41959
|
1 |
(* Title: Sequents/LK/Quantifiers.thy
|
21426
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1992 University of Cambridge
|
|
4 |
|
|
5 |
Classical sequent calculus: examples with quantifiers.
|
|
6 |
*)
|
|
7 |
|
|
8 |
theory Quantifiers
|
|
9 |
imports LK
|
|
10 |
begin
|
|
11 |
|
|
12 |
lemma "|- (ALL x. P) <-> P"
|
|
13 |
by fast
|
|
14 |
|
|
15 |
lemma "|- (ALL x y. P(x,y)) <-> (ALL y x. P(x,y))"
|
|
16 |
by fast
|
|
17 |
|
|
18 |
lemma "ALL u. P(u), ALL v. Q(v) |- ALL u v. P(u) & Q(v)"
|
|
19 |
by fast
|
|
20 |
|
|
21 |
|
|
22 |
text "Permutation of existential quantifier."
|
|
23 |
|
|
24 |
lemma "|- (EX x y. P(x,y)) <-> (EX y x. P(x,y))"
|
|
25 |
by fast
|
|
26 |
|
|
27 |
lemma "|- (ALL x. P(x) & Q(x)) <-> (ALL x. P(x)) & (ALL x. Q(x))"
|
|
28 |
by fast
|
|
29 |
|
|
30 |
(*Converse is invalid*)
|
|
31 |
lemma "|- (ALL x. P(x)) | (ALL x. Q(x)) --> (ALL x. P(x)|Q(x))"
|
|
32 |
by fast
|
|
33 |
|
|
34 |
|
|
35 |
text "Pushing ALL into an implication."
|
|
36 |
|
|
37 |
lemma "|- (ALL x. P --> Q(x)) <-> (P --> (ALL x. Q(x)))"
|
|
38 |
by fast
|
|
39 |
|
|
40 |
lemma "|- (ALL x. P(x)-->Q) <-> ((EX x. P(x)) --> Q)"
|
|
41 |
by fast
|
|
42 |
|
|
43 |
lemma "|- (EX x. P) <-> P"
|
|
44 |
by fast
|
|
45 |
|
|
46 |
|
|
47 |
text "Distribution of EX over disjunction."
|
|
48 |
|
|
49 |
lemma "|- (EX x. P(x) | Q(x)) <-> (EX x. P(x)) | (EX x. Q(x))"
|
|
50 |
by fast
|
|
51 |
|
|
52 |
(*Converse is invalid*)
|
|
53 |
lemma "|- (EX x. P(x) & Q(x)) --> (EX x. P(x)) & (EX x. Q(x))"
|
|
54 |
by fast
|
|
55 |
|
|
56 |
|
|
57 |
text "Harder examples: classical theorems."
|
|
58 |
|
|
59 |
lemma "|- (EX x. P-->Q(x)) <-> (P --> (EX x. Q(x)))"
|
|
60 |
by fast
|
|
61 |
|
|
62 |
lemma "|- (EX x. P(x)-->Q) <-> (ALL x. P(x)) --> Q"
|
|
63 |
by fast
|
|
64 |
|
|
65 |
lemma "|- (ALL x. P(x)) | Q <-> (ALL x. P(x) | Q)"
|
|
66 |
by fast
|
|
67 |
|
|
68 |
|
|
69 |
text "Basic test of quantifier reasoning"
|
|
70 |
|
|
71 |
lemma "|- (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))"
|
|
72 |
by fast
|
|
73 |
|
|
74 |
lemma "|- (ALL x. Q(x)) --> (EX x. Q(x))"
|
|
75 |
by fast
|
|
76 |
|
|
77 |
|
|
78 |
text "The following are invalid!"
|
|
79 |
|
|
80 |
(*INVALID*)
|
|
81 |
lemma "|- (ALL x. EX y. Q(x,y)) --> (EX y. ALL x. Q(x,y))"
|
|
82 |
apply fast?
|
|
83 |
apply (rule _)
|
|
84 |
oops
|
|
85 |
|
|
86 |
(*INVALID*)
|
|
87 |
lemma "|- (EX x. Q(x)) --> (ALL x. Q(x))"
|
|
88 |
apply fast?
|
|
89 |
apply (rule _)
|
|
90 |
oops
|
|
91 |
|
|
92 |
(*INVALID*)
|
36319
|
93 |
schematic_lemma "|- P(?a) --> (ALL x. P(x))"
|
21426
|
94 |
apply fast?
|
|
95 |
apply (rule _)
|
|
96 |
oops
|
|
97 |
|
|
98 |
(*INVALID*)
|
36319
|
99 |
schematic_lemma "|- (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
|
21426
|
100 |
apply fast?
|
|
101 |
apply (rule _)
|
|
102 |
oops
|
|
103 |
|
|
104 |
|
|
105 |
text "Back to things that are provable..."
|
|
106 |
|
|
107 |
lemma "|- (ALL x. P(x)-->Q(x)) & (EX x. P(x)) --> (EX x. Q(x))"
|
|
108 |
by fast
|
|
109 |
|
|
110 |
(*An example of why exR should be delayed as long as possible*)
|
|
111 |
lemma "|- (P--> (EX x. Q(x))) & P--> (EX x. Q(x))"
|
|
112 |
by fast
|
|
113 |
|
|
114 |
|
|
115 |
text "Solving for a Var"
|
|
116 |
|
36319
|
117 |
schematic_lemma "|- (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
|
21426
|
118 |
by fast
|
|
119 |
|
|
120 |
|
|
121 |
text "Principia Mathematica *11.53"
|
|
122 |
|
|
123 |
lemma "|- (ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))"
|
|
124 |
by fast
|
|
125 |
|
|
126 |
|
|
127 |
text "Principia Mathematica *11.55"
|
|
128 |
|
|
129 |
lemma "|- (EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))"
|
|
130 |
by fast
|
|
131 |
|
|
132 |
|
|
133 |
text "Principia Mathematica *11.61"
|
|
134 |
|
|
135 |
lemma "|- (EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))"
|
|
136 |
by fast
|
|
137 |
|
|
138 |
|
|
139 |
(*21 August 88: loaded in 45.7 secs*)
|
|
140 |
(*18 September 2005: loaded in 0.114 secs*)
|
|
141 |
|
|
142 |
end
|