| author | wenzelm | 
| Thu, 01 Sep 2005 16:19:02 +0200 | |
| changeset 17220 | b41d8e290bf8 | 
| parent 16417 | 9bc16273c2d4 | 
| child 17744 | 3007c82f17ca | 
| permissions | -rw-r--r-- | 
| 1934 | 1 | (* Title: HOL/Auth/Shared | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1996 University of Cambridge | |
| 5 | ||
| 6 | Theory of Shared Keys (common to all symmetric-key protocols) | |
| 7 | ||
| 3512 
9dcb4daa15e8
Moving common declarations and proofs from theories "Shared"
 paulson parents: 
3472diff
changeset | 8 | Shared, long-term keys; initial states of agents | 
| 1934 | 9 | *) | 
| 10 | ||
| 16417 | 11 | theory Shared imports Event begin | 
| 1934 | 12 | |
| 13 | consts | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 14 | shrK :: "agent => key" (*symmetric keys*); | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 15 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 16 | specification (shrK) | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 17 | inj_shrK: "inj shrK" | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 18 |   --{*No two agents have the same long-term key*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 19 | apply (rule exI [of _ "agent_case 0 (\<lambda>n. n + 2) 1"]) | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 20 | apply (simp add: inj_on_def split: agent.split) | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 21 | done | 
| 1967 | 22 | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 23 | text{*All keys are symmetric*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 24 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 25 | defs all_symmetric_def: "all_symmetric == True" | 
| 1934 | 26 | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 27 | lemma isSym_keys: "K \<in> symKeys" | 
| 14181 | 28 | by (simp add: symKeys_def all_symmetric_def invKey_symmetric) | 
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 29 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 30 | text{*Server knows all long-term keys; other agents know only their own*}
 | 
| 5183 | 31 | primrec | 
| 11104 | 32 | initState_Server: "initState Server = Key ` range shrK" | 
| 33 |   initState_Friend:  "initState (Friend i) = {Key (shrK (Friend i))}"
 | |
| 34 | initState_Spy: "initState Spy = Key`shrK`bad" | |
| 2032 | 35 | |
| 1934 | 36 | |
| 13926 | 37 | subsection{*Basic properties of shrK*}
 | 
| 38 | ||
| 39 | (*Injectiveness: Agents' long-term keys are distinct.*) | |
| 40 | declare inj_shrK [THEN inj_eq, iff] | |
| 41 | ||
| 42 | lemma invKey_K [simp]: "invKey K = K" | |
| 43 | apply (insert isSym_keys) | |
| 44 | apply (simp add: symKeys_def) | |
| 45 | done | |
| 46 | ||
| 47 | ||
| 48 | lemma analz_Decrypt' [dest]: | |
| 49 | "[| Crypt K X \<in> analz H; Key K \<in> analz H |] ==> X \<in> analz H" | |
| 50 | by auto | |
| 51 | ||
| 52 | text{*Now cancel the @{text dest} attribute given to
 | |
| 53 |  @{text analz.Decrypt} in its declaration.*}
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 54 | declare analz.Decrypt [rule del] | 
| 13926 | 55 | |
| 56 | text{*Rewrites should not refer to  @{term "initState(Friend i)"} because
 | |
| 57 | that expression is not in normal form.*} | |
| 58 | ||
| 59 | lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
 | |
| 60 | apply (unfold keysFor_def) | |
| 61 | apply (induct_tac "C", auto) | |
| 62 | done | |
| 63 | ||
| 64 | (*Specialized to shared-key model: no @{term invKey}*)
 | |
| 65 | lemma keysFor_parts_insert: | |
| 14983 | 66 | "[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |] | 
| 67 | ==> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H"; | |
| 13926 | 68 | by (force dest: Event.keysFor_parts_insert) | 
| 69 | ||
| 70 | lemma Crypt_imp_keysFor: "Crypt K X \<in> H ==> K \<in> keysFor H" | |
| 71 | by (drule Crypt_imp_invKey_keysFor, simp) | |
| 72 | ||
| 73 | ||
| 74 | subsection{*Function "knows"*}
 | |
| 75 | ||
| 76 | (*Spy sees shared keys of agents!*) | |
| 77 | lemma Spy_knows_Spy_bad [intro!]: "A: bad ==> Key (shrK A) \<in> knows Spy evs" | |
| 78 | apply (induct_tac "evs") | |
| 79 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split) | |
| 80 | done | |
| 81 | ||
| 82 | (*For case analysis on whether or not an agent is compromised*) | |
| 83 | lemma Crypt_Spy_analz_bad: "[| Crypt (shrK A) X \<in> analz (knows Spy evs); A: bad |] | |
| 84 | ==> X \<in> analz (knows Spy evs)" | |
| 85 | apply (force dest!: analz.Decrypt) | |
| 86 | done | |
| 87 | ||
| 88 | ||
| 89 | (** Fresh keys never clash with long-term shared keys **) | |
| 90 | ||
| 91 | (*Agents see their own shared keys!*) | |
| 92 | lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState A" | |
| 93 | by (induct_tac "A", auto) | |
| 94 | ||
| 95 | lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs" | |
| 96 | by (rule initState_into_used, blast) | |
| 97 | ||
| 98 | (*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys | |
| 99 | from long-term shared keys*) | |
| 100 | lemma Key_not_used [simp]: "Key K \<notin> used evs ==> K \<notin> range shrK" | |
| 101 | by blast | |
| 102 | ||
| 103 | lemma shrK_neq [simp]: "Key K \<notin> used evs ==> shrK B \<noteq> K" | |
| 104 | by blast | |
| 105 | ||
| 106 | declare shrK_neq [THEN not_sym, simp] | |
| 107 | ||
| 108 | ||
| 109 | subsection{*Fresh nonces*}
 | |
| 110 | ||
| 111 | lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState B)" | |
| 112 | by (induct_tac "B", auto) | |
| 113 | ||
| 114 | lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []" | |
| 115 | apply (simp (no_asm) add: used_Nil) | |
| 116 | done | |
| 117 | ||
| 118 | ||
| 119 | subsection{*Supply fresh nonces for possibility theorems.*}
 | |
| 120 | ||
| 121 | (*In any trace, there is an upper bound N on the greatest nonce in use.*) | |
| 122 | lemma Nonce_supply_lemma: "\<exists>N. ALL n. N<=n --> Nonce n \<notin> used evs" | |
| 123 | apply (induct_tac "evs") | |
| 124 | apply (rule_tac x = 0 in exI) | |
| 125 | apply (simp_all (no_asm_simp) add: used_Cons split add: event.split) | |
| 126 | apply safe | |
| 127 | apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+ | |
| 128 | done | |
| 129 | ||
| 130 | lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs" | |
| 131 | by (rule Nonce_supply_lemma [THEN exE], blast) | |
| 132 | ||
| 133 | lemma Nonce_supply2: "\<exists>N N'. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & N \<noteq> N'" | |
| 134 | apply (cut_tac evs = evs in Nonce_supply_lemma) | |
| 135 | apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify) | |
| 136 | apply (rule_tac x = N in exI) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 137 | apply (rule_tac x = "Suc (N+Na)" in exI) | 
| 13926 | 138 | apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le) | 
| 139 | done | |
| 140 | ||
| 141 | lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & | |
| 142 | Nonce N'' \<notin> used evs'' & N \<noteq> N' & N' \<noteq> N'' & N \<noteq> N''" | |
| 143 | apply (cut_tac evs = evs in Nonce_supply_lemma) | |
| 144 | apply (cut_tac evs = "evs'" in Nonce_supply_lemma) | |
| 145 | apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify) | |
| 146 | apply (rule_tac x = N in exI) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 147 | apply (rule_tac x = "Suc (N+Na)" in exI) | 
| 13926 | 148 | apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI) | 
| 149 | apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le) | |
| 150 | done | |
| 151 | ||
| 152 | lemma Nonce_supply: "Nonce (@ N. Nonce N \<notin> used evs) \<notin> used evs" | |
| 153 | apply (rule Nonce_supply_lemma [THEN exE]) | |
| 154 | apply (rule someI, blast) | |
| 155 | done | |
| 156 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 157 | text{*Unlike the corresponding property of nonces, we cannot prove
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 158 |     @{term "finite KK ==> \<exists>K. K \<notin> KK & Key K \<notin> used evs"}.
 | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 159 | We have infinitely many agents and there is nothing to stop their | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 160 | long-term keys from exhausting all the natural numbers. Instead, | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 161 | possibility theorems must assume the existence of a few keys.*} | 
| 13926 | 162 | |
| 163 | ||
| 164 | subsection{*Tactics for possibility theorems*}
 | |
| 165 | ||
| 166 | ML | |
| 167 | {*
 | |
| 168 | val inj_shrK = thm "inj_shrK"; | |
| 169 | val isSym_keys = thm "isSym_keys"; | |
| 170 | val Nonce_supply = thm "Nonce_supply"; | |
| 171 | val invKey_K = thm "invKey_K"; | |
| 172 | val analz_Decrypt' = thm "analz_Decrypt'"; | |
| 173 | val keysFor_parts_initState = thm "keysFor_parts_initState"; | |
| 174 | val keysFor_parts_insert = thm "keysFor_parts_insert"; | |
| 175 | val Crypt_imp_keysFor = thm "Crypt_imp_keysFor"; | |
| 176 | val Spy_knows_Spy_bad = thm "Spy_knows_Spy_bad"; | |
| 177 | val Crypt_Spy_analz_bad = thm "Crypt_Spy_analz_bad"; | |
| 178 | val shrK_in_initState = thm "shrK_in_initState"; | |
| 179 | val shrK_in_used = thm "shrK_in_used"; | |
| 180 | val Key_not_used = thm "Key_not_used"; | |
| 181 | val shrK_neq = thm "shrK_neq"; | |
| 182 | val Nonce_notin_initState = thm "Nonce_notin_initState"; | |
| 183 | val Nonce_notin_used_empty = thm "Nonce_notin_used_empty"; | |
| 184 | val Nonce_supply_lemma = thm "Nonce_supply_lemma"; | |
| 185 | val Nonce_supply1 = thm "Nonce_supply1"; | |
| 186 | val Nonce_supply2 = thm "Nonce_supply2"; | |
| 187 | val Nonce_supply3 = thm "Nonce_supply3"; | |
| 188 | val Nonce_supply = thm "Nonce_supply"; | |
| 189 | *} | |
| 190 | ||
| 11104 | 191 | |
| 13926 | 192 | ML | 
| 193 | {*
 | |
| 194 | (*Omitting used_Says makes the tactic much faster: it leaves expressions | |
| 195 | such as Nonce ?N \<notin> used evs that match Nonce_supply*) | |
| 196 | fun gen_possibility_tac ss state = state |> | |
| 197 | (REPEAT | |
| 198 | (ALLGOALS (simp_tac (ss delsimps [used_Says, used_Notes, used_Gets] | |
| 199 | setSolver safe_solver)) | |
| 200 | THEN | |
| 201 | REPEAT_FIRST (eq_assume_tac ORELSE' | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 202 | resolve_tac [refl, conjI, Nonce_supply]))) | 
| 13926 | 203 | |
| 204 | (*Tactic for possibility theorems (ML script version)*) | |
| 205 | fun possibility_tac state = gen_possibility_tac (simpset()) state | |
| 206 | ||
| 207 | (*For harder protocols (such as Recur) where we have to set up some | |
| 208 | nonces and keys initially*) | |
| 209 | fun basic_possibility_tac st = st |> | |
| 210 | REPEAT | |
| 211 | (ALLGOALS (asm_simp_tac (simpset() setSolver safe_solver)) | |
| 212 | THEN | |
| 213 | REPEAT_FIRST (resolve_tac [refl, conjI])) | |
| 214 | *} | |
| 215 | ||
| 13956 | 216 | subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*}
 | 
| 13926 | 217 | |
| 218 | lemma subset_Compl_range: "A <= - (range shrK) ==> shrK x \<notin> A" | |
| 219 | by blast | |
| 220 | ||
| 221 | lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H"
 | |
| 222 | by blast | |
| 223 | ||
| 13956 | 224 | lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C" | 
| 13926 | 225 | by blast | 
| 226 | ||
| 227 | (** Reverse the normal simplification of "image" to build up (not break down) | |
| 228 | the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to | |
| 229 | erase occurrences of forwarded message components (X). **) | |
| 230 | ||
| 231 | lemmas analz_image_freshK_simps = | |
| 232 |        simp_thms mem_simps --{*these two allow its use with @{text "only:"}*}
 | |
| 233 | disj_comms | |
| 234 | image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset | |
| 235 | analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD] | |
| 236 | insert_Key_singleton subset_Compl_range | |
| 237 | Key_not_used insert_Key_image Un_assoc [THEN sym] | |
| 238 | ||
| 239 | (*Lemma for the trivial direction of the if-and-only-if*) | |
| 240 | lemma analz_image_freshK_lemma: | |
| 241 | "(Key K \<in> analz (Key`nE \<union> H)) --> (K \<in> nE | Key K \<in> analz H) ==> | |
| 242 | (Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)" | |
| 243 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 244 | ||
| 245 | ML | |
| 246 | {*
 | |
| 247 | val analz_image_freshK_lemma = thm "analz_image_freshK_lemma"; | |
| 248 | ||
| 249 | val analz_image_freshK_ss = | |
| 250 | simpset() delsimps [image_insert, image_Un] | |
| 251 | delsimps [imp_disjL] (*reduces blow-up*) | |
| 252 | addsimps thms "analz_image_freshK_simps" | |
| 253 | *} | |
| 254 | ||
| 255 | ||
| 11104 | 256 | |
| 257 | (*Lets blast_tac perform this step without needing the simplifier*) | |
| 258 | lemma invKey_shrK_iff [iff]: | |
| 11270 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11230diff
changeset | 259 | "(Key (invKey K) \<in> X) = (Key K \<in> X)" | 
| 13507 | 260 | by auto | 
| 11104 | 261 | |
| 262 | (*Specialized methods*) | |
| 263 | ||
| 264 | method_setup analz_freshK = {*
 | |
| 265 | Method.no_args | |
| 266 | (Method.METHOD | |
| 13907 | 267 | (fn facts => EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]), | 
| 11104 | 268 | REPEAT_FIRST (rtac analz_image_freshK_lemma), | 
| 269 | ALLGOALS (asm_simp_tac analz_image_freshK_ss)])) *} | |
| 270 | "for proving the Session Key Compromise theorem" | |
| 271 | ||
| 272 | method_setup possibility = {*
 | |
| 11270 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11230diff
changeset | 273 | Method.ctxt_args (fn ctxt => | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11230diff
changeset | 274 | Method.METHOD (fn facts => | 
| 15032 | 275 | gen_possibility_tac (local_simpset_of ctxt))) *} | 
| 11104 | 276 | "for proving possibility theorems" | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 277 | |
| 12415 
74977582a585
Slightly generalized the agents' knowledge theorems
 paulson parents: 
11270diff
changeset | 278 | lemma knows_subset_knows_Cons: "knows A evs <= knows A (e # evs)" | 
| 
74977582a585
Slightly generalized the agents' knowledge theorems
 paulson parents: 
11270diff
changeset | 279 | by (induct e, auto simp: knows_Cons) | 
| 
74977582a585
Slightly generalized the agents' knowledge theorems
 paulson parents: 
11270diff
changeset | 280 | |
| 1934 | 281 | end |