13508
|
1 |
(******************************************************************************
|
|
2 |
date: march 2002
|
|
3 |
author: Frederic Blanqui
|
|
4 |
email: blanqui@lri.fr
|
|
5 |
webpage: http://www.lri.fr/~blanqui/
|
|
6 |
|
|
7 |
University of Cambridge, Computer Laboratory
|
|
8 |
William Gates Building, JJ Thomson Avenue
|
|
9 |
Cambridge CB3 0FD, United Kingdom
|
|
10 |
******************************************************************************)
|
|
11 |
|
|
12 |
header{*lemmas on guarded messages for protocols with symmetric keys*}
|
|
13 |
|
16417
|
14 |
theory Guard_Shared imports Guard GuardK Shared begin
|
13508
|
15 |
|
|
16 |
subsection{*Extensions to Theory @{text Shared}*}
|
|
17 |
|
|
18 |
declare initState.simps [simp del]
|
|
19 |
|
|
20 |
subsubsection{*a little abbreviation*}
|
|
21 |
|
|
22 |
syntax Ciph :: "agent => msg"
|
|
23 |
|
|
24 |
translations "Ciph A X" == "Crypt (shrK A) X"
|
|
25 |
|
|
26 |
subsubsection{*agent associated to a key*}
|
|
27 |
|
|
28 |
constdefs agt :: "key => agent"
|
|
29 |
"agt K == @A. K = shrK A"
|
|
30 |
|
|
31 |
lemma agt_shrK [simp]: "agt (shrK A) = A"
|
|
32 |
by (simp add: agt_def)
|
|
33 |
|
|
34 |
subsubsection{*basic facts about @{term initState}*}
|
|
35 |
|
|
36 |
lemma no_Crypt_in_parts_init [simp]: "Crypt K X ~:parts (initState A)"
|
|
37 |
by (cases A, auto simp: initState.simps)
|
|
38 |
|
|
39 |
lemma no_Crypt_in_analz_init [simp]: "Crypt K X ~:analz (initState A)"
|
|
40 |
by auto
|
|
41 |
|
|
42 |
lemma no_shrK_in_analz_init [simp]: "A ~:bad
|
|
43 |
==> Key (shrK A) ~:analz (initState Spy)"
|
|
44 |
by (auto simp: initState.simps)
|
|
45 |
|
|
46 |
lemma shrK_notin_initState_Friend [simp]: "A ~= Friend C
|
|
47 |
==> Key (shrK A) ~: parts (initState (Friend C))"
|
|
48 |
by (auto simp: initState.simps)
|
|
49 |
|
|
50 |
lemma keyset_init [iff]: "keyset (initState A)"
|
|
51 |
by (cases A, auto simp: keyset_def initState.simps)
|
|
52 |
|
|
53 |
subsubsection{*sets of symmetric keys*}
|
|
54 |
|
|
55 |
constdefs shrK_set :: "key set => bool"
|
|
56 |
"shrK_set Ks == ALL K. K:Ks --> (EX A. K = shrK A)"
|
|
57 |
|
|
58 |
lemma in_shrK_set: "[| shrK_set Ks; K:Ks |] ==> EX A. K = shrK A"
|
|
59 |
by (simp add: shrK_set_def)
|
|
60 |
|
|
61 |
lemma shrK_set1 [iff]: "shrK_set {shrK A}"
|
|
62 |
by (simp add: shrK_set_def)
|
|
63 |
|
|
64 |
lemma shrK_set2 [iff]: "shrK_set {shrK A, shrK B}"
|
|
65 |
by (simp add: shrK_set_def)
|
|
66 |
|
|
67 |
subsubsection{*sets of good keys*}
|
|
68 |
|
|
69 |
constdefs good :: "key set => bool"
|
|
70 |
"good Ks == ALL K. K:Ks --> agt K ~:bad"
|
|
71 |
|
|
72 |
lemma in_good: "[| good Ks; K:Ks |] ==> agt K ~:bad"
|
|
73 |
by (simp add: good_def)
|
|
74 |
|
|
75 |
lemma good1 [simp]: "A ~:bad ==> good {shrK A}"
|
|
76 |
by (simp add: good_def)
|
|
77 |
|
|
78 |
lemma good2 [simp]: "[| A ~:bad; B ~:bad |] ==> good {shrK A, shrK B}"
|
|
79 |
by (simp add: good_def)
|
|
80 |
|
|
81 |
|
|
82 |
subsection{*Proofs About Guarded Messages*}
|
|
83 |
|
|
84 |
subsubsection{*small hack*}
|
|
85 |
|
|
86 |
lemma shrK_is_invKey_shrK: "shrK A = invKey (shrK A)"
|
|
87 |
by simp
|
|
88 |
|
|
89 |
lemmas shrK_is_invKey_shrK_substI = shrK_is_invKey_shrK [THEN ssubst]
|
|
90 |
|
|
91 |
lemmas invKey_invKey_substI = invKey [THEN ssubst]
|
|
92 |
|
|
93 |
lemma "Nonce n:parts {X} ==> Crypt (shrK A) X:guard n {shrK A}"
|
|
94 |
apply (rule shrK_is_invKey_shrK_substI, rule invKey_invKey_substI)
|
|
95 |
by (rule Guard_Nonce, simp+)
|
|
96 |
|
|
97 |
subsubsection{*guardedness results on nonces*}
|
|
98 |
|
|
99 |
lemma guard_ciph [simp]: "shrK A:Ks ==> Ciph A X:guard n Ks"
|
|
100 |
by (rule Guard_Nonce, simp)
|
|
101 |
|
13523
|
102 |
lemma guardK_ciph [simp]: "shrK A:Ks ==> Ciph A X:guardK n Ks"
|
13508
|
103 |
by (rule Guard_Key, simp)
|
|
104 |
|
|
105 |
lemma Guard_init [iff]: "Guard n Ks (initState B)"
|
|
106 |
by (induct B, auto simp: Guard_def initState.simps)
|
|
107 |
|
|
108 |
lemma Guard_knows_max': "Guard n Ks (knows_max' C evs)
|
|
109 |
==> Guard n Ks (knows_max C evs)"
|
|
110 |
by (simp add: knows_max_def)
|
|
111 |
|
|
112 |
lemma Nonce_not_used_Guard_spies [dest]: "Nonce n ~:used evs
|
|
113 |
==> Guard n Ks (spies evs)"
|
|
114 |
by (auto simp: Guard_def dest: not_used_not_known parts_sub)
|
|
115 |
|
|
116 |
lemma Nonce_not_used_Guard [dest]: "[| evs:p; Nonce n ~:used evs;
|
|
117 |
Gets_correct p; one_step p |] ==> Guard n Ks (knows (Friend C) evs)"
|
|
118 |
by (auto simp: Guard_def dest: known_used parts_trans)
|
|
119 |
|
|
120 |
lemma Nonce_not_used_Guard_max [dest]: "[| evs:p; Nonce n ~:used evs;
|
|
121 |
Gets_correct p; one_step p |] ==> Guard n Ks (knows_max (Friend C) evs)"
|
|
122 |
by (auto simp: Guard_def dest: known_max_used parts_trans)
|
|
123 |
|
|
124 |
lemma Nonce_not_used_Guard_max' [dest]: "[| evs:p; Nonce n ~:used evs;
|
|
125 |
Gets_correct p; one_step p |] ==> Guard n Ks (knows_max' (Friend C) evs)"
|
|
126 |
apply (rule_tac H="knows_max (Friend C) evs" in Guard_mono)
|
|
127 |
by (auto simp: knows_max_def)
|
|
128 |
|
|
129 |
subsubsection{*guardedness results on keys*}
|
|
130 |
|
|
131 |
lemma GuardK_init [simp]: "n ~:range shrK ==> GuardK n Ks (initState B)"
|
|
132 |
by (induct B, auto simp: GuardK_def initState.simps)
|
|
133 |
|
|
134 |
lemma GuardK_knows_max': "[| GuardK n A (knows_max' C evs); n ~:range shrK |]
|
|
135 |
==> GuardK n A (knows_max C evs)"
|
|
136 |
by (simp add: knows_max_def)
|
|
137 |
|
|
138 |
lemma Key_not_used_GuardK_spies [dest]: "Key n ~:used evs
|
|
139 |
==> GuardK n A (spies evs)"
|
|
140 |
by (auto simp: GuardK_def dest: not_used_not_known parts_sub)
|
|
141 |
|
|
142 |
lemma Key_not_used_GuardK [dest]: "[| evs:p; Key n ~:used evs;
|
|
143 |
Gets_correct p; one_step p |] ==> GuardK n A (knows (Friend C) evs)"
|
|
144 |
by (auto simp: GuardK_def dest: known_used parts_trans)
|
|
145 |
|
|
146 |
lemma Key_not_used_GuardK_max [dest]: "[| evs:p; Key n ~:used evs;
|
|
147 |
Gets_correct p; one_step p |] ==> GuardK n A (knows_max (Friend C) evs)"
|
|
148 |
by (auto simp: GuardK_def dest: known_max_used parts_trans)
|
|
149 |
|
|
150 |
lemma Key_not_used_GuardK_max' [dest]: "[| evs:p; Key n ~:used evs;
|
|
151 |
Gets_correct p; one_step p |] ==> GuardK n A (knows_max' (Friend C) evs)"
|
|
152 |
apply (rule_tac H="knows_max (Friend C) evs" in GuardK_mono)
|
|
153 |
by (auto simp: knows_max_def)
|
|
154 |
|
|
155 |
subsubsection{*regular protocols*}
|
|
156 |
|
|
157 |
constdefs regular :: "event list set => bool"
|
|
158 |
"regular p == ALL evs A. evs:p --> (Key (shrK A):parts (spies evs)) = (A:bad)"
|
|
159 |
|
|
160 |
lemma shrK_parts_iff_bad [simp]: "[| evs:p; regular p |] ==>
|
|
161 |
(Key (shrK A):parts (spies evs)) = (A:bad)"
|
|
162 |
by (auto simp: regular_def)
|
|
163 |
|
|
164 |
lemma shrK_analz_iff_bad [simp]: "[| evs:p; regular p |] ==>
|
|
165 |
(Key (shrK A):analz (spies evs)) = (A:bad)"
|
|
166 |
by auto
|
|
167 |
|
|
168 |
lemma Guard_Nonce_analz: "[| Guard n Ks (spies evs); evs:p;
|
|
169 |
shrK_set Ks; good Ks; regular p |] ==> Nonce n ~:analz (spies evs)"
|
|
170 |
apply (clarify, simp only: knows_decomp)
|
|
171 |
apply (drule Guard_invKey_keyset, simp+, safe)
|
|
172 |
apply (drule in_good, simp)
|
|
173 |
apply (drule in_shrK_set, simp+, clarify)
|
|
174 |
apply (frule_tac A=A in shrK_analz_iff_bad)
|
|
175 |
by (simp add: knows_decomp)+
|
|
176 |
|
|
177 |
lemma GuardK_Key_analz: "[| GuardK n Ks (spies evs); evs:p;
|
|
178 |
shrK_set Ks; good Ks; regular p; n ~:range shrK |] ==> Key n ~:analz (spies evs)"
|
|
179 |
apply (clarify, simp only: knows_decomp)
|
13601
|
180 |
apply (drule GuardK_invKey_keyset, clarify, simp+, simp add: initState.simps)
|
13508
|
181 |
apply clarify
|
|
182 |
apply (drule in_good, simp)
|
|
183 |
apply (drule in_shrK_set, simp+, clarify)
|
|
184 |
apply (frule_tac A=A in shrK_analz_iff_bad)
|
|
185 |
by (simp add: knows_decomp)+
|
|
186 |
|
|
187 |
end |