| author | wenzelm | 
| Sat, 28 Mar 2020 13:40:55 +0100 | |
| changeset 71606 | b3b0d87edd20 | 
| parent 71192 | a8ccea88b725 | 
| child 75078 | ec86cb2418e1 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Lebesgue_Measure.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 4 | Author: Jeremy Avigad | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 5 | Author: Luke Serafin | 
| 42067 | 6 | *) | 
| 7 | ||
| 69517 | 8 | section \<open>Lebesgue Measure\<close> | 
| 42067 | 9 | |
| 38656 | 10 | theory Lebesgue_Measure | 
| 69517 | 11 | imports | 
| 12 | Finite_Product_Measure | |
| 13 | Caratheodory | |
| 14 | Complete_Measure | |
| 15 | Summation_Tests | |
| 16 | Regularity | |
| 38656 | 17 | begin | 
| 18 | ||
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 19 | lemma measure_eqI_lessThan: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 20 | fixes M N :: "real measure" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 21 | assumes sets: "sets M = sets borel" "sets N = sets borel" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 22 |   assumes fin: "\<And>x. emeasure M {x <..} < \<infinity>"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 23 |   assumes "\<And>x. emeasure M {x <..} = emeasure N {x <..}"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 24 | shows "M = N" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 25 | proof (rule measure_eqI_generator_eq_countable) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 26 |   let ?LT = "\<lambda>a::real. {a <..}" let ?E = "range ?LT"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 27 | show "Int_stable ?E" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 28 | by (auto simp: Int_stable_def lessThan_Int_lessThan) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 29 | |
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 30 | show "?E \<subseteq> Pow UNIV" "sets M = sigma_sets UNIV ?E" "sets N = sigma_sets UNIV ?E" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 31 | unfolding sets borel_Ioi by auto | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 32 | |
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 33 | show "?LT`Rats \<subseteq> ?E" "(\<Union>i\<in>Rats. ?LT i) = UNIV" "\<And>a. a \<in> ?LT`Rats \<Longrightarrow> emeasure M a \<noteq> \<infinity>" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 34 | using fin by (auto intro: Rats_no_bot_less simp: less_top) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 35 | qed (auto intro: assms countable_rat) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 36 | |
| 69447 | 37 | subsection \<open>Measures defined by monotonous functions\<close> | 
| 38 | ||
| 39 | text \<open> | |
| 40 | Every right-continuous and nondecreasing function gives rise to a measure on the reals: | |
| 41 | \<close> | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 42 | |
| 70136 | 43 | definition\<^marker>\<open>tag important\<close> interval_measure :: "(real \<Rightarrow> real) \<Rightarrow> real measure" where | 
| 69447 | 44 | "interval_measure F = | 
| 45 |      extend_measure UNIV {(a, b). a \<le> b} (\<lambda>(a, b). {a<..b}) (\<lambda>(a, b). ennreal (F b - F a))"
 | |
| 49777 | 46 | |
| 70136 | 47 | lemma\<^marker>\<open>tag important\<close> emeasure_interval_measure_Ioc: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 48 | assumes "a \<le> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 49 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 50 | assumes right_cont_F : "\<And>a. continuous (at_right a) F" | 
| 69447 | 51 |   shows "emeasure (interval_measure F) {a<..b} = F b - F a"
 | 
| 70136 | 52 | proof (rule extend_measure_caratheodory_pair[OF interval_measure_def \<open>a \<le> b\<close>]) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 53 |   show "semiring_of_sets UNIV {{a<..b} |a b :: real. a \<le> b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 54 | proof (unfold_locales, safe) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 55 | fix a b c d :: real assume *: "a \<le> b" "c \<le> d" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 56 |     then show "\<exists>C\<subseteq>{{a<..b} |a b. a \<le> b}. finite C \<and> disjoint C \<and> {a<..b} - {c<..d} = \<Union>C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 57 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 58 |       let ?C = "{{a<..b}}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 59 | assume "b < c \<or> d \<le> a \<or> d \<le> c" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 60 |       with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 61 | by (auto simp add: disjoint_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 62 | thus ?thesis .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 63 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 64 |       let ?C = "{{a<..c}, {d<..b}}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 65 | assume "\<not> (b < c \<or> d \<le> a \<or> d \<le> c)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 66 |       with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 67 | by (auto simp add: disjoint_def Ioc_inj) (metis linear)+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 68 | thus ?thesis .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 69 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 70 | qed (auto simp: Ioc_inj, metis linear) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 71 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 72 | fix l r :: "nat \<Rightarrow> real" and a b :: real | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 73 |   assume l_r[simp]: "\<And>n. l n \<le> r n" and "a \<le> b" and disj: "disjoint_family (\<lambda>n. {l n<..r n})"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 74 |   assume lr_eq_ab: "(\<Union>i. {l i<..r i}) = {a<..b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 75 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 76 | have [intro, simp]: "\<And>a b. a \<le> b \<Longrightarrow> F a \<le> F b" | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 77 | by (auto intro!: l_r mono_F) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 78 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 79 |   { fix S :: "nat set" assume "finite S"
 | 
| 61808 | 80 | moreover note \<open>a \<le> b\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 81 |     moreover have "\<And>i. i \<in> S \<Longrightarrow> {l i <.. r i} \<subseteq> {a <.. b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 82 | unfolding lr_eq_ab[symmetric] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 83 | ultimately have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<le> F b - F a" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 84 | proof (induction S arbitrary: a rule: finite_psubset_induct) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 85 | case (psubset S) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 86 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 87 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 88 | assume "\<exists>i\<in>S. l i < r i" | 
| 61808 | 89 |         with \<open>finite S\<close> have "Min (l ` {i\<in>S. l i < r i}) \<in> l ` {i\<in>S. l i < r i}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 90 | by (intro Min_in) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 91 |         then obtain m where m: "m \<in> S" "l m < r m" "l m = Min (l ` {i\<in>S. l i < r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 92 | by fastforce | 
| 50104 | 93 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 94 |         have "(\<Sum>i\<in>S. F (r i) - F (l i)) = (F (r m) - F (l m)) + (\<Sum>i\<in>S - {m}. F (r i) - F (l i))"
 | 
| 64267 | 95 | using m psubset by (intro sum.remove) auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 96 |         also have "(\<Sum>i\<in>S - {m}. F (r i) - F (l i)) \<le> F b - F (r m)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 97 | proof (intro psubset.IH) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 98 |           show "S - {m} \<subset> S"
 | 
| 61808 | 99 | using \<open>m\<in>S\<close> by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 100 | show "r m \<le> b" | 
| 61808 | 101 | using psubset.prems(2)[OF \<open>m\<in>S\<close>] \<open>l m < r m\<close> by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 102 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 103 |           fix i assume "i \<in> S - {m}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 104 | then have i: "i \<in> S" "i \<noteq> m" by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 105 |           { assume i': "l i < r i" "l i < r m"
 | 
| 63540 | 106 | with \<open>finite S\<close> i m have "l m \<le> l i" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 107 | by auto | 
| 63540 | 108 |             with i' have "{l i <.. r i} \<inter> {l m <.. r m} \<noteq> {}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 109 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 110 | then have False | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 111 | using disjoint_family_onD[OF disj, of i m] i by auto } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 112 | then have "l i \<noteq> r i \<Longrightarrow> r m \<le> l i" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 113 | unfolding not_less[symmetric] using l_r[of i] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 114 |           then show "{l i <.. r i} \<subseteq> {r m <.. b}"
 | 
| 61808 | 115 | using psubset.prems(2)[OF \<open>i\<in>S\<close>] by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 116 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 117 | also have "F (r m) - F (l m) \<le> F (r m) - F a" | 
| 61808 | 118 | using psubset.prems(2)[OF \<open>m \<in> S\<close>] \<open>l m < r m\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 119 | by (auto simp add: Ioc_subset_iff intro!: mono_F) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 120 | finally show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 121 | by (auto intro: add_mono) | 
| 61808 | 122 | qed (auto simp add: \<open>a \<le> b\<close> less_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 123 | qed } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 124 | note claim1 = this | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 125 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 126 | (* second key induction: a lower bound on the measures of any finite collection of Ai's | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 127 |      that cover an interval {u..v} *)
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 128 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 129 |   { fix S u v and l r :: "nat \<Rightarrow> real"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 130 |     assume "finite S" "\<And>i. i\<in>S \<Longrightarrow> l i < r i" "{u..v} \<subseteq> (\<Union>i\<in>S. {l i<..< r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 131 | then have "F v - F u \<le> (\<Sum>i\<in>S. F (r i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 132 | proof (induction arbitrary: v u rule: finite_psubset_induct) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 133 | case (psubset S) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 134 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 135 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 136 |         assume "S = {}" then show ?case
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 137 | using psubset by (simp add: mono_F) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 138 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 139 |         assume "S \<noteq> {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 140 | then obtain j where "j \<in> S" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 141 | by auto | 
| 47694 | 142 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 143 |         let ?R = "r j < u \<or> l j > v \<or> (\<exists>i\<in>S-{j}. l i \<le> l j \<and> r j \<le> r i)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 144 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 145 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 146 | assume "?R" | 
| 61808 | 147 |           with \<open>j \<in> S\<close> psubset.prems have "{u..v} \<subseteq> (\<Union>i\<in>S-{j}. {l i<..< r i})"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 148 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 149 | apply (metis Diff_iff less_le_trans leD linear singletonD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 150 | apply (metis Diff_iff less_le_trans leD linear singletonD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 151 | apply (metis order_trans less_le_not_le linear) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 152 | done | 
| 61808 | 153 |           with \<open>j \<in> S\<close> have "F v - F u \<le> (\<Sum>i\<in>S - {j}. F (r i) - F (l i))"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 154 | by (intro psubset) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 155 | also have "\<dots> \<le> (\<Sum>i\<in>S. F (r i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 156 | using psubset.prems | 
| 64267 | 157 | by (intro sum_mono2 psubset) (auto intro: less_imp_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 158 | finally show ?thesis . | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 159 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 160 | assume "\<not> ?R" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 161 |           then have j: "u \<le> r j" "l j \<le> v" "\<And>i. i \<in> S - {j} \<Longrightarrow> r i < r j \<or> l i > l j"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 162 | by (auto simp: not_less) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 163 |           let ?S1 = "{i \<in> S. l i < l j}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 164 |           let ?S2 = "{i \<in> S. r i > r j}"
 | 
| 40859 | 165 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 166 |           have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<ge> (\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i))"
 | 
| 61808 | 167 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 64267 | 168 | by (intro sum_mono2) (auto intro: less_imp_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 169 |           also have "(\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i)) =
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 170 | (\<Sum>i\<in>?S1. F (r i) - F (l i)) + (\<Sum>i\<in>?S2 . F (r i) - F (l i)) + (F (r j) - F (l j))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 171 | using psubset(1) psubset.prems(1) j | 
| 64267 | 172 | apply (subst sum.union_disjoint) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 173 | apply simp_all | 
| 64267 | 174 | apply (subst sum.union_disjoint) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 175 | apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 176 | apply (metis less_le_not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 177 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 178 | also (xtrans) have "(\<Sum>i\<in>?S1. F (r i) - F (l i)) \<ge> F (l j) - F u" | 
| 61808 | 179 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 180 | apply (intro psubset.IH psubset) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 181 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 182 | apply (metis less_le_trans not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 183 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 184 | also (xtrans) have "(\<Sum>i\<in>?S2. F (r i) - F (l i)) \<ge> F v - F (r j)" | 
| 61808 | 185 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 186 | apply (intro psubset.IH psubset) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 187 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 188 | apply (metis le_less_trans not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 189 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 190 | finally (xtrans) show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 191 | by (auto simp: add_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 192 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 193 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 194 | qed } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 195 | note claim2 = this | 
| 49777 | 196 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 197 | (* now prove the inequality going the other way *) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 198 | have "ennreal (F b - F a) \<le> (\<Sum>i. ennreal (F (r i) - F (l i)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 199 | proof (rule ennreal_le_epsilon) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 200 | fix epsilon :: real assume egt0: "epsilon > 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 201 | have "\<forall>i. \<exists>d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 202 | proof | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 203 | fix i | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 204 | note right_cont_F [of "r i"] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 205 | thus "\<exists>d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 206 | apply - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 207 | apply (subst (asm) continuous_at_right_real_increasing) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 208 | apply (rule mono_F, assumption) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 209 | apply (drule_tac x = "epsilon / 2 ^ (i + 2)" in spec) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 210 | apply (erule impE) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 211 | using egt0 by (auto simp add: field_simps) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 212 | qed | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 213 | then obtain delta where | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 214 | deltai_gt0: "\<And>i. delta i > 0" and | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 215 | deltai_prop: "\<And>i. F (r i + delta i) < F (r i) + epsilon / 2^(i+2)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 216 | by metis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 217 | have "\<exists>a' > a. F a' - F a < epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 218 | apply (insert right_cont_F [of a]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 219 | apply (subst (asm) continuous_at_right_real_increasing) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 220 | using mono_F apply force | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 221 | apply (drule_tac x = "epsilon / 2" in spec) | 
| 59554 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
59425diff
changeset | 222 | using egt0 unfolding mult.commute [of 2] by force | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 223 | then obtain a' where a'lea [arith]: "a' > a" and | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 224 | a_prop: "F a' - F a < epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 225 | by auto | 
| 63040 | 226 |     define S' where "S' = {i. l i < r i}"
 | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 227 | obtain S :: "nat set" where | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 228 | "S \<subseteq> S'" and finS: "finite S" and | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 229 |       Sprop: "{a'..b} \<subseteq> (\<Union>i \<in> S. {l i<..<r i + delta i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 230 | proof (rule compactE_image) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 231 |       show "compact {a'..b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 232 | by (rule compact_Icc) | 
| 65585 
a043de9ad41e
Some fixes related to compactE_image
 paulson <lp15@cam.ac.uk> parents: 
65204diff
changeset | 233 |       show "\<And>i. i \<in> S' \<Longrightarrow> open ({l i<..<r i + delta i})" by auto
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 234 |       have "{a'..b} \<subseteq> {a <.. b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 235 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 236 |       also have "{a <.. b} = (\<Union>i\<in>S'. {l i<..r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 237 | unfolding lr_eq_ab[symmetric] by (fastforce simp add: S'_def intro: less_le_trans) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 238 |       also have "\<dots> \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 239 | apply (intro UN_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 240 | apply (auto simp: S'_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 241 | apply (cut_tac i=i in deltai_gt0) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 242 | apply simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 243 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 244 |       finally show "{a'..b} \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})" .
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 245 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 246 | with S'_def have Sprop2: "\<And>i. i \<in> S \<Longrightarrow> l i < r i" by auto | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 247 | from finS have "\<exists>n. \<forall>i \<in> S. i \<le> n" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 248 | by (subst finite_nat_set_iff_bounded_le [symmetric]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 249 | then obtain n where Sbound [rule_format]: "\<forall>i \<in> S. i \<le> n" .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 250 | have "F b - F a' \<le> (\<Sum>i\<in>S. F (r i + delta i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 251 | apply (rule claim2 [rule_format]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 252 | using finS Sprop apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 253 | apply (frule Sprop2) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 254 | apply (subgoal_tac "delta i > 0") | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 255 | apply arith | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 256 | by (rule deltai_gt0) | 
| 61954 | 257 | also have "... \<le> (\<Sum>i \<in> S. F(r i) - F(l i) + epsilon / 2^(i+2))" | 
| 64267 | 258 | apply (rule sum_mono) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 259 | apply simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 260 | apply (rule order_trans) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 261 | apply (rule less_imp_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 262 | apply (rule deltai_prop) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 263 | by auto | 
| 61954 | 264 | also have "... = (\<Sum>i \<in> S. F(r i) - F(l i)) + | 
| 265 | (epsilon / 4) * (\<Sum>i \<in> S. (1 / 2)^i)" (is "_ = ?t + _") | |
| 64267 | 266 | by (subst sum.distrib) (simp add: field_simps sum_distrib_left) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 267 | also have "... \<le> ?t + (epsilon / 4) * (\<Sum> i < Suc n. (1 / 2)^i)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 268 | apply (rule add_left_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 269 | apply (rule mult_left_mono) | 
| 64267 | 270 | apply (rule sum_mono2) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 271 | using egt0 apply auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 272 | by (frule Sbound, auto) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 273 | also have "... \<le> ?t + (epsilon / 2)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 274 | apply (rule add_left_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 275 | apply (subst geometric_sum) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 276 | apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 277 | apply (rule mult_left_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 278 | using egt0 apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 279 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 280 | finally have aux2: "F b - F a' \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 281 | by simp | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50418diff
changeset | 282 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 283 | have "F b - F a = (F b - F a') + (F a' - F a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 284 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 285 | also have "... \<le> (F b - F a') + epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 286 | using a_prop by (intro add_left_mono) simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 287 | also have "... \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2 + epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 288 | apply (intro add_right_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 289 | apply (rule aux2) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 290 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 291 | also have "... = (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 292 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 293 | also have "... \<le> (\<Sum>i\<le>n. F (r i) - F (l i)) + epsilon" | 
| 65680 
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
 paulson <lp15@cam.ac.uk> parents: 
65585diff
changeset | 294 | using finS Sbound Sprop by (auto intro!: add_right_mono sum_mono2) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 295 | finally have "ennreal (F b - F a) \<le> (\<Sum>i\<le>n. ennreal (F (r i) - F (l i))) + epsilon" | 
| 68403 | 296 | using egt0 by (simp add: sum_nonneg flip: ennreal_plus) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 297 | then show "ennreal (F b - F a) \<le> (\<Sum>i. ennreal (F (r i) - F (l i))) + (epsilon :: real)" | 
| 64267 | 298 | by (rule order_trans) (auto intro!: add_mono sum_le_suminf simp del: sum_ennreal) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 299 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 300 | moreover have "(\<Sum>i. ennreal (F (r i) - F (l i))) \<le> ennreal (F b - F a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 301 | using \<open>a \<le> b\<close> by (auto intro!: suminf_le_const ennreal_le_iff[THEN iffD2] claim1) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 302 | ultimately show "(\<Sum>n. ennreal (F (r n) - F (l n))) = ennreal (F b - F a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 303 | by (rule antisym[rotated]) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 304 | qed (auto simp: Ioc_inj mono_F) | 
| 38656 | 305 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 306 | lemma measure_interval_measure_Ioc: | 
| 70271 | 307 | assumes "a \<le> b" and "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" and "\<And>a. continuous (at_right a) F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 308 |   shows "measure (interval_measure F) {a <.. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 309 | unfolding measure_def | 
| 70271 | 310 | by (simp add: assms emeasure_interval_measure_Ioc) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 311 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 312 | lemma emeasure_interval_measure_Ioc_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 313 | "(\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y) \<Longrightarrow> (\<And>a. continuous (at_right a) F) \<Longrightarrow> | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 314 |     emeasure (interval_measure F) {a <.. b} = (if a \<le> b then F b - F a else 0)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 315 | using emeasure_interval_measure_Ioc[of a b F] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 316 | |
| 70136 | 317 | lemma\<^marker>\<open>tag important\<close> sets_interval_measure [simp, measurable_cong]: | 
| 69447 | 318 | "sets (interval_measure F) = sets borel" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 319 | apply (simp add: sets_extend_measure interval_measure_def borel_sigma_sets_Ioc) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 320 | apply (rule sigma_sets_eqI) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 321 | apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 322 | apply (case_tac "a \<le> ba") | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 323 | apply (auto intro: sigma_sets.Empty) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 324 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 325 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 326 | lemma space_interval_measure [simp]: "space (interval_measure F) = UNIV" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 327 | by (simp add: interval_measure_def space_extend_measure) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 328 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 329 | lemma emeasure_interval_measure_Icc: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 330 | assumes "a \<le> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 331 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 332 | assumes cont_F : "continuous_on UNIV F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 333 |   shows "emeasure (interval_measure F) {a .. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 334 | proof (rule tendsto_unique) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 335 |   { fix a b :: real assume "a \<le> b" then have "emeasure (interval_measure F) {a <.. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 336 | using cont_F | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 337 | by (subst emeasure_interval_measure_Ioc) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 338 | (auto intro: mono_F continuous_within_subset simp: continuous_on_eq_continuous_within) } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 339 | note * = this | 
| 38656 | 340 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 341 | let ?F = "interval_measure F" | 
| 61973 | 342 |   show "((\<lambda>a. F b - F a) \<longlongrightarrow> emeasure ?F {a..b}) (at_left a)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 343 | proof (rule tendsto_at_left_sequentially) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 344 | show "a - 1 < a" by simp | 
| 61969 | 345 | fix X assume "\<And>n. X n < a" "incseq X" "X \<longlonglongrightarrow> a" | 
| 346 |     with \<open>a \<le> b\<close> have "(\<lambda>n. emeasure ?F {X n<..b}) \<longlonglongrightarrow> emeasure ?F (\<Inter>n. {X n <..b})"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 347 | apply (intro Lim_emeasure_decseq) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 348 | apply (auto simp: decseq_def incseq_def emeasure_interval_measure_Ioc *) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 349 | apply force | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 350 | apply (subst (asm ) *) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 351 | apply (auto intro: less_le_trans less_imp_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 352 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 353 |     also have "(\<Inter>n. {X n <..b}) = {a..b}"
 | 
| 61808 | 354 | using \<open>\<And>n. X n < a\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 355 | apply auto | 
| 61969 | 356 | apply (rule LIMSEQ_le_const2[OF \<open>X \<longlonglongrightarrow> a\<close>]) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 357 | apply (auto intro: less_imp_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 358 | apply (auto intro: less_le_trans) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 359 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 360 |     also have "(\<lambda>n. emeasure ?F {X n<..b}) = (\<lambda>n. F b - F (X n))"
 | 
| 61808 | 361 | using \<open>\<And>n. X n < a\<close> \<open>a \<le> b\<close> by (subst *) (auto intro: less_imp_le less_le_trans) | 
| 61969 | 362 |     finally show "(\<lambda>n. F b - F (X n)) \<longlonglongrightarrow> emeasure ?F {a..b}" .
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 363 | qed | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 364 | show "((\<lambda>a. ennreal (F b - F a)) \<longlongrightarrow> F b - F a) (at_left a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 365 | by (rule continuous_on_tendsto_compose[where g="\<lambda>x. x" and s=UNIV]) | 
| 71172 | 366 | (auto simp: continuous_on_ennreal continuous_on_diff cont_F) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 367 | qed (rule trivial_limit_at_left_real) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 368 | |
| 70136 | 369 | lemma\<^marker>\<open>tag important\<close> sigma_finite_interval_measure: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 370 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 371 | assumes right_cont_F : "\<And>a. continuous (at_right a) F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 372 | shows "sigma_finite_measure (interval_measure F)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 373 | apply unfold_locales | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 374 |   apply (intro exI[of _ "(\<lambda>(a, b). {a <.. b}) ` (\<rat> \<times> \<rat>)"])
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 375 | apply (auto intro!: Rats_no_top_le Rats_no_bot_less countable_rat simp: emeasure_interval_measure_Ioc_eq[OF assms]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 376 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 377 | |
| 61808 | 378 | subsection \<open>Lebesgue-Borel measure\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 379 | |
| 70136 | 380 | definition\<^marker>\<open>tag important\<close> lborel :: "('a :: euclidean_space) measure" where
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 381 | "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. interval_measure (\<lambda>x. x)) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 382 | |
| 70136 | 383 | abbreviation\<^marker>\<open>tag important\<close> lebesgue :: "'a::euclidean_space measure" | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 384 | where "lebesgue \<equiv> completion lborel" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 385 | |
| 70136 | 386 | abbreviation\<^marker>\<open>tag important\<close> lebesgue_on :: "'a set \<Rightarrow> 'a::euclidean_space measure" | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 387 | where "lebesgue_on \<Omega> \<equiv> restrict_space (completion lborel) \<Omega>" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 388 | |
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 389 | lemma lebesgue_on_mono: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 390 | assumes major: "AE x in lebesgue_on S. P x" and minor: "\<And>x.\<lbrakk>P x; x \<in> S\<rbrakk> \<Longrightarrow> Q x" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 391 | shows "AE x in lebesgue_on S. Q x" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 392 | proof - | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 393 | have "AE a in lebesgue_on S. P a \<longrightarrow> Q a" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 394 | using minor space_restrict_space by fastforce | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 395 | then show ?thesis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 396 | using major by auto | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 397 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 398 | |
| 70547 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 399 | lemma integral_eq_zero_null_sets: | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 400 | assumes "S \<in> null_sets lebesgue" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 401 | shows "integral\<^sup>L (lebesgue_on S) f = 0" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 402 | proof (rule integral_eq_zero_AE) | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 403 | show "AE x in lebesgue_on S. f x = 0" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 404 | by (metis (no_types, lifting) assms AE_not_in lebesgue_on_mono null_setsD2 null_sets_restrict_space order_refl) | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 405 | qed | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 406 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 407 | lemma | 
| 59048 | 408 | shows sets_lborel[simp, measurable_cong]: "sets lborel = sets borel" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 409 | and space_lborel[simp]: "space lborel = space borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 410 | and measurable_lborel1[simp]: "measurable M lborel = measurable M borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 411 | and measurable_lborel2[simp]: "measurable lborel M = measurable borel M" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 412 | by (simp_all add: lborel_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 413 | |
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 414 | lemma space_lebesgue_on [simp]: "space (lebesgue_on S) = S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 415 | by (simp add: space_restrict_space) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 416 | |
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 417 | lemma sets_lebesgue_on_refl [iff]: "S \<in> sets (lebesgue_on S)" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 418 | by (metis inf_top.right_neutral sets.top space_borel space_completion space_lborel space_restrict_space) | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 419 | |
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 420 | lemma Compl_in_sets_lebesgue: "-A \<in> sets lebesgue \<longleftrightarrow> A \<in> sets lebesgue" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 421 | by (metis Compl_eq_Diff_UNIV double_compl space_borel space_completion space_lborel Sigma_Algebra.sets.compl_sets) | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 422 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 423 | lemma measurable_lebesgue_cong: | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 424 | assumes "\<And>x. x \<in> S \<Longrightarrow> f x = g x" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 425 | shows "f \<in> measurable (lebesgue_on S) M \<longleftrightarrow> g \<in> measurable (lebesgue_on S) M" | 
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69517diff
changeset | 426 | by (metis (mono_tags, lifting) IntD1 assms measurable_cong_simp space_restrict_space) | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 427 | |
| 70532 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 428 | lemma lebesgue_on_UNIV_eq: "lebesgue_on UNIV = lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 429 | proof - | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 430 | have "measure_of UNIV (sets lebesgue) (emeasure lebesgue) = lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 431 | by (metis measure_of_of_measure space_borel space_completion space_lborel) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 432 | then show ?thesis | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 433 | by (auto simp: restrict_space_def) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 434 | qed | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 435 | |
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 436 | lemma integral_restrict_Int: | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 437 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 438 | assumes "S \<in> sets lebesgue" "T \<in> sets lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 439 | shows "integral\<^sup>L (lebesgue_on T) (\<lambda>x. if x \<in> S then f x else 0) = integral\<^sup>L (lebesgue_on (S \<inter> T)) f" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 440 | proof - | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 441 | have "(\<lambda>x. indicat_real T x *\<^sub>R (if x \<in> S then f x else 0)) = (\<lambda>x. indicat_real (S \<inter> T) x *\<^sub>R f x)" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 442 | by (force simp: indicator_def) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 443 | then show ?thesis | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 444 | by (simp add: assms sets.Int Bochner_Integration.integral_restrict_space) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 445 | qed | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 446 | |
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 447 | lemma integral_restrict: | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 448 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 449 | assumes "S \<subseteq> T" "S \<in> sets lebesgue" "T \<in> sets lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 450 | shows "integral\<^sup>L (lebesgue_on T) (\<lambda>x. if x \<in> S then f x else 0) = integral\<^sup>L (lebesgue_on S) f" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 451 | using integral_restrict_Int [of S T f] assms | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 452 | by (simp add: Int_absorb2) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 453 | |
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 454 | lemma integral_restrict_UNIV: | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 455 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 456 | assumes "S \<in> sets lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 457 | shows "integral\<^sup>L lebesgue (\<lambda>x. if x \<in> S then f x else 0) = integral\<^sup>L (lebesgue_on S) f" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 458 | using integral_restrict_Int [of S UNIV f] assms | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 459 | by (simp add: lebesgue_on_UNIV_eq) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 460 | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 461 | lemma integrable_lebesgue_on_empty [iff]: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 462 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{second_countable_topology,banach}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 463 |   shows "integrable (lebesgue_on {}) f"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 464 | by (simp add: integrable_restrict_space) | 
| 70271 | 465 | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 466 | lemma integral_lebesgue_on_empty [simp]: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 467 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{second_countable_topology,banach}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 468 |   shows "integral\<^sup>L (lebesgue_on {}) f = 0"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 469 | by (simp add: Bochner_Integration.integral_empty) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 470 | lemma has_bochner_integral_restrict_space: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 471 |   fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 472 | assumes \<Omega>: "\<Omega> \<inter> space M \<in> sets M" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 473 | shows "has_bochner_integral (restrict_space M \<Omega>) f i | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 474 | \<longleftrightarrow> has_bochner_integral M (\<lambda>x. indicator \<Omega> x *\<^sub>R f x) i" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 475 | by (simp add: integrable_restrict_space [OF assms] integral_restrict_space [OF assms] has_bochner_integral_iff) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 476 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 477 | lemma integrable_restrict_UNIV: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 478 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 479 | assumes S: "S \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 480 | shows "integrable lebesgue (\<lambda>x. if x \<in> S then f x else 0) \<longleftrightarrow> integrable (lebesgue_on S) f" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 481 | using has_bochner_integral_restrict_space [of S lebesgue f] assms | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 482 | by (simp add: integrable.simps indicator_scaleR_eq_if) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 483 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 484 | lemma integral_mono_lebesgue_on_AE: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 485 | fixes f::"_ \<Rightarrow> real" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 486 | assumes f: "integrable (lebesgue_on T) f" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 487 | and gf: "AE x in (lebesgue_on S). g x \<le> f x" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 488 | and f0: "AE x in (lebesgue_on T). 0 \<le> f x" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 489 | and "S \<subseteq> T" and S: "S \<in> sets lebesgue" and T: "T \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 490 | shows "(\<integral>x. g x \<partial>(lebesgue_on S)) \<le> (\<integral>x. f x \<partial>(lebesgue_on T))" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 491 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 492 | have "(\<integral>x. g x \<partial>(lebesgue_on S)) = (\<integral>x. (if x \<in> S then g x else 0) \<partial>lebesgue)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 493 | by (simp add: Lebesgue_Measure.integral_restrict_UNIV S) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 494 | also have "\<dots> \<le> (\<integral>x. (if x \<in> T then f x else 0) \<partial>lebesgue)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 495 | proof (rule Bochner_Integration.integral_mono_AE') | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 496 | show "integrable lebesgue (\<lambda>x. if x \<in> T then f x else 0)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 497 | by (simp add: integrable_restrict_UNIV T f) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 498 | show "AE x in lebesgue. (if x \<in> S then g x else 0) \<le> (if x \<in> T then f x else 0)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 499 | using assms by (auto simp: AE_restrict_space_iff) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 500 | show "AE x in lebesgue. 0 \<le> (if x \<in> T then f x else 0)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 501 | using f0 by (simp add: AE_restrict_space_iff T) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 502 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 503 | also have "\<dots> = (\<integral>x. f x \<partial>(lebesgue_on T))" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 504 | using Lebesgue_Measure.integral_restrict_UNIV T by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 505 | finally show ?thesis . | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 506 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 507 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 508 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 509 | subsection \<open>Borel measurability\<close> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 510 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 511 | lemma borel_measurable_if_I: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 512 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 513 | assumes f: "f \<in> borel_measurable (lebesgue_on S)" and S: "S \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 514 | shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 515 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 516 |   have eq: "{x. x \<notin> S} \<union> {x. f x \<in> Y} = {x. x \<notin> S} \<union> {x. f x \<in> Y} \<inter> S" for Y
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 517 | by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 518 | show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 519 | using f S | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 520 | apply (simp add: vimage_def in_borel_measurable_borel Ball_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 521 | apply (elim all_forward imp_forward asm_rl) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 522 | apply (simp only: Collect_conj_eq Collect_disj_eq imp_conv_disj eq) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 523 | apply (auto simp: Compl_eq [symmetric] Compl_in_sets_lebesgue sets_restrict_space_iff) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 524 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 525 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 526 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 527 | lemma borel_measurable_if_D: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 528 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 529 | assumes "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 530 | shows "f \<in> borel_measurable (lebesgue_on S)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 531 | using assms | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 532 | apply (simp add: in_borel_measurable_borel Ball_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 533 | apply (elim all_forward imp_forward asm_rl) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 534 | apply (force simp: space_restrict_space sets_restrict_space image_iff intro: rev_bexI) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 535 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 536 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 537 | lemma borel_measurable_if: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 538 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 539 | assumes "S \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 540 | shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 541 | using assms borel_measurable_if_D borel_measurable_if_I by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 542 | |
| 70694 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 543 | lemma borel_measurable_if_lebesgue_on: | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 544 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 545 | assumes "S \<in> sets lebesgue" "T \<in> sets lebesgue" "S \<subseteq> T" | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 546 | shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable (lebesgue_on T) \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)" | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 547 | (is "?lhs = ?rhs") | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 548 | proof | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 549 | assume ?lhs then show ?rhs | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 550 | using measurable_restrict_mono [OF _ \<open>S \<subseteq> T\<close>] | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 551 | by (subst measurable_lebesgue_cong [where g = "(\<lambda>x. if x \<in> S then f x else 0)"]) auto | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 552 | next | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 553 | assume ?rhs then show ?lhs | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 554 | by (simp add: \<open>S \<in> sets lebesgue\<close> borel_measurable_if_I measurable_restrict_space1) | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 555 | qed | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 556 | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 557 | lemma borel_measurable_vimage_halfspace_component_lt: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 558 | "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 559 |       (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i < a} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 560 | apply (rule trans [OF borel_measurable_iff_halfspace_less]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 561 | apply (fastforce simp add: space_restrict_space) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 562 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 563 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 564 | lemma borel_measurable_vimage_halfspace_component_ge: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 565 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 566 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 567 |          (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i \<ge> a} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 568 | apply (rule trans [OF borel_measurable_iff_halfspace_ge]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 569 | apply (fastforce simp add: space_restrict_space) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 570 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 571 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 572 | lemma borel_measurable_vimage_halfspace_component_gt: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 573 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 574 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 575 |          (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i > a} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 576 | apply (rule trans [OF borel_measurable_iff_halfspace_greater]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 577 | apply (fastforce simp add: space_restrict_space) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 578 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 579 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 580 | lemma borel_measurable_vimage_halfspace_component_le: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 581 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 582 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 583 |          (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i \<le> a} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 584 | apply (rule trans [OF borel_measurable_iff_halfspace_le]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 585 | apply (fastforce simp add: space_restrict_space) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 586 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 587 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 588 | lemma | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 589 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 590 | shows borel_measurable_vimage_open_interval: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 591 | "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 592 |          (\<forall>a b. {x \<in> S. f x \<in> box a b} \<in> sets (lebesgue_on S))" (is ?thesis1)
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 593 | and borel_measurable_vimage_open: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 594 | "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 595 |          (\<forall>T. open T \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))" (is ?thesis2)
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 596 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 597 |   have "{x \<in> S. f x \<in> box a b} \<in> sets (lebesgue_on S)" if "f \<in> borel_measurable (lebesgue_on S)" for a b
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 598 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 599 | have "S = S \<inter> space lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 600 | by simp | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 601 | then have "S \<inter> (f -` box a b) \<in> sets (lebesgue_on S)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 602 | by (metis (no_types) box_borel in_borel_measurable_borel inf_sup_aci(1) space_restrict_space that) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 603 | then show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 604 | by (simp add: Collect_conj_eq vimage_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 605 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 606 | moreover | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 607 |   have "{x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S)"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 608 |        if T: "\<And>a b. {x \<in> S. f x \<in> box a b} \<in> sets (lebesgue_on S)" "open T" for T
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 609 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 610 | obtain \<D> where "countable \<D>" and \<D>: "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = box a b" "\<Union>\<D> = T" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 611 | using open_countable_Union_open_box that \<open>open T\<close> by metis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 612 |     then have eq: "{x \<in> S. f x \<in> T} = (\<Union>U \<in> \<D>. {x \<in> S. f x \<in> U})"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 613 | by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 614 |     have "{x \<in> S. f x \<in> U} \<in> sets (lebesgue_on S)" if "U \<in> \<D>" for U
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 615 | using that T \<D> by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 616 | then show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 617 | by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF \<open>countable \<D>\<close>]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 618 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 619 | moreover | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 620 |   have eq: "{x \<in> S. f x \<bullet> i < a} = {x \<in> S. f x \<in> {y. y \<bullet> i < a}}" for i a
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 621 | by auto | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 622 | have "f \<in> borel_measurable (lebesgue_on S)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 623 |     if "\<And>T. open T \<Longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S)"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 624 | by (metis (no_types) eq borel_measurable_vimage_halfspace_component_lt open_halfspace_component_lt that) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 625 | ultimately show "?thesis1" "?thesis2" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 626 | by blast+ | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 627 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 628 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 629 | lemma borel_measurable_vimage_closed: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 630 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 631 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 632 |          (\<forall>T. closed T \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 633 | (is "?lhs = ?rhs") | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 634 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 635 |   have eq: "{x \<in> S. f x \<in> T} = S - {x \<in> S. f x \<in> (- T)}" for T
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 636 | by auto | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 637 | show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 638 | apply (simp add: borel_measurable_vimage_open, safe) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 639 | apply (simp_all (no_asm) add: eq) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 640 | apply (intro sets.Diff sets_lebesgue_on_refl, force simp: closed_open) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 641 | apply (intro sets.Diff sets_lebesgue_on_refl, force simp: open_closed) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 642 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 643 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 644 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 645 | lemma borel_measurable_vimage_closed_interval: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 646 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 647 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 648 |          (\<forall>a b. {x \<in> S. f x \<in> cbox a b} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 649 | (is "?lhs = ?rhs") | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 650 | proof | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 651 | assume ?lhs then show ?rhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 652 | using borel_measurable_vimage_closed by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 653 | next | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 654 | assume RHS: ?rhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 655 |   have "{x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S)" if "open T" for T
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 656 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 657 | obtain \<D> where "countable \<D>" and \<D>: "\<D> \<subseteq> Pow T" "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = cbox a b" "\<Union>\<D> = T" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 658 | using open_countable_Union_open_cbox that \<open>open T\<close> by metis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 659 |     then have eq: "{x \<in> S. f x \<in> T} = (\<Union>U \<in> \<D>. {x \<in> S. f x \<in> U})"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 660 | by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 661 |     have "{x \<in> S. f x \<in> U} \<in> sets (lebesgue_on S)" if "U \<in> \<D>" for U
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 662 | using that \<D> by (metis RHS) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 663 | then show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 664 | by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF \<open>countable \<D>\<close>]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 665 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 666 | then show ?lhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 667 | by (simp add: borel_measurable_vimage_open) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 668 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 669 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 670 | lemma borel_measurable_vimage_borel: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 671 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 672 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 673 |          (\<forall>T. T \<in> sets borel \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 674 | (is "?lhs = ?rhs") | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 675 | proof | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 676 | assume f: ?lhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 677 | then show ?rhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 678 | using measurable_sets [OF f] | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 679 | by (simp add: Collect_conj_eq inf_sup_aci(1) space_restrict_space vimage_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 680 | qed (simp add: borel_measurable_vimage_open_interval) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 681 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 682 | lemma lebesgue_measurable_vimage_borel: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 683 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 684 | assumes "f \<in> borel_measurable lebesgue" "T \<in> sets borel" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 685 |   shows "{x. f x \<in> T} \<in> sets lebesgue"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 686 | using assms borel_measurable_vimage_borel [of f UNIV] by auto | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 687 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 688 | lemma borel_measurable_lebesgue_preimage_borel: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 689 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 690 | shows "f \<in> borel_measurable lebesgue \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 691 |          (\<forall>T. T \<in> sets borel \<longrightarrow> {x. f x \<in> T} \<in> sets lebesgue)"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 692 | apply (intro iffI allI impI lebesgue_measurable_vimage_borel) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 693 | apply (auto simp: in_borel_measurable_borel vimage_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 694 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 695 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 696 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 697 | subsection \<^marker>\<open>tag unimportant\<close> \<open>Measurability of continuous functions\<close> | 
| 69447 | 698 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 699 | lemma continuous_imp_measurable_on_sets_lebesgue: | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 700 | assumes f: "continuous_on S f" and S: "S \<in> sets lebesgue" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 701 | shows "f \<in> borel_measurable (lebesgue_on S)" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 702 | proof - | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 703 | have "sets (restrict_space borel S) \<subseteq> sets (lebesgue_on S)" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 704 | by (simp add: mono_restrict_space subsetI) | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 705 | then show ?thesis | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 706 | by (simp add: borel_measurable_continuous_on_restrict [OF f] borel_measurable_subalgebra | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 707 | space_restrict_space) | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 708 | qed | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 709 | |
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 710 | lemma id_borel_measurable_lebesgue [iff]: "id \<in> borel_measurable lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 711 | by (simp add: measurable_completion) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 712 | |
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 713 | lemma id_borel_measurable_lebesgue_on [iff]: "id \<in> borel_measurable (lebesgue_on S)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 714 | by (simp add: measurable_completion measurable_restrict_space1) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 715 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 716 | context | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 717 | begin | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 718 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 719 | interpretation sigma_finite_measure "interval_measure (\<lambda>x. x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 720 | by (rule sigma_finite_interval_measure) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 721 | interpretation finite_product_sigma_finite "\<lambda>_. interval_measure (\<lambda>x. x)" Basis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 722 | proof qed simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 723 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 724 | lemma lborel_eq_real: "lborel = interval_measure (\<lambda>x. x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 725 | unfolding lborel_def Basis_real_def | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 726 | using distr_id[of "interval_measure (\<lambda>x. x)"] | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 727 | by (subst distr_component[symmetric]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 728 | (simp_all add: distr_distr comp_def del: distr_id cong: distr_cong) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 729 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 730 | lemma lborel_eq: "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. lborel) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 731 | by (subst lborel_def) (simp add: lborel_eq_real) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 732 | |
| 64272 | 733 | lemma nn_integral_lborel_prod: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 734 | assumes [measurable]: "\<And>b. b \<in> Basis \<Longrightarrow> f b \<in> borel_measurable borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 735 | assumes nn[simp]: "\<And>b x. b \<in> Basis \<Longrightarrow> 0 \<le> f b x" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 736 | shows "(\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. f b (x \<bullet> b)) \<partial>lborel) = (\<Prod>b\<in>Basis. (\<integral>\<^sup>+x. f b x \<partial>lborel))" | 
| 64272 | 737 | by (simp add: lborel_def nn_integral_distr product_nn_integral_prod | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 738 | product_nn_integral_singleton) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 739 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 740 | lemma emeasure_lborel_Icc[simp]: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 741 | fixes l u :: real | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 742 | assumes [simp]: "l \<le> u" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 743 |   shows "emeasure lborel {l .. u} = u - l"
 | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50418diff
changeset | 744 | proof - | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 745 |   have "((\<lambda>f. f 1) -` {l..u} \<inter> space (Pi\<^sub>M {1} (\<lambda>b. interval_measure (\<lambda>x. x)))) = {1::real} \<rightarrow>\<^sub>E {l..u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 746 | by (auto simp: space_PiM) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 747 | then show ?thesis | 
| 71172 | 748 | by (simp add: lborel_def emeasure_distr emeasure_PiM emeasure_interval_measure_Icc) | 
| 50104 | 749 | qed | 
| 750 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 751 | lemma emeasure_lborel_Icc_eq: "emeasure lborel {l .. u} = ennreal (if l \<le> u then u - l else 0)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 752 | by simp | 
| 47694 | 753 | |
| 70136 | 754 | lemma\<^marker>\<open>tag important\<close> emeasure_lborel_cbox[simp]: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 755 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 756 | shows "emeasure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 70136 | 757 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 758 |   have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b) :: ennreal) = indicator (cbox l u)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 759 | by (auto simp: fun_eq_iff cbox_def split: split_indicator) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 760 |   then have "emeasure lborel (cbox l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 761 | by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 762 | also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 763 | by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left) | 
| 47694 | 764 | finally show ?thesis . | 
| 38656 | 765 | qed | 
| 766 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 767 | lemma AE_lborel_singleton: "AE x in lborel::'a::euclidean_space measure. x \<noteq> c" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 768 |   using SOME_Basis AE_discrete_difference [of "{c}" lborel] emeasure_lborel_cbox [of c c]
 | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 769 | by (auto simp add: power_0_left) | 
| 47757 
5e6fe71e2390
equate positive Lebesgue integral and MV-Analysis' Gauge integral
 hoelzl parents: 
47694diff
changeset | 770 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 771 | lemma emeasure_lborel_Ioo[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 772 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 773 |   shows "emeasure lborel {l <..< u} = ennreal (u - l)"
 | 
| 40859 | 774 | proof - | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 775 |   have "emeasure lborel {l <..< u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 776 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 47694 | 777 | then show ?thesis | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 778 | by simp | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 779 | qed | 
| 38656 | 780 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 781 | lemma emeasure_lborel_Ioc[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 782 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 783 |   shows "emeasure lborel {l <.. u} = ennreal (u - l)"
 | 
| 41654 | 784 | proof - | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 785 |   have "emeasure lborel {l <.. u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 786 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 787 | then show ?thesis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 788 | by simp | 
| 38656 | 789 | qed | 
| 790 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 791 | lemma emeasure_lborel_Ico[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 792 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 793 |   shows "emeasure lborel {l ..< u} = ennreal (u - l)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 794 | proof - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 795 |   have "emeasure lborel {l ..< u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 796 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 797 | then show ?thesis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 798 | by simp | 
| 38656 | 799 | qed | 
| 800 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 801 | lemma emeasure_lborel_box[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 802 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 803 | shows "emeasure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 804 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 805 |   have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b) :: ennreal) = indicator (box l u)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 806 | by (auto simp: fun_eq_iff box_def split: split_indicator) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 807 |   then have "emeasure lborel (box l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 808 | by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 809 | also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 810 | by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 811 | finally show ?thesis . | 
| 40859 | 812 | qed | 
| 38656 | 813 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 814 | lemma emeasure_lborel_cbox_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 815 | "emeasure lborel (cbox l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 816 | using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le) | 
| 41654 | 817 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 818 | lemma emeasure_lborel_box_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 819 | "emeasure lborel (box l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 820 | using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force | 
| 40859 | 821 | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 822 | lemma emeasure_lborel_singleton[simp]: "emeasure lborel {x} = 0"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 823 | using emeasure_lborel_cbox[of x x] nonempty_Basis | 
| 71172 | 824 | by (auto simp del: emeasure_lborel_cbox nonempty_Basis) | 
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 825 | |
| 71192 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 826 | lemma emeasure_lborel_cbox_finite: "emeasure lborel (cbox a b) < \<infinity>" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 827 | by (auto simp: emeasure_lborel_cbox_eq) | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 828 | |
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 829 | lemma emeasure_lborel_box_finite: "emeasure lborel (box a b) < \<infinity>" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 830 | by (auto simp: emeasure_lborel_box_eq) | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 831 | |
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 832 | lemma emeasure_lborel_ball_finite: "emeasure lborel (ball c r) < \<infinity>" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 833 | proof - | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 834 | have "bounded (ball c r)" by simp | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 835 | from bounded_subset_cbox_symmetric[OF this] obtain a where a: "ball c r \<subseteq> cbox (-a) a" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 836 | by auto | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 837 | hence "emeasure lborel (ball c r) \<le> emeasure lborel (cbox (-a) a)" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 838 | by (intro emeasure_mono) auto | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 839 | also have "\<dots> < \<infinity>" by (simp add: emeasure_lborel_cbox_eq) | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 840 | finally show ?thesis . | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 841 | qed | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 842 | |
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 843 | lemma emeasure_lborel_cball_finite: "emeasure lborel (cball c r) < \<infinity>" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 844 | proof - | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 845 | have "bounded (cball c r)" by simp | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 846 | from bounded_subset_cbox_symmetric[OF this] obtain a where a: "cball c r \<subseteq> cbox (-a) a" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 847 | by auto | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 848 | hence "emeasure lborel (cball c r) \<le> emeasure lborel (cbox (-a) a)" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 849 | by (intro emeasure_mono) auto | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 850 | also have "\<dots> < \<infinity>" by (simp add: emeasure_lborel_cbox_eq) | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 851 | finally show ?thesis . | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 852 | qed | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 853 | |
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 854 | lemma fmeasurable_cbox [iff]: "cbox a b \<in> fmeasurable lborel" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 855 | and fmeasurable_box [iff]: "box a b \<in> fmeasurable lborel" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 856 | by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 857 | |
| 40859 | 858 | lemma | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 859 | fixes l u :: real | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 860 | assumes [simp]: "l \<le> u" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 861 |   shows measure_lborel_Icc[simp]: "measure lborel {l .. u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 862 |     and measure_lborel_Ico[simp]: "measure lborel {l ..< u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 863 |     and measure_lborel_Ioc[simp]: "measure lborel {l <.. u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 864 |     and measure_lborel_Ioo[simp]: "measure lborel {l <..< u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 865 | by (simp_all add: measure_def) | 
| 40859 | 866 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 867 | lemma | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 868 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 869 | shows measure_lborel_box[simp]: "measure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 870 | and measure_lborel_cbox[simp]: "measure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 871 | by (simp_all add: measure_def inner_diff_left prod_nonneg) | 
| 41654 | 872 | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 873 | lemma measure_lborel_cbox_eq: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 874 | "measure lborel (cbox l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 875 | using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 876 | |
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 877 | lemma measure_lborel_box_eq: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 878 | "measure lborel (box l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 879 | using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 880 | |
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 881 | lemma measure_lborel_singleton[simp]: "measure lborel {x} = 0"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 882 | by (simp add: measure_def) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 883 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 884 | lemma sigma_finite_lborel: "sigma_finite_measure lborel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 885 | proof | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 886 | show "\<exists>A::'a set set. countable A \<and> A \<subseteq> sets lborel \<and> \<Union>A = space lborel \<and> (\<forall>a\<in>A. emeasure lborel a \<noteq> \<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 887 | by (intro exI[of _ "range (\<lambda>n::nat. box (- real n *\<^sub>R One) (real n *\<^sub>R One))"]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 888 | (auto simp: emeasure_lborel_cbox_eq UN_box_eq_UNIV) | 
| 49777 | 889 | qed | 
| 40859 | 890 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 891 | end | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 892 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 893 | lemma emeasure_lborel_UNIV [simp]: "emeasure lborel (UNIV::'a::euclidean_space set) = \<infinity>" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 894 | proof - | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 895 |   { fix n::nat
 | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 896 | let ?Ba = "Basis :: 'a set" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 897 | have "real n \<le> (2::real) ^ card ?Ba * real n" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 898 | by (simp add: mult_le_cancel_right1) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 899 | also | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 900 | have "... \<le> (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 901 | apply (rule mult_left_mono) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 902 | apply (metis DIM_positive One_nat_def less_eq_Suc_le less_imp_le of_nat_le_iff of_nat_power self_le_power zero_less_Suc) | 
| 71172 | 903 | apply (simp) | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 904 | done | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 905 | finally have "real n \<le> (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" . | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 906 | } note [intro!] = this | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 907 | show ?thesis | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 908 | unfolding UN_box_eq_UNIV[symmetric] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 909 | apply (subst SUP_emeasure_incseq[symmetric]) | 
| 71172 | 910 | apply (auto simp: incseq_def subset_box inner_add_left | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 911 | simp del: Sup_eq_top_iff SUP_eq_top_iff | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 912 | intro!: ennreal_SUP_eq_top) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 913 | done | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 914 | qed | 
| 40859 | 915 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 916 | lemma emeasure_lborel_countable: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 917 | fixes A :: "'a::euclidean_space set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 918 | assumes "countable A" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 919 | shows "emeasure lborel A = 0" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 920 | proof - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 921 |   have "A \<subseteq> (\<Union>i. {from_nat_into A i})" using from_nat_into_surj assms by force
 | 
| 63262 | 922 |   then have "emeasure lborel A \<le> emeasure lborel (\<Union>i. {from_nat_into A i})"
 | 
| 923 | by (intro emeasure_mono) auto | |
| 924 |   also have "emeasure lborel (\<Union>i. {from_nat_into A i}) = 0"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 925 | by (rule emeasure_UN_eq_0) auto | 
| 63262 | 926 | finally show ?thesis | 
| 927 | by (auto simp add: ) | |
| 40859 | 928 | qed | 
| 929 | ||
| 59425 | 930 | lemma countable_imp_null_set_lborel: "countable A \<Longrightarrow> A \<in> null_sets lborel" | 
| 931 | by (simp add: null_sets_def emeasure_lborel_countable sets.countable) | |
| 932 | ||
| 933 | lemma finite_imp_null_set_lborel: "finite A \<Longrightarrow> A \<in> null_sets lborel" | |
| 934 | by (intro countable_imp_null_set_lborel countable_finite) | |
| 935 | ||
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 936 | lemma insert_null_sets_iff [simp]: "insert a N \<in> null_sets lebesgue \<longleftrightarrow> N \<in> null_sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 937 | (is "?lhs = ?rhs") | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 938 | proof | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 939 | assume ?lhs then show ?rhs | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 940 | by (meson completion.complete2 subset_insertI) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 941 | next | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 942 | assume ?rhs then show ?lhs | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 943 | by (simp add: null_sets.insert_in_sets null_setsI) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 944 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 945 | |
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 946 | lemma insert_null_sets_lebesgue_on_iff [simp]: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 947 | assumes "a \<in> S" "S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 948 | shows "insert a N \<in> null_sets (lebesgue_on S) \<longleftrightarrow> N \<in> null_sets (lebesgue_on S)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 949 | by (simp add: assms null_sets_restrict_space) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 950 | |
| 59425 | 951 | lemma lborel_neq_count_space[simp]: "lborel \<noteq> count_space (A::('a::ordered_euclidean_space) set)"
 | 
| 952 | proof | |
| 953 | assume asm: "lborel = count_space A" | |
| 954 | have "space lborel = UNIV" by simp | |
| 955 | hence [simp]: "A = UNIV" by (subst (asm) asm) (simp only: space_count_space) | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 956 |   have "emeasure lborel {undefined::'a} = 1"
 | 
| 59425 | 957 | by (subst asm, subst emeasure_count_space_finite) auto | 
| 958 |   moreover have "emeasure lborel {undefined} \<noteq> 1" by simp
 | |
| 959 | ultimately show False by contradiction | |
| 960 | qed | |
| 961 | ||
| 65204 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 962 | lemma mem_closed_if_AE_lebesgue_open: | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 963 | assumes "open S" "closed C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 964 | assumes "AE x \<in> S in lebesgue. x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 965 | assumes "x \<in> S" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 966 | shows "x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 967 | proof (rule ccontr) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 968 | assume xC: "x \<notin> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 969 | with openE[of "S - C"] assms | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 970 | obtain e where e: "0 < e" "ball x e \<subseteq> S - C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 971 | by blast | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 972 | then obtain a b where box: "x \<in> box a b" "box a b \<subseteq> S - C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 973 | by (metis rational_boxes order_trans) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 974 | then have "0 < emeasure lebesgue (box a b)" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 975 | by (auto simp: emeasure_lborel_box_eq mem_box algebra_simps intro!: prod_pos) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 976 | also have "\<dots> \<le> emeasure lebesgue (S - C)" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 977 | using assms box | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 978 | by (auto intro!: emeasure_mono) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 979 | also have "\<dots> = 0" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 980 | using assms | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 981 | by (auto simp: eventually_ae_filter completion.complete2 set_diff_eq null_setsD1) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 982 | finally show False by simp | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 983 | qed | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 984 | |
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 985 | lemma mem_closed_if_AE_lebesgue: "closed C \<Longrightarrow> (AE x in lebesgue. x \<in> C) \<Longrightarrow> x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 986 | using mem_closed_if_AE_lebesgue_open[OF open_UNIV] by simp | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 987 | |
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 988 | |
| 61808 | 989 | subsection \<open>Affine transformation on the Lebesgue-Borel\<close> | 
| 49777 | 990 | |
| 70136 | 991 | lemma\<^marker>\<open>tag important\<close> lborel_eqI: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 992 | fixes M :: "'a::euclidean_space measure" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 993 | assumes emeasure_eq: "\<And>l u. (\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b) \<Longrightarrow> emeasure M (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 49777 | 994 | assumes sets_eq: "sets M = sets borel" | 
| 995 | shows "lborel = M" | |
| 70136 | 996 | proof (rule measure_eqI_generator_eq) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 997 | let ?E = "range (\<lambda>(a, b). box a b::'a set)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 998 | show "Int_stable ?E" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 999 | by (auto simp: Int_stable_def box_Int_box) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1000 | |
| 49777 | 1001 | show "?E \<subseteq> Pow UNIV" "sets lborel = sigma_sets UNIV ?E" "sets M = sigma_sets UNIV ?E" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1002 | by (simp_all add: borel_eq_box sets_eq) | 
| 49777 | 1003 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1004 | let ?A = "\<lambda>n::nat. box (- (real n *\<^sub>R One)) (real n *\<^sub>R One) :: 'a set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1005 | show "range ?A \<subseteq> ?E" "(\<Union>i. ?A i) = UNIV" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1006 | unfolding UN_box_eq_UNIV by auto | 
| 49777 | 1007 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1008 |   { fix i show "emeasure lborel (?A i) \<noteq> \<infinity>" by auto }
 | 
| 49777 | 1009 |   { fix X assume "X \<in> ?E" then show "emeasure lborel X = emeasure M X"
 | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1010 | apply (auto simp: emeasure_eq emeasure_lborel_box_eq) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1011 | apply (subst box_eq_empty(1)[THEN iffD2]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1012 | apply (auto intro: less_imp_le simp: not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1013 | done } | 
| 49777 | 1014 | qed | 
| 1015 | ||
| 70136 | 1016 | lemma\<^marker>\<open>tag important\<close> lborel_affine_euclidean: | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1017 | fixes c :: "'a::euclidean_space \<Rightarrow> real" and t | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1018 | defines "T x \<equiv> t + (\<Sum>j\<in>Basis. (c j * (x \<bullet> j)) *\<^sub>R j)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1019 | assumes c: "\<And>j. j \<in> Basis \<Longrightarrow> c j \<noteq> 0" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1020 | shows "lborel = density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" (is "_ = ?D") | 
| 70136 | 1021 | proof (rule lborel_eqI) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1022 | let ?B = "Basis :: 'a set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1023 | fix l u assume le: "\<And>b. b \<in> ?B \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1024 | have [measurable]: "T \<in> borel \<rightarrow>\<^sub>M borel" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1025 | by (simp add: T_def[abs_def]) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1026 | have eq: "T -` box l u = box | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1027 | (\<Sum>j\<in>Basis. (((if 0 < c j then l - t else u - t) \<bullet> j) / c j) *\<^sub>R j) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1028 | (\<Sum>j\<in>Basis. (((if 0 < c j then u - t else l - t) \<bullet> j) / c j) *\<^sub>R j)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1029 | using c by (auto simp: box_def T_def field_simps inner_simps divide_less_eq) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1030 | with le c show "emeasure ?D (box l u) = (\<Prod>b\<in>?B. (u - l) \<bullet> b)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1031 | by (auto simp: emeasure_density emeasure_distr nn_integral_multc emeasure_lborel_box_eq inner_simps | 
| 71172 | 1032 | field_split_simps ennreal_mult'[symmetric] prod_nonneg prod.distrib[symmetric] | 
| 64272 | 1033 | intro!: prod.cong) | 
| 49777 | 1034 | qed simp | 
| 1035 | ||
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1036 | lemma lborel_affine: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1037 | fixes t :: "'a::euclidean_space" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1038 |   shows "c \<noteq> 0 \<Longrightarrow> lborel = density (distr lborel borel (\<lambda>x. t + c *\<^sub>R x)) (\<lambda>_. \<bar>c\<bar>^DIM('a))"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1039 | using lborel_affine_euclidean[where c="\<lambda>_::'a. c" and t=t] | 
| 64272 | 1040 | unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation prod_constant by simp | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 1041 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1042 | lemma lborel_real_affine: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1043 | "c \<noteq> 0 \<Longrightarrow> lborel = density (distr lborel borel (\<lambda>x. t + c * x)) (\<lambda>_. ennreal (abs c))" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1044 | using lborel_affine[of c t] by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1045 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1046 | lemma AE_borel_affine: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1047 | fixes P :: "real \<Rightarrow> bool" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1048 | shows "c \<noteq> 0 \<Longrightarrow> Measurable.pred borel P \<Longrightarrow> AE x in lborel. P x \<Longrightarrow> AE x in lborel. P (t + c * x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1049 | by (subst lborel_real_affine[where t="- t / c" and c="1 / c"]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1050 | (simp_all add: AE_density AE_distr_iff field_simps) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1051 | |
| 56996 | 1052 | lemma nn_integral_real_affine: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1053 | fixes c :: real assumes [measurable]: "f \<in> borel_measurable borel" and c: "c \<noteq> 0" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1054 | shows "(\<integral>\<^sup>+x. f x \<partial>lborel) = \<bar>c\<bar> * (\<integral>\<^sup>+x. f (t + c * x) \<partial>lborel)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1055 | by (subst lborel_real_affine[OF c, of t]) | 
| 56996 | 1056 | (simp add: nn_integral_density nn_integral_distr nn_integral_cmult) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1057 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1058 | lemma lborel_integrable_real_affine: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1059 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1060 | assumes f: "integrable lborel f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1061 | shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x))" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1062 | using f f[THEN borel_measurable_integrable] unfolding integrable_iff_bounded | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1063 | by (subst (asm) nn_integral_real_affine[where c=c and t=t]) (auto simp: ennreal_mult_less_top) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1064 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1065 | lemma lborel_integrable_real_affine_iff: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1066 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1067 | shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x)) \<longleftrightarrow> integrable lborel f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1068 | using | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1069 | lborel_integrable_real_affine[of f c t] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1070 | lborel_integrable_real_affine[of "\<lambda>x. f (t + c * x)" "1/c" "-t/c"] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1071 | by (auto simp add: field_simps) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1072 | |
| 70136 | 1073 | lemma\<^marker>\<open>tag important\<close> lborel_integral_real_affine: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1074 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}" and c :: real
 | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 1075 | assumes c: "c \<noteq> 0" shows "(\<integral>x. f x \<partial> lborel) = \<bar>c\<bar> *\<^sub>R (\<integral>x. f (t + c * x) \<partial>lborel)" | 
| 70136 | 1076 | proof cases | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 1077 | assume f[measurable]: "integrable lborel f" then show ?thesis | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 1078 | using c f f[THEN borel_measurable_integrable] f[THEN lborel_integrable_real_affine, of c t] | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1079 | by (subst lborel_real_affine[OF c, of t]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1080 | (simp add: integral_density integral_distr) | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 1081 | next | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 1082 | assume "\<not> integrable lborel f" with c show ?thesis | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 1083 | by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq) | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 1084 | qed | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1085 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1086 | lemma | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1087 | fixes c :: "'a::euclidean_space \<Rightarrow> real" and t | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1088 | assumes c: "\<And>j. j \<in> Basis \<Longrightarrow> c j \<noteq> 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1089 | defines "T == (\<lambda>x. t + (\<Sum>j\<in>Basis. (c j * (x \<bullet> j)) *\<^sub>R j))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1090 | shows lebesgue_affine_euclidean: "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" (is "_ = ?D") | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1091 | and lebesgue_affine_measurable: "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1092 | proof - | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1093 | have T_borel[measurable]: "T \<in> borel \<rightarrow>\<^sub>M borel" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1094 | by (auto simp: T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1095 |   { fix A :: "'a set" assume A: "A \<in> sets borel"
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1096 | then have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))) A = 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1097 | unfolding T_def using c by (subst lborel_affine_euclidean[symmetric]) auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1098 | also have "\<dots> \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" | 
| 64272 | 1099 | using A c by (simp add: distr_completion emeasure_density nn_integral_cmult prod_nonneg cong: distr_cong) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1100 | finally have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" . } | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1101 | then have eq: "null_sets lborel = null_sets (distr lebesgue lborel T)" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1102 | by (auto simp: null_sets_def) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1103 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1104 | show "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1105 | by (rule completion.measurable_completion2) (auto simp: eq measurable_completion) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1106 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1107 | have "lebesgue = completion (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>)))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1108 | using c by (subst lborel_affine_euclidean[of c t]) (simp_all add: T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1109 | also have "\<dots> = density (completion (distr lebesgue lborel T)) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" | 
| 64272 | 1110 | using c by (auto intro!: always_eventually prod_pos completion_density_eq simp: distr_completion cong: distr_cong) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1111 | also have "\<dots> = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1112 | by (subst completion.completion_distr_eq) (auto simp: eq measurable_completion) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1113 | finally show "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" . | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1114 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1115 | |
| 70547 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1116 | corollary lebesgue_real_affine: | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1117 | "c \<noteq> 0 \<Longrightarrow> lebesgue = density (distr lebesgue lebesgue (\<lambda>x. t + c * x)) (\<lambda>_. ennreal (abs c))" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1118 | using lebesgue_affine_euclidean [where c= "\<lambda>x::real. c"] by simp | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1119 | |
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1120 | lemma nn_integral_real_affine_lebesgue: | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1121 | fixes c :: real assumes f[measurable]: "f \<in> borel_measurable lebesgue" and c: "c \<noteq> 0" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1122 | shows "(\<integral>\<^sup>+x. f x \<partial>lebesgue) = ennreal\<bar>c\<bar> * (\<integral>\<^sup>+x. f(t + c * x) \<partial>lebesgue)" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1123 | proof - | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1124 | have "(\<integral>\<^sup>+x. f x \<partial>lebesgue) = (\<integral>\<^sup>+x. f x \<partial>density (distr lebesgue lebesgue (\<lambda>x. t + c * x)) (\<lambda>x. ennreal \<bar>c\<bar>))" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1125 | using lebesgue_real_affine c by auto | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1126 | also have "\<dots> = \<integral>\<^sup>+ x. ennreal \<bar>c\<bar> * f x \<partial>distr lebesgue lebesgue (\<lambda>x. t + c * x)" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1127 | by (subst nn_integral_density) auto | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1128 | also have "\<dots> = ennreal \<bar>c\<bar> * integral\<^sup>N (distr lebesgue lebesgue (\<lambda>x. t + c * x)) f" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1129 | using f measurable_distr_eq1 nn_integral_cmult by blast | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1130 | also have "\<dots> = \<bar>c\<bar> * (\<integral>\<^sup>+x. f(t + c * x) \<partial>lebesgue)" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1131 | using lebesgue_affine_measurable[where c= "\<lambda>x::real. c"] | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1132 | by (subst nn_integral_distr) (force+) | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1133 | finally show ?thesis . | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1134 | qed | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1135 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1136 | lemma lebesgue_measurable_scaling[measurable]: "(*\<^sub>R) x \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1137 | proof cases | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1138 | assume "x = 0" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1139 | then have "(*\<^sub>R) x = (\<lambda>x. 0::'a)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1140 | by (auto simp: fun_eq_iff) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1141 | then show ?thesis by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1142 | next | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1143 | assume "x \<noteq> 0" then show ?thesis | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1144 | using lebesgue_affine_measurable[of "\<lambda>_. x" 0] | 
| 64267 | 1145 | unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1146 | by (auto simp add: ac_simps) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1147 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1148 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1149 | lemma | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1150 | fixes m :: real and \<delta> :: "'a::euclidean_space" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1151 | defines "T r d x \<equiv> r *\<^sub>R x + d" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1152 |   shows emeasure_lebesgue_affine: "emeasure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * emeasure lebesgue S" (is ?e)
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1153 |     and measure_lebesgue_affine: "measure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * measure lebesgue S" (is ?m)
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1154 | proof - | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1155 | show ?e | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1156 | proof cases | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1157 | assume "m = 0" then show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1158 | by (simp add: image_constant_conv T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1159 | next | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1160 | let ?T = "T m \<delta>" and ?T' = "T (1 / m) (- ((1/m) *\<^sub>R \<delta>))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1161 | assume "m \<noteq> 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1162 | then have s_comp_s: "?T' \<circ> ?T = id" "?T \<circ> ?T' = id" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1163 | by (auto simp: T_def[abs_def] fun_eq_iff scaleR_add_right scaleR_diff_right) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1164 | then have "inv ?T' = ?T" "bij ?T'" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1165 | by (auto intro: inv_unique_comp o_bij) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1166 | then have eq: "T m \<delta> ` S = T (1 / m) ((-1/m) *\<^sub>R \<delta>) -` S \<inter> space lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1167 | using bij_vimage_eq_inv_image[OF \<open>bij ?T'\<close>, of S] by auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1168 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1169 | have trans_eq_T: "(\<lambda>x. \<delta> + (\<Sum>j\<in>Basis. (m * (x \<bullet> j)) *\<^sub>R j)) = T m \<delta>" for m \<delta> | 
| 64267 | 1170 | unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1171 | by (auto simp add: euclidean_representation ac_simps) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1172 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1173 | have T[measurable]: "T r d \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" for r d | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1174 | using lebesgue_affine_measurable[of "\<lambda>_. r" d] | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1175 | by (cases "r = 0") (auto simp: trans_eq_T T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1176 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1177 | show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1178 | proof cases | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1179 | assume "S \<in> sets lebesgue" with \<open>m \<noteq> 0\<close> show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1180 | unfolding eq | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1181 | apply (subst lebesgue_affine_euclidean[of "\<lambda>_. m" \<delta>]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1182 | apply (simp_all add: emeasure_density trans_eq_T nn_integral_cmult emeasure_distr | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1183 | del: space_completion emeasure_completion) | 
| 71172 | 1184 | apply (simp add: vimage_comp s_comp_s) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1185 | done | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1186 | next | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1187 | assume "S \<notin> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1188 | moreover have "?T ` S \<notin> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1189 | proof | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1190 | assume "?T ` S \<in> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1191 | then have "?T -` (?T ` S) \<inter> space lebesgue \<in> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1192 | by (rule measurable_sets[OF T]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1193 | also have "?T -` (?T ` S) \<inter> space lebesgue = S" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1194 | by (simp add: vimage_comp s_comp_s eq) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1195 | finally show False using \<open>S \<notin> sets lebesgue\<close> by auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1196 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1197 | ultimately show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1198 | by (simp add: emeasure_notin_sets) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1199 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1200 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1201 | show ?m | 
| 64272 | 1202 | unfolding measure_def \<open>?e\<close> by (simp add: enn2real_mult prod_nonneg) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1203 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1204 | |
| 67135 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1205 | lemma lebesgue_real_scale: | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1206 | assumes "c \<noteq> 0" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1207 | shows "lebesgue = density (distr lebesgue lebesgue (\<lambda>x. c * x)) (\<lambda>x. ennreal \<bar>c\<bar>)" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1208 | using assms by (subst lebesgue_affine_euclidean[of "\<lambda>_. c" 0]) simp_all | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1209 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1210 | lemma divideR_right: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1211 | fixes x y :: "'a::real_normed_vector" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1212 | shows "r \<noteq> 0 \<Longrightarrow> y = x /\<^sub>R r \<longleftrightarrow> r *\<^sub>R y = x" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1213 | using scaleR_cancel_left[of r y "x /\<^sub>R r"] by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1214 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1215 | lemma lborel_has_bochner_integral_real_affine_iff: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1216 |   fixes x :: "'a :: {banach, second_countable_topology}"
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1217 | shows "c \<noteq> 0 \<Longrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1218 | has_bochner_integral lborel f x \<longleftrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1219 | has_bochner_integral lborel (\<lambda>x. f (t + c * x)) (x /\<^sub>R \<bar>c\<bar>)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1220 | unfolding has_bochner_integral_iff lborel_integrable_real_affine_iff | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1221 | by (simp_all add: lborel_integral_real_affine[symmetric] divideR_right cong: conj_cong) | 
| 49777 | 1222 | |
| 59425 | 1223 | lemma lborel_distr_uminus: "distr lborel borel uminus = (lborel :: real measure)" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1224 | by (subst lborel_real_affine[of "-1" 0]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1225 | (auto simp: density_1 one_ennreal_def[symmetric]) | 
| 59425 | 1226 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1227 | lemma lborel_distr_mult: | 
| 59425 | 1228 | assumes "(c::real) \<noteq> 0" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1229 | shows "distr lborel borel ((*) c) = density lborel (\<lambda>_. inverse \<bar>c\<bar>)" | 
| 59425 | 1230 | proof- | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1231 | have "distr lborel borel ((*) c) = distr lborel lborel ((*) c)" by (simp cong: distr_cong) | 
| 59425 | 1232 | also from assms have "... = density lborel (\<lambda>_. inverse \<bar>c\<bar>)" | 
| 1233 | by (subst lborel_real_affine[of "inverse c" 0]) (auto simp: o_def distr_density_distr) | |
| 1234 | finally show ?thesis . | |
| 1235 | qed | |
| 1236 | ||
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1237 | lemma lborel_distr_mult': | 
| 59425 | 1238 | assumes "(c::real) \<noteq> 0" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1239 | shows "lborel = density (distr lborel borel ((*) c)) (\<lambda>_. \<bar>c\<bar>)" | 
| 59425 | 1240 | proof- | 
| 1241 | have "lborel = density lborel (\<lambda>_. 1)" by (rule density_1[symmetric]) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1242 | also from assms have "(\<lambda>_. 1 :: ennreal) = (\<lambda>_. inverse \<bar>c\<bar> * \<bar>c\<bar>)" by (intro ext) simp | 
| 61945 | 1243 | also have "density lborel ... = density (density lborel (\<lambda>_. inverse \<bar>c\<bar>)) (\<lambda>_. \<bar>c\<bar>)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1244 | by (subst density_density_eq) (auto simp: ennreal_mult) | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1245 | also from assms have "density lborel (\<lambda>_. inverse \<bar>c\<bar>) = distr lborel borel ((*) c)" | 
| 59425 | 1246 | by (rule lborel_distr_mult[symmetric]) | 
| 1247 | finally show ?thesis . | |
| 1248 | qed | |
| 1249 | ||
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1250 | lemma lborel_distr_plus: | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1251 | fixes c :: "'a::euclidean_space" | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1252 | shows "distr lborel borel ((+) c) = lborel" | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1253 | by (subst lborel_affine[of 1 c], auto simp: density_1) | 
| 59425 | 1254 | |
| 61605 | 1255 | interpretation lborel: sigma_finite_measure lborel | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1256 | by (rule sigma_finite_lborel) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1257 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1258 | interpretation lborel_pair: pair_sigma_finite lborel lborel .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1259 | |
| 70136 | 1260 | lemma\<^marker>\<open>tag important\<close> lborel_prod: | 
| 59425 | 1261 |   "lborel \<Otimes>\<^sub>M lborel = (lborel :: ('a::euclidean_space \<times> 'b::euclidean_space) measure)"
 | 
| 70136 | 1262 | proof (rule lborel_eqI[symmetric], clarify) | 
| 59425 | 1263 | fix la ua :: 'a and lb ub :: 'b | 
| 1264 | assume lu: "\<And>a b. (a, b) \<in> Basis \<Longrightarrow> (la, lb) \<bullet> (a, b) \<le> (ua, ub) \<bullet> (a, b)" | |
| 1265 | have [simp]: | |
| 1266 | "\<And>b. b \<in> Basis \<Longrightarrow> la \<bullet> b \<le> ua \<bullet> b" | |
| 1267 | "\<And>b. b \<in> Basis \<Longrightarrow> lb \<bullet> b \<le> ub \<bullet> b" | |
| 1268 | "inj_on (\<lambda>u. (u, 0)) Basis" "inj_on (\<lambda>u. (0, u)) Basis" | |
| 1269 |     "(\<lambda>u. (u, 0)) ` Basis \<inter> (\<lambda>u. (0, u)) ` Basis = {}"
 | |
| 1270 | "box (la, lb) (ua, ub) = box la ua \<times> box lb ub" | |
| 1271 | using lu[of _ 0] lu[of 0] by (auto intro!: inj_onI simp add: Basis_prod_def ball_Un box_def) | |
| 1272 | show "emeasure (lborel \<Otimes>\<^sub>M lborel) (box (la, lb) (ua, ub)) = | |
| 67399 | 1273 | ennreal (prod ((\<bullet>) ((ua, ub) - (la, lb))) Basis)" | 
| 64272 | 1274 | by (simp add: lborel.emeasure_pair_measure_Times Basis_prod_def prod.union_disjoint | 
| 1275 | prod.reindex ennreal_mult inner_diff_left prod_nonneg) | |
| 59425 | 1276 | qed (simp add: borel_prod[symmetric]) | 
| 1277 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1278 | (* FIXME: conversion in measurable prover *) | 
| 68120 | 1279 | lemma lborelD_Collect[measurable (raw)]: "{x\<in>space borel. P x} \<in> sets borel \<Longrightarrow> {x\<in>space lborel. P x} \<in> sets lborel" 
 | 
| 1280 | by simp | |
| 1281 | ||
| 1282 | lemma lborelD[measurable (raw)]: "A \<in> sets borel \<Longrightarrow> A \<in> sets lborel" | |
| 1283 | by simp | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1284 | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1285 | lemma emeasure_bounded_finite: | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1286 | assumes "bounded A" shows "emeasure lborel A < \<infinity>" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1287 | proof - | 
| 68120 | 1288 | obtain a b where "A \<subseteq> cbox a b" | 
| 1289 | by (meson bounded_subset_cbox_symmetric \<open>bounded A\<close>) | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1290 | then have "emeasure lborel A \<le> emeasure lborel (cbox a b)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1291 | by (intro emeasure_mono) auto | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1292 | then show ?thesis | 
| 64272 | 1293 | by (auto simp: emeasure_lborel_cbox_eq prod_nonneg less_top[symmetric] top_unique split: if_split_asm) | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1294 | qed | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1295 | |
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1296 | lemma emeasure_compact_finite: "compact A \<Longrightarrow> emeasure lborel A < \<infinity>" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1297 | using emeasure_bounded_finite[of A] by (auto intro: compact_imp_bounded) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1298 | |
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1299 | lemma borel_integrable_compact: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1300 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1301 | assumes "compact S" "continuous_on S f" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1302 | shows "integrable lborel (\<lambda>x. indicator S x *\<^sub>R f x)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1303 | proof cases | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1304 |   assume "S \<noteq> {}"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1305 | have "continuous_on S (\<lambda>x. norm (f x))" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1306 | using assms by (intro continuous_intros) | 
| 61808 | 1307 |   from continuous_attains_sup[OF \<open>compact S\<close> \<open>S \<noteq> {}\<close> this]
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1308 | obtain M where M: "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> M" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1309 | by auto | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1310 | show ?thesis | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1311 | proof (rule integrable_bound) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1312 | show "integrable lborel (\<lambda>x. indicator S x * M)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1313 | using assms by (auto intro!: emeasure_compact_finite borel_compact integrable_mult_left) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1314 | show "(\<lambda>x. indicator S x *\<^sub>R f x) \<in> borel_measurable lborel" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1315 | using assms by (auto intro!: borel_measurable_continuous_on_indicator borel_compact) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1316 | show "AE x in lborel. norm (indicator S x *\<^sub>R f x) \<le> norm (indicator S x * M)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1317 | by (auto split: split_indicator simp: abs_real_def dest!: M) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1318 | qed | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1319 | qed simp | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1320 | |
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1321 | lemma borel_integrable_atLeastAtMost: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1322 | fixes f :: "real \<Rightarrow> real" | 
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1323 | assumes f: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x" | 
| 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1324 |   shows "integrable lborel (\<lambda>x. f x * indicator {a .. b} x)" (is "integrable _ ?f")
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1325 | proof - | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1326 |   have "integrable lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x)"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1327 | proof (rule borel_integrable_compact) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1328 |     from f show "continuous_on {a..b} f"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1329 | by (auto intro: continuous_at_imp_continuous_on) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1330 | qed simp | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1331 | then show ?thesis | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 1332 | by (auto simp: mult.commute) | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1333 | qed | 
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1334 | |
| 69447 | 1335 | subsection \<open>Lebesgue measurable sets\<close> | 
| 67984 | 1336 | |
| 70136 | 1337 | abbreviation\<^marker>\<open>tag important\<close> lmeasurable :: "'a::euclidean_space set set" | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1338 | where | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1339 | "lmeasurable \<equiv> fmeasurable lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1340 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 1341 | lemma not_measurable_UNIV [simp]: "UNIV \<notin> lmeasurable" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 1342 | by (simp add: fmeasurable_def) | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 1343 | |
| 70136 | 1344 | lemma\<^marker>\<open>tag important\<close> lmeasurable_iff_integrable: | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1345 | "S \<in> lmeasurable \<longleftrightarrow> integrable lebesgue (indicator S :: 'a::euclidean_space \<Rightarrow> real)" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1346 | by (auto simp: fmeasurable_def integrable_iff_bounded borel_measurable_indicator_iff ennreal_indicator) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1347 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1348 | lemma lmeasurable_cbox [iff]: "cbox a b \<in> lmeasurable" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1349 | and lmeasurable_box [iff]: "box a b \<in> lmeasurable" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1350 | by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1351 | |
| 70532 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1352 | lemma | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1353 | fixes a::real | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1354 |   shows lmeasurable_interval [iff]: "{a..b} \<in> lmeasurable" "{a<..<b} \<in> lmeasurable"
 | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1355 | apply (metis box_real(2) lmeasurable_cbox) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1356 | by (metis box_real(1) lmeasurable_box) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1357 | |
| 67989 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1358 | lemma fmeasurable_compact: "compact S \<Longrightarrow> S \<in> fmeasurable lborel" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1359 | using emeasure_compact_finite[of S] by (intro fmeasurableI) (auto simp: borel_compact) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1360 | |
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1361 | lemma lmeasurable_compact: "compact S \<Longrightarrow> S \<in> lmeasurable" | 
| 67989 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1362 | using fmeasurable_compact by (force simp: fmeasurable_def) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1363 | |
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1364 | lemma measure_frontier: | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1365 | "bounded S \<Longrightarrow> measure lebesgue (frontier S) = measure lebesgue (closure S) - measure lebesgue (interior S)" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1366 | using closure_subset interior_subset | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1367 | by (auto simp: frontier_def fmeasurable_compact intro!: measurable_measure_Diff) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1368 | |
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1369 | lemma lmeasurable_closure: | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1370 | "bounded S \<Longrightarrow> closure S \<in> lmeasurable" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1371 | by (simp add: lmeasurable_compact) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1372 | |
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1373 | lemma lmeasurable_frontier: | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1374 | "bounded S \<Longrightarrow> frontier S \<in> lmeasurable" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1375 | by (simp add: compact_frontier_bounded lmeasurable_compact) | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1376 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1377 | lemma lmeasurable_open: "bounded S \<Longrightarrow> open S \<Longrightarrow> S \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1378 | using emeasure_bounded_finite[of S] by (intro fmeasurableI) (auto simp: borel_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1379 | |
| 67990 | 1380 | lemma lmeasurable_ball [simp]: "ball a r \<in> lmeasurable" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1381 | by (simp add: lmeasurable_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1382 | |
| 67990 | 1383 | lemma lmeasurable_cball [simp]: "cball a r \<in> lmeasurable" | 
| 1384 | by (simp add: lmeasurable_compact) | |
| 1385 | ||
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1386 | lemma lmeasurable_interior: "bounded S \<Longrightarrow> interior S \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1387 | by (simp add: bounded_interior lmeasurable_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1388 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1389 | lemma null_sets_cbox_Diff_box: "cbox a b - box a b \<in> null_sets lborel" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1390 | proof - | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1391 | have "emeasure lborel (cbox a b - box a b) = 0" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1392 | by (subst emeasure_Diff) (auto simp: emeasure_lborel_cbox_eq emeasure_lborel_box_eq box_subset_cbox) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1393 | then have "cbox a b - box a b \<in> null_sets lborel" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1394 | by (auto simp: null_sets_def) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1395 | then show ?thesis | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1396 | by (auto dest!: AE_not_in) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1397 | qed | 
| 67968 | 1398 | |
| 67984 | 1399 | lemma bounded_set_imp_lmeasurable: | 
| 1400 | assumes "bounded S" "S \<in> sets lebesgue" shows "S \<in> lmeasurable" | |
| 1401 | by (metis assms bounded_Un emeasure_bounded_finite emeasure_completion fmeasurableI main_part_null_part_Un) | |
| 1402 | ||
| 70381 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1403 | lemma finite_measure_lebesgue_on: "S \<in> lmeasurable \<Longrightarrow> finite_measure (lebesgue_on S)" | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1404 | by (auto simp: finite_measureI fmeasurable_def emeasure_restrict_space) | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1405 | |
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1406 | lemma integrable_const_ivl [iff]: | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1407 | fixes a::"'a::ordered_euclidean_space" | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1408 |   shows "integrable (lebesgue_on {a..b}) (\<lambda>x. c)"
 | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1409 | by (metis cbox_interval finite_measure.integrable_const finite_measure_lebesgue_on lmeasurable_cbox) | 
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1410 | |
| 70136 | 1411 | subsection\<^marker>\<open>tag unimportant\<close>\<open>Translation preserves Lebesgue measure\<close> | 
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1412 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1413 | lemma sigma_sets_image: | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1414 | assumes S: "S \<in> sigma_sets \<Omega> M" and "M \<subseteq> Pow \<Omega>" "f ` \<Omega> = \<Omega>" "inj_on f \<Omega>" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1415 | and M: "\<And>y. y \<in> M \<Longrightarrow> f ` y \<in> M" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1416 | shows "(f ` S) \<in> sigma_sets \<Omega> M" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1417 | using S | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1418 | proof (induct S rule: sigma_sets.induct) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1419 | case (Basic a) then show ?case | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1420 | by (simp add: M) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1421 | next | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1422 | case Empty then show ?case | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1423 | by (simp add: sigma_sets.Empty) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1424 | next | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1425 | case (Compl a) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1426 | then have "\<Omega> - a \<subseteq> \<Omega>" "a \<subseteq> \<Omega>" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1427 | by (auto simp: sigma_sets_into_sp [OF \<open>M \<subseteq> Pow \<Omega>\<close>]) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1428 | then show ?case | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1429 | by (auto simp: inj_on_image_set_diff [OF \<open>inj_on f \<Omega>\<close>] assms intro: Compl sigma_sets.Compl) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1430 | next | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1431 | case (Union a) then show ?case | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1432 | by (metis image_UN sigma_sets.simps) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1433 | qed | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1434 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1435 | lemma null_sets_translation: | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1436 |   assumes "N \<in> null_sets lborel" shows "{x. x - a \<in> N} \<in> null_sets lborel"
 | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1437 | proof - | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1438 |   have [simp]: "(\<lambda>x. x + a) ` N = {x. x - a \<in> N}"
 | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1439 | by force | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1440 | show ?thesis | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1441 | using assms emeasure_lebesgue_affine [of 1 a N] by (auto simp: null_sets_def) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1442 | qed | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1443 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1444 | lemma lebesgue_sets_translation: | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1445 | fixes f :: "'a \<Rightarrow> 'a::euclidean_space" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1446 | assumes S: "S \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1447 | shows "((\<lambda>x. a + x) ` S) \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1448 | proof - | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1449 |   have im_eq: "(+) a ` A = {x. x - a \<in> A}" for A
 | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1450 | by force | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1451 | have "((\<lambda>x. a + x) ` S) = ((\<lambda>x. -a + x) -` S) \<inter> (space lebesgue)" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1452 | using image_iff by fastforce | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1453 | also have "\<dots> \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1454 | proof (rule measurable_sets [OF measurableI assms]) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1455 | fix A :: "'b set" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1456 | assume A: "A \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1457 | have vim_eq: "(\<lambda>x. x - a) -` A = (+) a ` A" for A | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1458 | by force | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1459 | have "\<exists>s n N'. (+) a ` (S \<union> N) = s \<union> n \<and> s \<in> sets borel \<and> N' \<in> null_sets lborel \<and> n \<subseteq> N'" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1460 | if "S \<in> sets borel" and "N' \<in> null_sets lborel" and "N \<subseteq> N'" for S N N' | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1461 | proof (intro exI conjI) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1462 | show "(+) a ` (S \<union> N) = (\<lambda>x. a + x) ` S \<union> (\<lambda>x. a + x) ` N" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1463 | by auto | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1464 | show "(\<lambda>x. a + x) ` N' \<in> null_sets lborel" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1465 | using that by (auto simp: null_sets_translation im_eq) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1466 | qed (use that im_eq in auto) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1467 | with A have "(\<lambda>x. x - a) -` A \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1468 | by (force simp: vim_eq completion_def intro!: sigma_sets_image) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1469 | then show "(+) (- a) -` A \<inter> space lebesgue \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1470 | by (auto simp: vimage_def im_eq) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1471 | qed auto | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1472 | finally show ?thesis . | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1473 | qed | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1474 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1475 | lemma measurable_translation: | 
| 69661 | 1476 | "S \<in> lmeasurable \<Longrightarrow> ((+) a ` S) \<in> lmeasurable" | 
| 1477 | using emeasure_lebesgue_affine [of 1 a S] | |
| 1478 | apply (auto intro: lebesgue_sets_translation simp add: fmeasurable_def cong: image_cong_simp) | |
| 1479 | apply (simp add: ac_simps) | |
| 1480 | done | |
| 1481 | ||
| 1482 | lemma measurable_translation_subtract: | |
| 1483 | "S \<in> lmeasurable \<Longrightarrow> ((\<lambda>x. x - a) ` S) \<in> lmeasurable" | |
| 1484 | using measurable_translation [of S "- a"] by (simp cong: image_cong_simp) | |
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1485 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1486 | lemma measure_translation: | 
| 69661 | 1487 | "measure lebesgue ((+) a ` S) = measure lebesgue S" | 
| 1488 | using measure_lebesgue_affine [of 1 a S] by (simp add: ac_simps cong: image_cong_simp) | |
| 1489 | ||
| 1490 | lemma measure_translation_subtract: | |
| 1491 | "measure lebesgue ((\<lambda>x. x - a) ` S) = measure lebesgue S" | |
| 1492 | using measure_translation [of "- a"] by (simp cong: image_cong_simp) | |
| 1493 | ||
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1494 | |
| 67968 | 1495 | subsection \<open>A nice lemma for negligibility proofs\<close> | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1496 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1497 | lemma summable_iff_suminf_neq_top: "(\<And>n. f n \<ge> 0) \<Longrightarrow> \<not> summable f \<Longrightarrow> (\<Sum>i. ennreal (f i)) = top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1498 | by (metis summable_suminf_not_top) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1499 | |
| 70136 | 1500 | proposition\<^marker>\<open>tag important\<close> starlike_negligible_bounded_gmeasurable: | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1501 | fixes S :: "'a :: euclidean_space set" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1502 | assumes S: "S \<in> sets lebesgue" and "bounded S" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1503 | and eq1: "\<And>c x. \<lbrakk>(c *\<^sub>R x) \<in> S; 0 \<le> c; x \<in> S\<rbrakk> \<Longrightarrow> c = 1" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1504 | shows "S \<in> null_sets lebesgue" | 
| 70136 | 1505 | proof - | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1506 | obtain M where "0 < M" "S \<subseteq> ball 0 M" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1507 | using \<open>bounded S\<close> by (auto dest: bounded_subset_ballD) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1508 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1509 |   let ?f = "\<lambda>n. root DIM('a) (Suc n)"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1510 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1511 | have vimage_eq_image: "(*\<^sub>R) (?f n) -` S = (*\<^sub>R) (1 / ?f n) ` S" for n | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1512 | apply safe | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1513 | subgoal for x by (rule image_eqI[of _ _ "?f n *\<^sub>R x"]) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1514 | subgoal by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1515 | done | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1516 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1517 |   have eq: "(1 / ?f n) ^ DIM('a) = 1 / Suc n" for n
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1518 | by (simp add: field_simps) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1519 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1520 |   { fix n x assume x: "root DIM('a) (1 + real n) *\<^sub>R x \<in> S"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1521 |     have "1 * norm x \<le> root DIM('a) (1 + real n) * norm x"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1522 | by (rule mult_mono) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1523 | also have "\<dots> < M" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1524 | using x \<open>S \<subseteq> ball 0 M\<close> by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1525 | finally have "norm x < M" by simp } | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1526 | note less_M = this | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1527 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1528 | have "(\<Sum>n. ennreal (1 / Suc n)) = top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1529 | using not_summable_harmonic[where 'a=real] summable_Suc_iff[where f="\<lambda>n. 1 / (real n)"] | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1530 | by (intro summable_iff_suminf_neq_top) (auto simp add: inverse_eq_divide) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1531 |   then have "top * emeasure lebesgue S = (\<Sum>n. (1 / ?f n)^DIM('a) * emeasure lebesgue S)"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1532 | unfolding ennreal_suminf_multc eq by simp | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1533 | also have "\<dots> = (\<Sum>n. emeasure lebesgue ((*\<^sub>R) (?f n) -` S))" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1534 | unfolding vimage_eq_image using emeasure_lebesgue_affine[of "1 / ?f n" 0 S for n] by simp | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1535 | also have "\<dots> = emeasure lebesgue (\<Union>n. (*\<^sub>R) (?f n) -` S)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1536 | proof (intro suminf_emeasure) | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1537 | show "disjoint_family (\<lambda>n. (*\<^sub>R) (?f n) -` S)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1538 | unfolding disjoint_family_on_def | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1539 | proof safe | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1540 | fix m n :: nat and x assume "m \<noteq> n" "?f m *\<^sub>R x \<in> S" "?f n *\<^sub>R x \<in> S" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1541 |       with eq1[of "?f m / ?f n" "?f n *\<^sub>R x"] show "x \<in> {}"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1542 | by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1543 | qed | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1544 | have "(*\<^sub>R) (?f i) -` S \<in> sets lebesgue" for i | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1545 | using measurable_sets[OF lebesgue_measurable_scaling[of "?f i"] S] by auto | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1546 | then show "range (\<lambda>i. (*\<^sub>R) (?f i) -` S) \<subseteq> sets lebesgue" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1547 | by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1548 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1549 | also have "\<dots> \<le> emeasure lebesgue (ball 0 M :: 'a set)" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1550 | using less_M by (intro emeasure_mono) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1551 | also have "\<dots> < top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1552 | using lmeasurable_ball by (auto simp: fmeasurable_def) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1553 | finally have "emeasure lebesgue S = 0" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1554 | by (simp add: ennreal_top_mult split: if_split_asm) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1555 | then show "S \<in> null_sets lebesgue" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1556 | unfolding null_sets_def using \<open>S \<in> sets lebesgue\<close> by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1557 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1558 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1559 | corollary starlike_negligible_compact: | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1560 | "compact S \<Longrightarrow> (\<And>c x. \<lbrakk>(c *\<^sub>R x) \<in> S; 0 \<le> c; x \<in> S\<rbrakk> \<Longrightarrow> c = 1) \<Longrightarrow> S \<in> null_sets lebesgue" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1561 | using starlike_negligible_bounded_gmeasurable[of S] by (auto simp: compact_eq_bounded_closed) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1562 | |
| 67998 | 1563 | proposition outer_regular_lborel_le: | 
| 1564 | assumes B[measurable]: "B \<in> sets borel" and "0 < (e::real)" | |
| 1565 | obtains U where "open U" "B \<subseteq> U" and "emeasure lborel (U - B) \<le> e" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1566 | proof - | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1567 | let ?\<mu> = "emeasure lborel" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1568 | let ?B = "\<lambda>n::nat. ball 0 n :: 'a set" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1569 | let ?e = "\<lambda>n. e*((1/2)^Suc n)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1570 | have "\<forall>n. \<exists>U. open U \<and> ?B n \<inter> B \<subseteq> U \<and> ?\<mu> (U - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1571 | proof | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1572 | fix n :: nat | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1573 | let ?A = "density lborel (indicator (?B n))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1574 | have emeasure_A: "X \<in> sets borel \<Longrightarrow> emeasure ?A X = ?\<mu> (?B n \<inter> X)" for X | 
| 67998 | 1575 | by (auto simp: emeasure_density borel_measurable_indicator indicator_inter_arith[symmetric]) | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1576 | |
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1577 | have finite_A: "emeasure ?A (space ?A) \<noteq> \<infinity>" | 
| 67998 | 1578 | using emeasure_bounded_finite[of "?B n"] by (auto simp: emeasure_A) | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1579 | interpret A: finite_measure ?A | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1580 | by rule fact | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 1581 |     have "emeasure ?A B + ?e n > (INF U\<in>{U. B \<subseteq> U \<and> open U}. emeasure ?A U)"
 | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1582 | using \<open>0<e\<close> by (auto simp: outer_regular[OF _ finite_A B, symmetric]) | 
| 67998 | 1583 | then obtain U where U: "B \<subseteq> U" "open U" and muU: "?\<mu> (?B n \<inter> B) + ?e n > ?\<mu> (?B n \<inter> U)" | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1584 | unfolding INF_less_iff by (auto simp: emeasure_A) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1585 | moreover | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1586 |     { have "?\<mu> ((?B n \<inter> U) - B) = ?\<mu> ((?B n \<inter> U) - (?B n \<inter> B))"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1587 | using U by (intro arg_cong[where f="?\<mu>"]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1588 | also have "\<dots> = ?\<mu> (?B n \<inter> U) - ?\<mu> (?B n \<inter> B)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1589 | using U A.emeasure_finite[of B] | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1590 | by (intro emeasure_Diff) (auto simp del: A.emeasure_finite simp: emeasure_A) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1591 | also have "\<dots> < ?e n" | 
| 67998 | 1592 | using U muU A.emeasure_finite[of B] | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1593 | by (subst minus_less_iff_ennreal) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1594 | (auto simp del: A.emeasure_finite simp: emeasure_A less_top ac_simps intro!: emeasure_mono) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1595 | finally have "?\<mu> ((?B n \<inter> U) - B) < ?e n" . } | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1596 | ultimately show "\<exists>U. open U \<and> ?B n \<inter> B \<subseteq> U \<and> ?\<mu> (U - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1597 | by (intro exI[of _ "?B n \<inter> U"]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1598 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1599 | then obtain U | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1600 | where U: "\<And>n. open (U n)" "\<And>n. ?B n \<inter> B \<subseteq> U n" "\<And>n. ?\<mu> (U n - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1601 | by metis | 
| 67998 | 1602 | show ?thesis | 
| 1603 | proof | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1604 |     { fix x assume "x \<in> B"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1605 | moreover | 
| 67998 | 1606 | obtain n where "norm x < real n" | 
| 1607 | using reals_Archimedean2 by blast | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1608 | ultimately have "x \<in> (\<Union>n. U n)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1609 | using U(2)[of n] by auto } | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1610 | note * = this | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1611 | then show "open (\<Union>n. U n)" "B \<subseteq> (\<Union>n. U n)" | 
| 67998 | 1612 | using U by auto | 
| 1613 | have "?\<mu> (\<Union>n. U n - B) \<le> (\<Sum>n. ?\<mu> (U n - B))" | |
| 1614 | using U(1) by (intro emeasure_subadditive_countably) auto | |
| 1615 | also have "\<dots> \<le> (\<Sum>n. ennreal (?e n))" | |
| 1616 | using U(3) by (intro suminf_le) (auto intro: less_imp_le) | |
| 1617 | also have "\<dots> = ennreal (e * 1)" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1618 | using \<open>0<e\<close> by (intro suminf_ennreal_eq sums_mult power_half_series) auto | 
| 67998 | 1619 | finally show "emeasure lborel ((\<Union>n. U n) - B) \<le> ennreal e" | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1620 | by simp | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1621 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1622 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1623 | |
| 70136 | 1624 | lemma\<^marker>\<open>tag important\<close> outer_regular_lborel: | 
| 67998 | 1625 | assumes B: "B \<in> sets borel" and "0 < (e::real)" | 
| 1626 | obtains U where "open U" "B \<subseteq> U" "emeasure lborel (U - B) < e" | |
| 70136 | 1627 | proof - | 
| 67998 | 1628 | obtain U where U: "open U" "B \<subseteq> U" and "emeasure lborel (U-B) \<le> e/2" | 
| 1629 | using outer_regular_lborel_le [OF B, of "e/2"] \<open>e > 0\<close> | |
| 1630 | by force | |
| 1631 | moreover have "ennreal (e/2) < ennreal e" | |
| 1632 | using \<open>e > 0\<close> by (simp add: ennreal_lessI) | |
| 1633 | ultimately have "emeasure lborel (U-B) < e" | |
| 1634 | by auto | |
| 1635 | with U show ?thesis | |
| 1636 | using that by auto | |
| 1637 | qed | |
| 1638 | ||
| 1639 | lemma completion_upper: | |
| 1640 | assumes A: "A \<in> sets (completion M)" | |
| 1641 | obtains A' where "A \<subseteq> A'" "A' \<in> sets M" "A' - A \<in> null_sets (completion M)" | |
| 1642 | "emeasure (completion M) A = emeasure M A'" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1643 | proof - | 
| 67998 | 1644 | from AE_notin_null_part[OF A] obtain N where N: "N \<in> null_sets M" "null_part M A \<subseteq> N" | 
| 1645 | unfolding eventually_ae_filter using null_part_null_sets[OF A, THEN null_setsD2, THEN sets.sets_into_space] by auto | |
| 1646 | let ?A' = "main_part M A \<union> N" | |
| 1647 | show ?thesis | |
| 1648 | proof | |
| 1649 | show "A \<subseteq> ?A'" | |
| 1650 | using \<open>null_part M A \<subseteq> N\<close> by (subst main_part_null_part_Un[symmetric, OF A]) auto | |
| 1651 | have "main_part M A \<subseteq> A" | |
| 1652 | using assms main_part_null_part_Un by auto | |
| 1653 | then have "?A' - A \<subseteq> N" | |
| 1654 | by blast | |
| 1655 | with N show "?A' - A \<in> null_sets (completion M)" | |
| 1656 | by (blast intro: null_sets_completionI completion.complete_measure_axioms complete_measure.complete2) | |
| 1657 | show "emeasure (completion M) A = emeasure M (main_part M A \<union> N)" | |
| 1658 | using A \<open>N \<in> null_sets M\<close> by (simp add: emeasure_Un_null_set) | |
| 1659 | qed (use A N in auto) | |
| 1660 | qed | |
| 1661 | ||
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1662 | lemma sets_lebesgue_outer_open: | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1663 | fixes e::real | 
| 67998 | 1664 | assumes S: "S \<in> sets lebesgue" and "e > 0" | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1665 | obtains T where "open T" "S \<subseteq> T" "(T - S) \<in> lmeasurable" "emeasure lebesgue (T - S) < ennreal e" | 
| 67998 | 1666 | proof - | 
| 1667 | obtain S' where S': "S \<subseteq> S'" "S' \<in> sets borel" | |
| 1668 | and null: "S' - S \<in> null_sets lebesgue" | |
| 1669 | and em: "emeasure lebesgue S = emeasure lborel S'" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1670 | using completion_upper[of S lborel] S by auto | 
| 67998 | 1671 | then have f_S': "S' \<in> sets borel" | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1672 | using S by (auto simp: fmeasurable_def) | 
| 67998 | 1673 | with outer_regular_lborel[OF _ \<open>0<e\<close>] | 
| 1674 | obtain U where U: "open U" "S' \<subseteq> U" "emeasure lborel (U - S') < e" | |
| 1675 | by blast | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1676 | show thesis | 
| 67998 | 1677 | proof | 
| 1678 | show "open U" "S \<subseteq> U" | |
| 1679 | using f_S' U S' by auto | |
| 1680 | have "(U - S) = (U - S') \<union> (S' - S)" | |
| 1681 | using S' U by auto | |
| 1682 | then have eq: "emeasure lebesgue (U - S) = emeasure lborel (U - S')" | |
| 1683 | using null by (simp add: U(1) emeasure_Un_null_set f_S' sets.Diff) | |
| 1684 | have "(U - S) \<in> sets lebesgue" | |
| 1685 | by (simp add: S U(1) sets.Diff) | |
| 1686 | then show "(U - S) \<in> lmeasurable" | |
| 1687 | unfolding fmeasurable_def using U(3) eq less_le_trans by fastforce | |
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1688 | with eq U show "emeasure lebesgue (U - S) < e" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1689 | by (simp add: eq) | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1690 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1691 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1692 | |
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1693 | lemma sets_lebesgue_inner_closed: | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1694 | fixes e::real | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1695 | assumes "S \<in> sets lebesgue" "e > 0" | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1696 | obtains T where "closed T" "T \<subseteq> S" "S-T \<in> lmeasurable" "emeasure lebesgue (S - T) < ennreal e" | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1697 | proof - | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1698 | have "-S \<in> sets lebesgue" | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1699 | using assms by (simp add: Compl_in_sets_lebesgue) | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1700 | then obtain T where "open T" "-S \<subseteq> T" | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1701 | and T: "(T - -S) \<in> lmeasurable" "emeasure lebesgue (T - -S) < e" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1702 | using sets_lebesgue_outer_open assms by blast | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1703 | show thesis | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1704 | proof | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1705 | show "closed (-T)" | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1706 | using \<open>open T\<close> by blast | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1707 | show "-T \<subseteq> S" | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1708 | using \<open>- S \<subseteq> T\<close> by auto | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1709 | show "S - ( -T) \<in> lmeasurable" "emeasure lebesgue (S - (- T)) < e" | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1710 | using T by (auto simp: Int_commute) | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1711 | qed | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1712 | qed | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1713 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1714 | lemma lebesgue_openin: | 
| 69922 
4a9167f377b0
new material about topology, etc.; also fixes for yesterday's
 paulson <lp15@cam.ac.uk> parents: 
69661diff
changeset | 1715 | "\<lbrakk>openin (top_of_set S) T; S \<in> sets lebesgue\<rbrakk> \<Longrightarrow> T \<in> sets lebesgue" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1716 | by (metis borel_open openin_open sets.Int sets_completionI_sets sets_lborel) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1717 | |
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1718 | lemma lebesgue_closedin: | 
| 69922 
4a9167f377b0
new material about topology, etc.; also fixes for yesterday's
 paulson <lp15@cam.ac.uk> parents: 
69661diff
changeset | 1719 | "\<lbrakk>closedin (top_of_set S) T; S \<in> sets lebesgue\<rbrakk> \<Longrightarrow> T \<in> sets lebesgue" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1720 | by (metis borel_closed closedin_closed sets.Int sets_completionI_sets sets_lborel) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1721 | |
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1722 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1723 | subsection\<open>\<open>F_sigma\<close> and \<open>G_delta\<close> sets.\<close> | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1724 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1725 | \<comment> \<open>\<^url>\<open>https://en.wikipedia.org/wiki/F-sigma_set\<close>\<close> | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1726 | inductive\<^marker>\<open>tag important\<close> fsigma :: "'a::topological_space set \<Rightarrow> bool" where | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1727 | "(\<And>n::nat. closed (F n)) \<Longrightarrow> fsigma (\<Union>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1728 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1729 | inductive\<^marker>\<open>tag important\<close> gdelta :: "'a::topological_space set \<Rightarrow> bool" where | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1730 | "(\<And>n::nat. open (F n)) \<Longrightarrow> gdelta (\<Inter>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1731 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1732 | lemma fsigma_Union_compact: | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1733 |   fixes S :: "'a::{real_normed_vector,heine_borel} set"
 | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1734 | shows "fsigma S \<longleftrightarrow> (\<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> Collect compact \<and> S = \<Union>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1735 | proof safe | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1736 | assume "fsigma S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1737 | then obtain F :: "nat \<Rightarrow> 'a set" where F: "range F \<subseteq> Collect closed" "S = \<Union>(F ` UNIV)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1738 | by (meson fsigma.cases image_subsetI mem_Collect_eq) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1739 | then have "\<exists>D::nat \<Rightarrow> 'a set. range D \<subseteq> Collect compact \<and> \<Union>(D ` UNIV) = F i" for i | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1740 | using closed_Union_compact_subsets [of "F i"] | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1741 | by (metis image_subsetI mem_Collect_eq range_subsetD) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1742 | then obtain D :: "nat \<Rightarrow> nat \<Rightarrow> 'a set" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1743 | where D: "\<And>i. range (D i) \<subseteq> Collect compact \<and> \<Union>((D i) ` UNIV) = F i" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1744 | by metis | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1745 | let ?DD = "\<lambda>n. (\<lambda>(i,j). D i j) (prod_decode n)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1746 | show "\<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> Collect compact \<and> S = \<Union>(F ` UNIV)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1747 | proof (intro exI conjI) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1748 | show "range ?DD \<subseteq> Collect compact" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1749 | using D by clarsimp (metis mem_Collect_eq rangeI split_conv subsetCE surj_pair) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1750 | show "S = \<Union> (range ?DD)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1751 | proof | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1752 | show "S \<subseteq> \<Union> (range ?DD)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1753 | using D F | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1754 | by clarsimp (metis UN_iff old.prod.case prod_decode_inverse prod_encode_eq) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1755 | show "\<Union> (range ?DD) \<subseteq> S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1756 | using D F by fastforce | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1757 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1758 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1759 | next | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1760 | fix F :: "nat \<Rightarrow> 'a set" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1761 | assume "range F \<subseteq> Collect compact" and "S = \<Union>(F ` UNIV)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1762 | then show "fsigma (\<Union>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1763 | by (simp add: compact_imp_closed fsigma.intros image_subset_iff) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1764 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1765 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1766 | lemma gdelta_imp_fsigma: "gdelta S \<Longrightarrow> fsigma (- S)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1767 | proof (induction rule: gdelta.induct) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1768 | case (1 F) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1769 | have "- \<Inter>(F ` UNIV) = (\<Union>i. -(F i))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1770 | by auto | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1771 | then show ?case | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1772 | by (simp add: fsigma.intros closed_Compl 1) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1773 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1774 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1775 | lemma fsigma_imp_gdelta: "fsigma S \<Longrightarrow> gdelta (- S)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1776 | proof (induction rule: fsigma.induct) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1777 | case (1 F) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1778 | have "- \<Union>(F ` UNIV) = (\<Inter>i. -(F i))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1779 | by auto | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1780 | then show ?case | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1781 | by (simp add: 1 gdelta.intros open_closed) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1782 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1783 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1784 | lemma gdelta_complement: "gdelta(- S) \<longleftrightarrow> fsigma S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1785 | using fsigma_imp_gdelta gdelta_imp_fsigma by force | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1786 | |
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1787 | lemma lebesgue_set_almost_fsigma: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1788 | assumes "S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1789 | obtains C T where "fsigma C" "T \<in> null_sets lebesgue" "C \<union> T = S" "disjnt C T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1790 | proof - | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1791 |   { fix n::nat
 | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1792 | obtain T where "closed T" "T \<subseteq> S" "S-T \<in> lmeasurable" "emeasure lebesgue (S - T) < ennreal (1 / Suc n)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1793 | using sets_lebesgue_inner_closed [OF assms] | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1794 | by (metis of_nat_0_less_iff zero_less_Suc zero_less_divide_1_iff) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1795 | then have "\<exists>T. closed T \<and> T \<subseteq> S \<and> S - T \<in> lmeasurable \<and> measure lebesgue (S-T) < 1 / Suc n" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1796 | by (metis emeasure_eq_measure2 ennreal_leI not_le) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1797 | } | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1798 | then obtain F where F: "\<And>n::nat. closed (F n) \<and> F n \<subseteq> S \<and> S - F n \<in> lmeasurable \<and> measure lebesgue (S - F n) < 1 / Suc n" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1799 | by metis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1800 | let ?C = "\<Union>(F ` UNIV)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1801 | show thesis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1802 | proof | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1803 | show "fsigma ?C" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1804 | using F by (simp add: fsigma.intros) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1805 | show "(S - ?C) \<in> null_sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1806 | proof (clarsimp simp add: completion.null_sets_outer_le) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1807 | fix e :: "real" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1808 | assume "0 < e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1809 | then obtain n where n: "1 / Suc n < e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1810 | using nat_approx_posE by metis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1811 | show "\<exists>T \<in> lmeasurable. S - (\<Union>x. F x) \<subseteq> T \<and> measure lebesgue T \<le> e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1812 | proof (intro bexI conjI) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1813 | show "measure lebesgue (S - F n) \<le> e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1814 | by (meson F n less_trans not_le order.asym) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1815 | qed (use F in auto) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1816 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1817 | show "?C \<union> (S - ?C) = S" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1818 | using F by blast | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1819 | show "disjnt ?C (S - ?C)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1820 | by (auto simp: disjnt_def) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1821 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1822 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1823 | |
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1824 | lemma lebesgue_set_almost_gdelta: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1825 | assumes "S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1826 | obtains C T where "gdelta C" "T \<in> null_sets lebesgue" "S \<union> T = C" "disjnt S T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1827 | proof - | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1828 | have "-S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1829 | using assms Compl_in_sets_lebesgue by blast | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1830 | then obtain C T where C: "fsigma C" "T \<in> null_sets lebesgue" "C \<union> T = -S" "disjnt C T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1831 | using lebesgue_set_almost_fsigma by metis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1832 | show thesis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1833 | proof | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1834 | show "gdelta (-C)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1835 | by (simp add: \<open>fsigma C\<close> fsigma_imp_gdelta) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1836 | show "S \<union> T = -C" "disjnt S T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1837 | using C by (auto simp: disjnt_def) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1838 | qed (use C in auto) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1839 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1840 | |
| 38656 | 1841 | end |