src/HOL/Hoare/SepLogHeap.thy
author urbanc
Tue, 13 Dec 2005 18:11:21 +0100
changeset 18396 b3e7da94b51f
parent 16972 d3f9abe00712
child 18447 da548623916a
permissions -rw-r--r--
added a fresh_left lemma that contains all instantiation for the various atom-types.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*  Title:      HOL/Hoare/Heap.thy
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     2
    ID:         $Id$
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     3
    Author:     Tobias Nipkow
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     4
    Copyright   2002 TUM
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     5
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     6
Heap abstractions (at the moment only Path and List)
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     7
for Separation Logic.
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     8
*)
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
     9
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 14074
diff changeset
    10
theory SepLogHeap imports Main begin
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    11
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    12
types heap = "(nat \<Rightarrow> nat option)"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    13
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    14
text{* @{text "Some"} means allocated, @{text "None"} means
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    15
free. Address @{text "0"} serves as the null reference. *}
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    16
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    17
subsection "Paths in the heap"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    18
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    19
consts
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    20
 Path :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> bool"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    21
primrec
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    22
"Path h x [] y = (x = y)"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    23
"Path h x (a#as) y = (x\<noteq>0 \<and> a=x \<and> (\<exists>b. h x = Some b \<and> Path h b as y))"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    24
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    25
lemma [iff]: "Path h 0 xs y = (xs = [] \<and> y = 0)"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    26
by (cases xs) simp_all
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    27
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    28
lemma [simp]: "x\<noteq>0 \<Longrightarrow> Path h x as z =
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    29
 (as = [] \<and> z = x  \<or>  (\<exists>y bs. as = x#bs \<and> h x = Some y & Path h y bs z))"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    30
by (cases as) auto
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    31
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    32
lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    33
by (induct as) auto
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    34
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    35
lemma Path_upd[simp]:
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    36
 "\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    37
by (induct as) simp_all
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    38
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    39
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    40
subsection "Lists on the heap"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    41
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    42
constdefs
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    43
 List :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    44
"List h x as == Path h x as 0"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    45
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    46
lemma [simp]: "List h x [] = (x = 0)"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    47
by (simp add: List_def)
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    48
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    49
lemma [simp]:
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    50
 "List h x (a#as) = (x\<noteq>0 \<and> a=x \<and> (\<exists>y. h x = Some y \<and> List h y as))"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    51
by (simp add: List_def)
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    52
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    53
lemma [simp]: "List h 0 as = (as = [])"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    54
by (cases as) simp_all
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    55
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    56
lemma List_non_null: "a\<noteq>0 \<Longrightarrow>
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    57
 List h a as = (\<exists>b bs. as = a#bs \<and> h a = Some b \<and> List h b bs)"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    58
by (cases as) simp_all
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    59
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    60
theorem notin_List_update[simp]:
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    61
 "\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    62
by (induct as) simp_all
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    63
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    64
lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    65
by (induct as) (auto simp add:List_non_null)
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    66
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    67
lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    68
by (blast intro: List_unique)
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    69
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    70
lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    71
by (induct as) auto
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    72
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    73
lemma List_hd_not_in_tl[simp]: "List h b as \<Longrightarrow> h a = Some b \<Longrightarrow> a \<notin> set as"
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    74
apply (clarsimp simp add:in_set_conv_decomp)
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    75
apply(frule List_app[THEN iffD1])
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    76
apply(fastsimp dest: List_unique)
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    77
done
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    78
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    79
lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    80
by (induct as) (auto dest:List_hd_not_in_tl)
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    81
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    82
lemma list_in_heap: "\<And>p. List h p ps \<Longrightarrow> set ps \<subseteq> dom h"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    83
by (induct ps) auto
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    84
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    85
lemma list_ortho_sum1[simp]:
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    86
 "\<And>p. \<lbrakk> List h1 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    87
by (induct ps) (auto simp add:map_add_def split:option.split)
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    88
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    89
lemma list_ortho_sum2[simp]:
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    90
 "\<And>p. \<lbrakk> List h2 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
16972
d3f9abe00712 no eq_sym_conv;
wenzelm
parents: 16417
diff changeset
    91
by (induct ps) (auto simp add:map_add_def split:option.split)
14074
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    92
93dfce3b6f86 *** empty log message ***
nipkow
parents:
diff changeset
    93
end