|
320 |
(REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]); |
|
321 |
||
322 |
qed_goal "excluded_middle" HOL.thy "~P | P" |
|
323 |
(fn _ => [ (REPEAT (ares_tac [disjCI] 1)) ]); |
|
324 |
||
325 |
(*For disjunctive case analysis*) |
|
326 |
fun excluded_middle_tac sP = |
|
327 |
res_inst_tac [("Q",sP)] (excluded_middle RS disjE); |
|
328 |
||
329 |
(*Classical implies (-->) elimination. *) |
|
330 |
qed_goal "impCE" HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R" |
|
331 |
(fn major::prems=> |
|
332 |
[ rtac (excluded_middle RS disjE) 1, |
|
333 |
REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1))]); |
|
334 |
||
4302 | 335 |
(*This version of --> elimination works on Q before P. It works best for |
336 |
those cases in which P holds "almost everywhere". Can't install as |
|
337 |
default: would break old proofs.*) |
|
338 |
qed_goal "impCE'" thy |
|
339 |
"[| P-->Q; Q ==> R; ~P ==> R |] ==> R" |
|
340 |
(fn major::prems=> |
|
341 |
[ (resolve_tac [excluded_middle RS disjE] 1), |
|
342 |
(DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]); |
|
343 |
||
923 | 344 |
(*Classical <-> elimination. *) |
345 |
qed_goal "iffCE" HOL.thy |
|
346 |
"[| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R" |
|
347 |
(fn major::prems => |
|
348 |
[ (rtac (major RS iffE) 1), |
|
349 |
(REPEAT (DEPTH_SOLVE_1 |
|
1465 | 350 |
(eresolve_tac ([asm_rl,impCE,notE]@prems) 1))) ]); |
923 | 351 |
|
3842 | 352 |
qed_goal "exCI" HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x. P(x)" |
923 | 353 |
(fn prems=> |
354 |
[ (rtac ccontr 1), |
|
355 |
(REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1)) ]); |
|
356 |
||
357 |
||
358 |
(* case distinction *) |
|
359 |
||
360 |
qed_goal "case_split_thm" HOL.thy "[| P ==> Q; ~P ==> Q |] ==> Q" |
|
5154 | 361 |
(fn [p1,p2] => [rtac (excluded_middle RS disjE) 1, |
923 | 362 |
etac p2 1, etac p1 1]); |
363 |
||
364 |
fun case_tac a = res_inst_tac [("P",a)] case_split_thm; |
|
365 |
||
1660 | 366 |
|
923 | 367 |
(** Standard abbreviations **) |
368 |
||
5309
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
369 |
(*Apply an equality or definition ONCE. |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
370 |
Fails unless the substitution has an effect*) |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
371 |
fun stac th = |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
372 |
let val th' = th RS def_imp_eq handle _ => th |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
373 |
in CHANGED_GOAL (rtac (th' RS ssubst)) |
01c2b317da88
stac now handles definitions as well as equalities
paulson
parents:
5299
diff
changeset
|
374 |
end; |
5139
013ea0f023e3
stac now uses CHANGED_GOAL and correctly fails when it has no useful effect,
paulson
parents:
4527
diff
changeset
|
375 |
|
923 | 376 |
fun strip_tac i = REPEAT(resolve_tac [impI,allI] i); |
1338 | 377 |
|
2562
d571d6660240
Moved qed_spec_mp, etc., from HOL.ML to thy_data.ML so that they work
paulson
parents:
2442
diff
changeset
|
378 |
|
d571d6660240
Moved qed_spec_mp, etc., from HOL.ML to thy_data.ML so that they work
paulson
parents:
2442
diff
changeset
|
379 |
(** strip ! and --> from proved goal while preserving !-bound var names **) |
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
380 |
|
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
381 |
local |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
382 |
|
1515 | 383 |
(* Use XXX to avoid forall_intr failing because of duplicate variable name *) |
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
384 |
val myspec = read_instantiate [("P","?XXX")] spec; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
385 |
val _ $ (_ $ (vx as Var(_,vxT))) = concl_of myspec; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
386 |
val cvx = cterm_of (#sign(rep_thm myspec)) vx; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
387 |
val aspec = forall_intr cvx myspec; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
388 |
|
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
389 |
in |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
390 |
|
1515 | 391 |
fun RSspec th = |
392 |
(case concl_of th of |
|
393 |
_ $ (Const("All",_) $ Abs(a,_,_)) => |
|
394 |
let val ca = cterm_of (#sign(rep_thm th)) (Var((a,0),vxT)) |
|
395 |
in th RS forall_elim ca aspec end |
|
396 |
| _ => raise THM("RSspec",0,[th])); |
|
397 |
||
398 |
fun RSmp th = |
|
399 |
(case concl_of th of |
|
400 |
_ $ (Const("op -->",_)$_$_) => th RS mp |
|
401 |
| _ => raise THM("RSmp",0,[th])); |
|
402 |
||
403 |
fun normalize_thm funs = |
|
5346
bc9748ad8491
Now qed_spec_mp respects locales, by calling ml_store_thm
paulson
parents:
5309
diff
changeset
|
404 |
let fun trans [] th = th |
bc9748ad8491
Now qed_spec_mp respects locales, by calling ml_store_thm
paulson
parents:
5309
diff
changeset
|
405 |
| trans (f::fs) th = (trans funs (f th)) handle THM _ => trans fs th |
bc9748ad8491
Now qed_spec_mp respects locales, by calling ml_store_thm
paulson
parents:
5309
diff
changeset
|
406 |
in zero_var_indexes o trans funs end; |
1515 | 407 |
|
3615
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
408 |
fun qed_spec_mp name = |
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
409 |
let val thm = normalize_thm [RSspec,RSmp] (result()) |
5346
bc9748ad8491
Now qed_spec_mp respects locales, by calling ml_store_thm
paulson
parents:
5309
diff
changeset
|
410 |
in ml_store_thm(name, thm) end; |
3615
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
411 |
|
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
412 |
fun qed_goal_spec_mp name thy s p = |
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
413 |
bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goal thy s p)); |
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
414 |
|
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
415 |
fun qed_goalw_spec_mp name thy defs s p = |
e5322197cfea
Moved some functions which used to be part of thy_data.ML
berghofe
parents:
3436
diff
changeset
|
416 |
bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goalw thy defs s p)); |
1660 | 417 |
|
3621 | 418 |
end; |
5888 | 419 |
|
420 |
||
421 |
(* attributes *) |
|
422 |
||
423 |
local |
|
424 |
||
6092 | 425 |
fun gen_rulify x = Attrib.no_args (Drule.rule_attribute (K (normalize_thm [RSspec, RSmp]))) x; |
5888 | 426 |
|
427 |
in |
|
428 |
||
429 |
val attrib_setup = |
|
430 |
[Attrib.add_attributes |
|
431 |
[("rulify", (gen_rulify, gen_rulify), "put theorem into standard rule form")]]; |
|
432 |
||
433 |
end; |