| author | wenzelm | 
| Tue, 28 Jul 2015 21:10:41 +0200 | |
| changeset 60823 | b41478500473 | 
| parent 60679 | ade12ef2773c | 
| child 60919 | b0ba7799d05a | 
| permissions | -rw-r--r-- | 
| 46237 | 1  | 
(* Title: HOL/Library/DAList.thy  | 
| 58806 | 2  | 
Author: Lukas Bulwahn, TU Muenchen  | 
3  | 
*)  | 
|
| 46167 | 4  | 
|
| 58881 | 5  | 
section \<open>Abstract type of association lists with unique keys\<close>  | 
| 46167 | 6  | 
|
| 46237 | 7  | 
theory DAList  | 
| 
46238
 
9ace9e5b79be
renaming theory AList_Impl back to AList (reverting 1fec5b365f9b; AList with distinct key invariant is called DAList)
 
bulwahn 
parents: 
46237 
diff
changeset
 | 
8  | 
imports AList  | 
| 46167 | 9  | 
begin  | 
10  | 
||
| 58806 | 11  | 
text \<open>This was based on some existing fragments in the AFP-Collection framework.\<close>  | 
| 46167 | 12  | 
|
| 58806 | 13  | 
subsection \<open>Preliminaries\<close>  | 
| 
47143
 
212f7a975d49
association lists with distinct keys uses the quotient infrastructure to obtain code certificates;
 
bulwahn 
parents: 
46507 
diff
changeset
 | 
14  | 
|
| 
 
212f7a975d49
association lists with distinct keys uses the quotient infrastructure to obtain code certificates;
 
bulwahn 
parents: 
46507 
diff
changeset
 | 
15  | 
lemma distinct_map_fst_filter:  | 
| 58806 | 16  | 
"distinct (map fst xs) \<Longrightarrow> distinct (map fst (List.filter P xs))"  | 
17  | 
by (induct xs) auto  | 
|
18  | 
||
| 
47143
 
212f7a975d49
association lists with distinct keys uses the quotient infrastructure to obtain code certificates;
 
bulwahn 
parents: 
46507 
diff
changeset
 | 
19  | 
|
| 58806 | 20  | 
subsection \<open>Type @{text "('key, 'value) alist" }\<close>
 | 
| 46167 | 21  | 
|
| 58806 | 22  | 
typedef ('key, 'value) alist = "{xs :: ('key \<times> 'value) list. (distinct \<circ> map fst) xs}"
 | 
| 46507 | 23  | 
morphisms impl_of Alist  | 
24  | 
proof  | 
|
| 58806 | 25  | 
  show "[] \<in> {xs. (distinct o map fst) xs}"
 | 
26  | 
by simp  | 
|
| 46507 | 27  | 
qed  | 
| 46167 | 28  | 
|
| 
47143
 
212f7a975d49
association lists with distinct keys uses the quotient infrastructure to obtain code certificates;
 
bulwahn 
parents: 
46507 
diff
changeset
 | 
29  | 
setup_lifting type_definition_alist  | 
| 
 
212f7a975d49
association lists with distinct keys uses the quotient infrastructure to obtain code certificates;
 
bulwahn 
parents: 
46507 
diff
changeset
 | 
30  | 
|
| 46167 | 31  | 
lemma alist_ext: "impl_of xs = impl_of ys \<Longrightarrow> xs = ys"  | 
| 58806 | 32  | 
by (simp add: impl_of_inject)  | 
| 46167 | 33  | 
|
34  | 
lemma alist_eq_iff: "xs = ys \<longleftrightarrow> impl_of xs = impl_of ys"  | 
|
| 58806 | 35  | 
by (simp add: impl_of_inject)  | 
| 46167 | 36  | 
|
37  | 
lemma impl_of_distinct [simp, intro]: "distinct (map fst (impl_of xs))"  | 
|
| 58806 | 38  | 
using impl_of[of xs] by simp  | 
| 46167 | 39  | 
|
40  | 
lemma Alist_impl_of [code abstype]: "Alist (impl_of xs) = xs"  | 
|
| 58806 | 41  | 
by (rule impl_of_inverse)  | 
| 46167 | 42  | 
|
| 58806 | 43  | 
|
44  | 
subsection \<open>Primitive operations\<close>  | 
|
| 46167 | 45  | 
|
| 
55565
 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 
kuncar 
parents: 
51143 
diff
changeset
 | 
46  | 
lift_definition lookup :: "('key, 'value) alist \<Rightarrow> 'key \<Rightarrow> 'value option" is map_of  .
 | 
| 46167 | 47  | 
|
| 58806 | 48  | 
lift_definition empty :: "('key, 'value) alist" is "[]"
 | 
49  | 
by simp  | 
|
| 46167 | 50  | 
|
| 47308 | 51  | 
lift_definition update :: "'key \<Rightarrow> 'value \<Rightarrow> ('key, 'value) alist \<Rightarrow> ('key, 'value) alist"
 | 
52  | 
is AList.update  | 
|
| 58806 | 53  | 
by (simp add: distinct_update)  | 
| 46167 | 54  | 
|
55  | 
(* FIXME: we use an unoptimised delete operation. *)  | 
|
| 47308 | 56  | 
lift_definition delete :: "'key \<Rightarrow> ('key, 'value) alist \<Rightarrow> ('key, 'value) alist"
 | 
57  | 
is AList.delete  | 
|
| 58806 | 58  | 
by (simp add: distinct_delete)  | 
| 46167 | 59  | 
|
| 58806 | 60  | 
lift_definition map_entry ::  | 
61  | 
    "'key \<Rightarrow> ('value \<Rightarrow> 'value) \<Rightarrow> ('key, 'value) alist \<Rightarrow> ('key, 'value) alist"
 | 
|
| 47308 | 62  | 
is AList.map_entry  | 
| 58806 | 63  | 
by (simp add: distinct_map_entry)  | 
| 46167 | 64  | 
|
| 47308 | 65  | 
lift_definition filter :: "('key \<times> 'value \<Rightarrow> bool) \<Rightarrow> ('key, 'value) alist \<Rightarrow> ('key, 'value) alist"
 | 
66  | 
is List.filter  | 
|
| 58806 | 67  | 
by (simp add: distinct_map_fst_filter)  | 
| 46167 | 68  | 
|
| 58806 | 69  | 
lift_definition map_default ::  | 
70  | 
    "'key \<Rightarrow> 'value \<Rightarrow> ('value \<Rightarrow> 'value) \<Rightarrow> ('key, 'value) alist \<Rightarrow> ('key, 'value) alist"
 | 
|
| 47308 | 71  | 
is AList.map_default  | 
| 58806 | 72  | 
by (simp add: distinct_map_default)  | 
| 46167 | 73  | 
|
| 58806 | 74  | 
|
75  | 
subsection \<open>Abstract operation properties\<close>  | 
|
| 46167 | 76  | 
|
77  | 
(* FIXME: to be completed *)  | 
|
78  | 
||
79  | 
lemma lookup_empty [simp]: "lookup empty k = None"  | 
|
| 58806 | 80  | 
by (simp add: empty_def lookup_def Alist_inverse)  | 
| 46167 | 81  | 
|
82  | 
lemma lookup_delete [simp]: "lookup (delete k al) = (lookup al)(k := None)"  | 
|
| 58806 | 83  | 
by (simp add: lookup_def delete_def Alist_inverse distinct_delete delete_conv')  | 
| 46167 | 84  | 
|
| 58806 | 85  | 
|
86  | 
subsection \<open>Further operations\<close>  | 
|
| 46167 | 87  | 
|
| 58806 | 88  | 
subsubsection \<open>Equality\<close>  | 
| 46167 | 89  | 
|
| 58806 | 90  | 
instantiation alist :: (equal, equal) equal  | 
91  | 
begin  | 
|
| 46167 | 92  | 
|
93  | 
definition "HOL.equal (xs :: ('a, 'b) alist) ys == impl_of xs = impl_of ys"
 | 
|
94  | 
||
95  | 
instance  | 
|
| 60679 | 96  | 
by standard (simp add: equal_alist_def impl_of_inject)  | 
| 46167 | 97  | 
|
98  | 
end  | 
|
99  | 
||
| 58806 | 100  | 
|
101  | 
subsubsection \<open>Size\<close>  | 
|
| 46167 | 102  | 
|
| 58806 | 103  | 
instantiation alist :: (type, type) size  | 
104  | 
begin  | 
|
| 46167 | 105  | 
|
106  | 
definition "size (al :: ('a, 'b) alist) = length (impl_of al)"
 | 
|
107  | 
||
108  | 
instance ..  | 
|
109  | 
||
110  | 
end  | 
|
111  | 
||
| 58806 | 112  | 
|
113  | 
subsection \<open>Quickcheck generators\<close>  | 
|
| 46167 | 114  | 
|
115  | 
notation fcomp (infixl "\<circ>>" 60)  | 
|
116  | 
notation scomp (infixl "\<circ>\<rightarrow>" 60)  | 
|
117  | 
||
118  | 
definition (in term_syntax)  | 
|
119  | 
  valterm_empty :: "('key :: typerep, 'value :: typerep) alist \<times> (unit \<Rightarrow> Code_Evaluation.term)"
 | 
|
| 58806 | 120  | 
where "valterm_empty = Code_Evaluation.valtermify empty"  | 
| 46167 | 121  | 
|
122  | 
definition (in term_syntax)  | 
|
123  | 
valterm_update :: "'key :: typerep \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow>  | 
|
124  | 
'value :: typerep \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow>  | 
|
125  | 
  ('key, 'value) alist \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow>
 | 
|
126  | 
  ('key, 'value) alist \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
 | 
|
127  | 
  [code_unfold]: "valterm_update k v a = Code_Evaluation.valtermify update {\<cdot>} k {\<cdot>} v {\<cdot>}a"
 | 
|
128  | 
||
| 58806 | 129  | 
fun (in term_syntax) random_aux_alist  | 
| 46167 | 130  | 
where  | 
| 58806 | 131  | 
"random_aux_alist i j =  | 
132  | 
(if i = 0 then Pair valterm_empty  | 
|
133  | 
else Quickcheck_Random.collapse  | 
|
134  | 
(Random.select_weight  | 
|
135  | 
[(i, Quickcheck_Random.random j \<circ>\<rightarrow> (\<lambda>k. Quickcheck_Random.random j \<circ>\<rightarrow>  | 
|
136  | 
(\<lambda>v. random_aux_alist (i - 1) j \<circ>\<rightarrow> (\<lambda>a. Pair (valterm_update k v a))))),  | 
|
137  | 
(1, Pair valterm_empty)]))"  | 
|
| 46167 | 138  | 
|
139  | 
instantiation alist :: (random, random) random  | 
|
140  | 
begin  | 
|
141  | 
||
142  | 
definition random_alist  | 
|
143  | 
where  | 
|
144  | 
"random_alist i = random_aux_alist i i"  | 
|
| 58806 | 145  | 
|
| 46167 | 146  | 
instance ..  | 
147  | 
||
148  | 
end  | 
|
149  | 
||
150  | 
no_notation fcomp (infixl "\<circ>>" 60)  | 
|
151  | 
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)  | 
|
152  | 
||
153  | 
instantiation alist :: (exhaustive, exhaustive) exhaustive  | 
|
154  | 
begin  | 
|
155  | 
||
| 58806 | 156  | 
fun exhaustive_alist ::  | 
157  | 
  "(('a, 'b) alist \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
 | 
|
| 46167 | 158  | 
where  | 
| 58806 | 159  | 
"exhaustive_alist f i =  | 
160  | 
(if i = 0 then None  | 
|
161  | 
else  | 
|
162  | 
case f empty of  | 
|
163  | 
Some ts \<Rightarrow> Some ts  | 
|
164  | 
| None \<Rightarrow>  | 
|
165  | 
exhaustive_alist  | 
|
166  | 
(\<lambda>a. Quickcheck_Exhaustive.exhaustive  | 
|
167  | 
(\<lambda>k. Quickcheck_Exhaustive.exhaustive (\<lambda>v. f (update k v a)) (i - 1)) (i - 1))  | 
|
168  | 
(i - 1))"  | 
|
| 46167 | 169  | 
|
170  | 
instance ..  | 
|
171  | 
||
172  | 
end  | 
|
173  | 
||
174  | 
instantiation alist :: (full_exhaustive, full_exhaustive) full_exhaustive  | 
|
175  | 
begin  | 
|
176  | 
||
| 58806 | 177  | 
fun full_exhaustive_alist ::  | 
178  | 
  "(('a, 'b) alist \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow>
 | 
|
179  | 
(bool \<times> term list) option"  | 
|
| 46167 | 180  | 
where  | 
| 58806 | 181  | 
"full_exhaustive_alist f i =  | 
182  | 
(if i = 0 then None  | 
|
183  | 
else  | 
|
184  | 
case f valterm_empty of  | 
|
185  | 
Some ts \<Rightarrow> Some ts  | 
|
186  | 
| None \<Rightarrow>  | 
|
187  | 
full_exhaustive_alist  | 
|
188  | 
(\<lambda>a.  | 
|
189  | 
Quickcheck_Exhaustive.full_exhaustive  | 
|
190  | 
(\<lambda>k. Quickcheck_Exhaustive.full_exhaustive (\<lambda>v. f (valterm_update k v a)) (i - 1))  | 
|
191  | 
(i - 1))  | 
|
192  | 
(i - 1))"  | 
|
| 46167 | 193  | 
|
194  | 
instance ..  | 
|
195  | 
||
196  | 
end  | 
|
197  | 
||
| 59581 | 198  | 
|
199  | 
section \<open>alist is a BNF\<close>  | 
|
200  | 
||
201  | 
lift_definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> ('k, 'a) alist \<Rightarrow> ('k, 'b) alist"
 | 
|
202  | 
is "\<lambda>f xs. List.map (map_prod id f) xs" by simp  | 
|
203  | 
||
204  | 
lift_definition set :: "('k, 'v) alist => 'v set"
 | 
|
205  | 
is "\<lambda>xs. snd ` List.set xs" .  | 
|
206  | 
||
207  | 
lift_definition rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('k, 'a) alist \<Rightarrow> ('k, 'b) alist \<Rightarrow> bool"
 | 
|
208  | 
is "\<lambda>R xs ys. list_all2 (rel_prod op = R) xs ys" .  | 
|
209  | 
||
210  | 
bnf "('k, 'v) alist"
 | 
|
211  | 
map: map  | 
|
212  | 
sets: set  | 
|
213  | 
bd: natLeq  | 
|
214  | 
wits: empty  | 
|
215  | 
rel: rel  | 
|
216  | 
proof (unfold OO_Grp_alt)  | 
|
217  | 
show "map id = id" by (rule ext, transfer) (simp add: prod.map_id0)  | 
|
218  | 
next  | 
|
219  | 
fix f g  | 
|
220  | 
show "map (g \<circ> f) = map g \<circ> map f"  | 
|
221  | 
by (rule ext, transfer) (simp add: prod.map_comp)  | 
|
222  | 
next  | 
|
223  | 
fix x f g  | 
|
224  | 
assume "(\<And>z. z \<in> set x \<Longrightarrow> f z = g z)"  | 
|
225  | 
then show "map f x = map g x" by transfer force  | 
|
226  | 
next  | 
|
227  | 
fix f  | 
|
228  | 
show "set \<circ> map f = op ` f \<circ> set"  | 
|
229  | 
by (rule ext, transfer) (simp add: image_image)  | 
|
230  | 
next  | 
|
231  | 
fix x  | 
|
232  | 
show "ordLeq3 (card_of (set x)) natLeq"  | 
|
233  | 
by transfer (auto simp: finite_iff_ordLess_natLeq[symmetric] intro: ordLess_imp_ordLeq)  | 
|
234  | 
next  | 
|
235  | 
fix R S  | 
|
236  | 
show "rel R OO rel S \<le> rel (R OO S)"  | 
|
237  | 
by (rule predicate2I, transfer)  | 
|
238  | 
(auto simp: list.rel_compp prod.rel_compp[of "op =", unfolded eq_OO])  | 
|
239  | 
next  | 
|
240  | 
fix R  | 
|
241  | 
  show "rel R = (\<lambda>x y. \<exists>z. z \<in> {x. set x \<subseteq> {(x, y). R x y}} \<and> map fst z = x \<and> map snd z = y)"
 | 
|
242  | 
unfolding fun_eq_iff by transfer (fastforce simp: list.in_rel o_def intro:  | 
|
243  | 
exI[of _ "List.map (\<lambda>p. ((fst p, fst (snd p)), (fst p, snd (snd p)))) z" for z]  | 
|
244  | 
exI[of _ "List.map (\<lambda>p. (fst (fst p), snd (fst p), snd (snd p))) z" for z])  | 
|
245  | 
next  | 
|
246  | 
fix z assume "z \<in> set empty"  | 
|
247  | 
then show False by transfer simp  | 
|
248  | 
qed (simp_all add: natLeq_cinfinite natLeq_card_order)  | 
|
249  | 
||
| 46167 | 250  | 
hide_const valterm_empty valterm_update random_aux_alist  | 
251  | 
||
| 
46171
 
19f68d7671f0
proper hiding of facts and constants in AList_Impl and AList theory
 
bulwahn 
parents: 
46167 
diff
changeset
 | 
252  | 
hide_fact (open) lookup_def empty_def update_def delete_def map_entry_def filter_def map_default_def  | 
| 59581 | 253  | 
hide_const (open) impl_of lookup empty update delete map_entry filter map_default map set rel  | 
| 46167 | 254  | 
|
| 
46238
 
9ace9e5b79be
renaming theory AList_Impl back to AList (reverting 1fec5b365f9b; AList with distinct key invariant is called DAList)
 
bulwahn 
parents: 
46237 
diff
changeset
 | 
255  | 
end  |