author | wenzelm |
Mon, 18 Apr 2011 12:04:21 +0200 | |
changeset 42385 | b46b47775cbe |
parent 40671 | 5e46057ba8e0 |
child 44890 | 22f665a2e91c |
permissions | -rw-r--r-- |
37772 | 1 |
theory Mrec |
2 |
imports Heap_Monad |
|
3 |
begin |
|
4 |
||
5 |
subsubsection {* A monadic combinator for simple recursive functions *} |
|
6 |
||
7 |
text {* Using a locale to fix arguments f and g of MREC *} |
|
8 |
||
9 |
locale mrec = |
|
10 |
fixes f :: "'a \<Rightarrow> ('b + 'a) Heap" |
|
11 |
and g :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b Heap" |
|
12 |
begin |
|
13 |
||
14 |
function (default "\<lambda>(x, h). None") mrec :: "'a \<Rightarrow> heap \<Rightarrow> ('b \<times> heap) option" where |
|
15 |
"mrec x h = (case execute (f x) h of |
|
16 |
Some (Inl r, h') \<Rightarrow> Some (r, h') |
|
17 |
| Some (Inr s, h') \<Rightarrow> (case mrec s h' of |
|
18 |
Some (z, h'') \<Rightarrow> execute (g x s z) h'' |
|
19 |
| None \<Rightarrow> None) |
|
20 |
| None \<Rightarrow> None)" |
|
21 |
by auto |
|
22 |
||
23 |
lemma graph_implies_dom: |
|
24 |
"mrec_graph x y \<Longrightarrow> mrec_dom x" |
|
25 |
apply (induct rule:mrec_graph.induct) |
|
26 |
apply (rule accpI) |
|
27 |
apply (erule mrec_rel.cases) |
|
28 |
by simp |
|
29 |
||
30 |
lemma mrec_default: "\<not> mrec_dom (x, h) \<Longrightarrow> mrec x h = None" |
|
31 |
unfolding mrec_def |
|
32 |
by (rule fundef_default_value[OF mrec_sumC_def graph_implies_dom, of _ _ "(x, h)", simplified]) |
|
33 |
||
34 |
lemma mrec_di_reverse: |
|
35 |
assumes "\<not> mrec_dom (x, h)" |
|
36 |
shows " |
|
37 |
(case execute (f x) h of |
|
38 |
Some (Inl r, h') \<Rightarrow> False |
|
39 |
| Some (Inr s, h') \<Rightarrow> \<not> mrec_dom (s, h') |
|
40 |
| None \<Rightarrow> False |
|
41 |
)" |
|
42 |
using assms apply (auto split: option.split sum.split) |
|
43 |
apply (rule ccontr) |
|
44 |
apply (erule notE, rule accpI, elim mrec_rel.cases, auto)+ |
|
45 |
done |
|
46 |
||
47 |
lemma mrec_rule: |
|
48 |
"mrec x h = |
|
49 |
(case execute (f x) h of |
|
50 |
Some (Inl r, h') \<Rightarrow> Some (r, h') |
|
51 |
| Some (Inr s, h') \<Rightarrow> |
|
52 |
(case mrec s h' of |
|
53 |
Some (z, h'') \<Rightarrow> execute (g x s z) h'' |
|
54 |
| None \<Rightarrow> None) |
|
55 |
| None \<Rightarrow> None |
|
56 |
)" |
|
39754 | 57 |
apply (cases "mrec_dom (x,h)", simp add: mrec.psimps) |
37772 | 58 |
apply (frule mrec_default) |
59 |
apply (frule mrec_di_reverse, simp) |
|
60 |
by (auto split: sum.split option.split simp: mrec_default) |
|
61 |
||
62 |
definition |
|
63 |
"MREC x = Heap_Monad.Heap (mrec x)" |
|
64 |
||
65 |
lemma MREC_rule: |
|
66 |
"MREC x = |
|
37792 | 67 |
do { y \<leftarrow> f x; |
37772 | 68 |
(case y of |
69 |
Inl r \<Rightarrow> return r |
|
70 |
| Inr s \<Rightarrow> |
|
37792 | 71 |
do { z \<leftarrow> MREC s ; |
72 |
g x s z })}" |
|
37772 | 73 |
unfolding MREC_def |
74 |
unfolding bind_def return_def |
|
75 |
apply simp |
|
76 |
apply (rule ext) |
|
77 |
apply (unfold mrec_rule[of x]) |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
78 |
by (auto simp add: execute_simps split: option.splits prod.splits sum.splits) |
37772 | 79 |
|
80 |
lemma MREC_pinduct: |
|
81 |
assumes "execute (MREC x) h = Some (r, h')" |
|
82 |
assumes non_rec_case: "\<And> x h h' r. execute (f x) h = Some (Inl r, h') \<Longrightarrow> P x h h' r" |
|
83 |
assumes rec_case: "\<And> x h h1 h2 h' s z r. execute (f x) h = Some (Inr s, h1) \<Longrightarrow> execute (MREC s) h1 = Some (z, h2) \<Longrightarrow> P s h1 h2 z |
|
84 |
\<Longrightarrow> execute (g x s z) h2 = Some (r, h') \<Longrightarrow> P x h h' r" |
|
85 |
shows "P x h h' r" |
|
86 |
proof - |
|
87 |
from assms(1) have mrec: "mrec x h = Some (r, h')" |
|
88 |
unfolding MREC_def execute.simps . |
|
89 |
from mrec have dom: "mrec_dom (x, h)" |
|
90 |
apply - |
|
91 |
apply (rule ccontr) |
|
92 |
apply (drule mrec_default) by auto |
|
93 |
from mrec have h'_r: "h' = snd (the (mrec x h))" "r = fst (the (mrec x h))" |
|
94 |
by auto |
|
95 |
from mrec have "P x h (snd (the (mrec x h))) (fst (the (mrec x h)))" |
|
96 |
proof (induct arbitrary: r h' rule: mrec.pinduct[OF dom]) |
|
97 |
case (1 x h) |
|
98 |
obtain rr h' where "the (mrec x h) = (rr, h')" by fastsimp |
|
99 |
show ?case |
|
100 |
proof (cases "execute (f x) h") |
|
101 |
case (Some result) |
|
102 |
then obtain a h1 where exec_f: "execute (f x) h = Some (a, h1)" by fastsimp |
|
103 |
note Inl' = this |
|
104 |
show ?thesis |
|
105 |
proof (cases a) |
|
106 |
case (Inl aa) |
|
107 |
from this Inl' 1(1) exec_f mrec non_rec_case show ?thesis |
|
39754 | 108 |
by (auto simp: mrec.psimps) |
37772 | 109 |
next |
110 |
case (Inr b) |
|
111 |
note Inr' = this |
|
112 |
show ?thesis |
|
113 |
proof (cases "mrec b h1") |
|
114 |
case (Some result) |
|
115 |
then obtain aaa h2 where mrec_rec: "mrec b h1 = Some (aaa, h2)" by fastsimp |
|
116 |
moreover from this have "P b h1 (snd (the (mrec b h1))) (fst (the (mrec b h1)))" |
|
117 |
apply (intro 1(2)) |
|
118 |
apply (auto simp add: Inr Inl') |
|
119 |
done |
|
120 |
moreover note mrec mrec_rec exec_f Inl' Inr' 1(1) 1(3) |
|
121 |
ultimately show ?thesis |
|
122 |
apply auto |
|
123 |
apply (rule rec_case) |
|
124 |
apply auto |
|
39754 | 125 |
unfolding MREC_def by (auto simp: mrec.psimps) |
37772 | 126 |
next |
127 |
case None |
|
39754 | 128 |
from this 1(1) exec_f mrec Inr' 1(3) show ?thesis by (auto simp: mrec.psimps) |
37772 | 129 |
qed |
130 |
qed |
|
131 |
next |
|
132 |
case None |
|
39754 | 133 |
from this 1(1) mrec 1(3) show ?thesis by (simp add: mrec.psimps) |
37772 | 134 |
qed |
135 |
qed |
|
136 |
from this h'_r show ?thesis by simp |
|
137 |
qed |
|
138 |
||
139 |
end |
|
140 |
||
141 |
text {* Providing global versions of the constant and the theorems *} |
|
142 |
||
143 |
abbreviation "MREC == mrec.MREC" |
|
144 |
lemmas MREC_rule = mrec.MREC_rule |
|
145 |
lemmas MREC_pinduct = mrec.MREC_pinduct |
|
146 |
||
147 |
lemma MREC_induct: |
|
40671 | 148 |
assumes "effect (MREC f g x) h h' r" |
149 |
assumes "\<And> x h h' r. effect (f x) h h' (Inl r) \<Longrightarrow> P x h h' r" |
|
150 |
assumes "\<And> x h h1 h2 h' s z r. effect (f x) h h1 (Inr s) \<Longrightarrow> effect (MREC f g s) h1 h2 z \<Longrightarrow> P s h1 h2 z |
|
151 |
\<Longrightarrow> effect (g x s z) h2 h' r \<Longrightarrow> P x h h' r" |
|
37772 | 152 |
shows "P x h h' r" |
40671 | 153 |
proof (rule MREC_pinduct[OF assms(1) [unfolded effect_def]]) |
37772 | 154 |
fix x h h1 h2 h' s z r |
155 |
assume "Heap_Monad.execute (f x) h = Some (Inr s, h1)" |
|
156 |
"Heap_Monad.execute (MREC f g s) h1 = Some (z, h2)" |
|
157 |
"P s h1 h2 z" |
|
158 |
"Heap_Monad.execute (g x s z) h2 = Some (r, h')" |
|
40671 | 159 |
from assms(3) [unfolded effect_def, OF this(1) this(2) this(3) this(4)] |
37772 | 160 |
show "P x h h' r" . |
161 |
next |
|
40671 | 162 |
qed (auto simp add: assms(2)[unfolded effect_def]) |
37772 | 163 |
|
164 |
end |