src/HOL/Limits.thy
author blanchet
Tue, 10 Sep 2013 15:56:51 +0200
changeset 53501 b49bfa77958a
parent 53381 355a4cac5440
child 53602 0ae3db699a3e
permissions -rw-r--r--
speed up detection of simp rules
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51642
diff changeset
     1
(*  Title:      HOL/Limits.thy
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     2
    Author:     Brian Huffman
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     3
    Author:     Jacques D. Fleuriot, University of Cambridge
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     4
    Author:     Lawrence C Paulson
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     5
    Author:     Jeremy Avigad
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     6
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     7
*)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     8
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     9
header {* Limits on Real Vector Spaces *}
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    10
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    11
theory Limits
51524
7cb5ac44ca9e rename RealVector.thy to Real_Vector_Spaces.thy
hoelzl
parents: 51478
diff changeset
    12
imports Real_Vector_Spaces
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    13
begin
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    14
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    15
subsection {* Filter going to infinity norm *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    16
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    17
definition at_infinity :: "'a::real_normed_vector filter" where
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    18
  "at_infinity = Abs_filter (\<lambda>P. \<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x)"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    19
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    20
lemma eventually_at_infinity:
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    21
  "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    22
unfolding at_infinity_def
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    23
proof (rule eventually_Abs_filter, rule is_filter.intro)
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    24
  fix P Q :: "'a \<Rightarrow> bool"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    25
  assume "\<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x" and "\<exists>s. \<forall>x. s \<le> norm x \<longrightarrow> Q x"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    26
  then obtain r s where
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    27
    "\<forall>x. r \<le> norm x \<longrightarrow> P x" and "\<forall>x. s \<le> norm x \<longrightarrow> Q x" by auto
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    28
  then have "\<forall>x. max r s \<le> norm x \<longrightarrow> P x \<and> Q x" by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    29
  then show "\<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x \<and> Q x" ..
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    30
qed auto
31392
69570155ddf8 replace filters with filter bases
huffman
parents: 31357
diff changeset
    31
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    32
lemma at_infinity_eq_at_top_bot:
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    33
  "(at_infinity \<Colon> real filter) = sup at_top at_bot"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    34
  unfolding sup_filter_def at_infinity_def eventually_at_top_linorder eventually_at_bot_linorder
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    35
proof (intro arg_cong[where f=Abs_filter] ext iffI)
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 52265
diff changeset
    36
  fix P :: "real \<Rightarrow> bool"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 52265
diff changeset
    37
  assume "\<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 52265
diff changeset
    38
  then obtain r where "\<forall>x. r \<le> norm x \<longrightarrow> P x" ..
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    39
  then have "(\<forall>x\<ge>r. P x) \<and> (\<forall>x\<le>-r. P x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    40
  then show "(\<exists>r. \<forall>x\<ge>r. P x) \<and> (\<exists>r. \<forall>x\<le>r. P x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    41
next
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 52265
diff changeset
    42
  fix P :: "real \<Rightarrow> bool"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 52265
diff changeset
    43
  assume "(\<exists>r. \<forall>x\<ge>r. P x) \<and> (\<exists>r. \<forall>x\<le>r. P x)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    44
  then obtain p q where "\<forall>x\<ge>p. P x" "\<forall>x\<le>q. P x" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    45
  then show "\<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x"
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 52265
diff changeset
    46
    by (intro exI[of _ "max p (-q)"]) (auto simp: abs_real_def)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    47
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    48
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    49
lemma at_top_le_at_infinity:
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    50
  "at_top \<le> (at_infinity :: real filter)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    51
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    52
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    53
lemma at_bot_le_at_infinity:
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    54
  "at_bot \<le> (at_infinity :: real filter)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    55
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    56
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    57
subsubsection {* Boundedness *}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    58
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    59
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    60
  Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    61
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    62
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    63
  "Bseq X \<equiv> Bfun X sequentially"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    64
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    65
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    66
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    67
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    68
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    69
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    70
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    71
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    72
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    73
lemma Bfun_def:
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    74
  "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    75
  unfolding Bfun_metric_def norm_conv_dist
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    76
proof safe
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    77
  fix y K assume "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    78
  moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    79
    by (intro always_eventually) (metis dist_commute dist_triangle)
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    80
  with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    81
    by eventually_elim auto
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    82
  with `0 < K` show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    83
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    84
qed auto
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    85
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
    86
lemma BfunI:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    87
  assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F" shows "Bfun f F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    88
unfolding Bfun_def
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    89
proof (intro exI conjI allI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    90
  show "0 < max K 1" by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    91
next
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    92
  show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    93
    using K by (rule eventually_elim1, simp)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    94
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    95
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    96
lemma BfunE:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    97
  assumes "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    98
  obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    99
using assms unfolding Bfun_def by fast
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   100
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   101
lemma Cauchy_Bseq: "Cauchy X \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   102
  unfolding Cauchy_def Bfun_metric_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   103
  apply (erule_tac x=1 in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   104
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   105
  apply safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   106
  apply (rule_tac x="X M" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   107
  apply (rule_tac x=1 in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   108
  apply (erule_tac x=M in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   109
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   110
  apply (rule_tac x=M in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   111
  apply (auto simp: dist_commute)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   112
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   113
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   114
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   115
subsubsection {* Bounded Sequences *}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   116
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   117
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   118
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   119
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   120
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   121
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   122
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   123
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   124
  unfolding Bfun_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   125
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   126
  fix N K assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   127
  then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   128
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] min_max.less_supI2)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   129
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   130
qed auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   131
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   132
lemma BseqE: "\<lbrakk>Bseq X; \<And>K. \<lbrakk>0 < K; \<forall>n. norm (X n) \<le> K\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   133
unfolding Bseq_def by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   134
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   135
lemma BseqD: "Bseq X ==> \<exists>K. 0 < K & (\<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   136
by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   137
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   138
lemma BseqI: "[| 0 < K; \<forall>n. norm (X n) \<le> K |] ==> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   139
by (auto simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   140
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   141
lemma lemma_NBseq_def:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   142
  "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   143
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   144
  fix K :: real
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   145
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   146
  then have "K \<le> real (Suc n)" by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   147
  moreover assume "\<forall>m. norm (X m) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   148
  ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   149
    by (blast intro: order_trans)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   150
  then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   151
qed (force simp add: real_of_nat_Suc)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   152
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   153
text{* alternative definition for Bseq *}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   154
lemma Bseq_iff: "Bseq X = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   155
apply (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   156
apply (simp (no_asm) add: lemma_NBseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   157
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   158
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   159
lemma lemma_NBseq_def2:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   160
     "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   161
apply (subst lemma_NBseq_def, auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   162
apply (rule_tac x = "Suc N" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   163
apply (rule_tac [2] x = N in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   164
apply (auto simp add: real_of_nat_Suc)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   165
 prefer 2 apply (blast intro: order_less_imp_le)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   166
apply (drule_tac x = n in spec, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   167
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   168
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   169
(* yet another definition for Bseq *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   170
lemma Bseq_iff1a: "Bseq X = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   171
by (simp add: Bseq_def lemma_NBseq_def2)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   172
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   173
subsubsection{*A Few More Equivalence Theorems for Boundedness*}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   174
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   175
text{*alternative formulation for boundedness*}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   176
lemma Bseq_iff2: "Bseq X = (\<exists>k > 0. \<exists>x. \<forall>n. norm (X(n) + -x) \<le> k)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   177
apply (unfold Bseq_def, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   178
apply (rule_tac [2] x = "k + norm x" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   179
apply (rule_tac x = K in exI, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   180
apply (rule exI [where x = 0], auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   181
apply (erule order_less_le_trans, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   182
apply (drule_tac x=n in spec, fold diff_minus)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   183
apply (drule order_trans [OF norm_triangle_ineq2])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   184
apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   185
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   186
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   187
text{*alternative formulation for boundedness*}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   188
lemma Bseq_iff3: "Bseq X = (\<exists>k > 0. \<exists>N. \<forall>n. norm(X(n) + -X(N)) \<le> k)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   189
apply safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   190
apply (simp add: Bseq_def, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   191
apply (rule_tac x = "K + norm (X N)" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   192
apply auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   193
apply (erule order_less_le_trans, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   194
apply (rule_tac x = N in exI, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   195
apply (drule_tac x = n in spec)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   196
apply (rule order_trans [OF norm_triangle_ineq], simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   197
apply (auto simp add: Bseq_iff2)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   198
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   199
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   200
lemma BseqI2: "(\<forall>n. k \<le> f n & f n \<le> (K::real)) ==> Bseq f"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   201
apply (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   202
apply (rule_tac x = " (\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI, auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   203
apply (drule_tac x = n in spec, arith)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   204
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   205
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   206
subsubsection{*Upper Bounds and Lubs of Bounded Sequences*}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   207
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   208
lemma Bseq_isUb:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   209
  "!!(X::nat=>real). Bseq X ==> \<exists>U. isUb (UNIV::real set) {x. \<exists>n. X n = x} U"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   210
by (auto intro: isUbI setleI simp add: Bseq_def abs_le_iff)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   211
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   212
text{* Use completeness of reals (supremum property)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   213
   to show that any bounded sequence has a least upper bound*}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   214
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   215
lemma Bseq_isLub:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   216
  "!!(X::nat=>real). Bseq X ==>
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   217
   \<exists>U. isLub (UNIV::real set) {x. \<exists>n. X n = x} U"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   218
by (blast intro: reals_complete Bseq_isUb)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   219
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   220
lemma Bseq_minus_iff: "Bseq (%n. -(X n) :: 'a :: real_normed_vector) = Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   221
  by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   222
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   223
lemma Bseq_eq_bounded: "range f \<subseteq> {a .. b::real} \<Longrightarrow> Bseq f"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   224
  apply (simp add: subset_eq)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   225
  apply (rule BseqI'[where K="max (norm a) (norm b)"])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   226
  apply (erule_tac x=n in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   227
  apply auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   228
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   229
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   230
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> (B::real) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   231
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   232
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   233
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. (B::real) \<le> X i \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   234
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   235
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   236
subsection {* Bounded Monotonic Sequences *}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   237
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   238
subsubsection{*A Bounded and Monotonic Sequence Converges*}
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   239
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   240
(* TODO: delete *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   241
(* FIXME: one use in NSA/HSEQ.thy *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   242
lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n --> X n = X m ==> \<exists>L. (X ----> L)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   243
  apply (rule_tac x="X m" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   244
  apply (rule filterlim_cong[THEN iffD2, OF refl refl _ tendsto_const])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   245
  unfolding eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   246
  apply blast
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   247
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   248
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   249
subsection {* Convergence to Zero *}
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   250
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   251
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   252
  where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   253
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   254
lemma ZfunI:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   255
  "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   256
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   257
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   258
lemma ZfunD:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   259
  "\<lbrakk>Zfun f F; 0 < r\<rbrakk> \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   260
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   261
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   262
lemma Zfun_ssubst:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   263
  "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   264
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   265
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   266
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   267
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   268
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   269
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   270
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   271
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   272
lemma Zfun_imp_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   273
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   274
  assumes g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   275
  shows "Zfun (\<lambda>x. g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   276
proof (cases)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   277
  assume K: "0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   278
  show ?thesis
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   279
  proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   280
    fix r::real assume "0 < r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   281
    hence "0 < r / K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   282
      using K by (rule divide_pos_pos)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   283
    then have "eventually (\<lambda>x. norm (f x) < r / K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   284
      using ZfunD [OF f] by fast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   285
    with g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   286
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   287
      case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   288
      hence "norm (f x) * K < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   289
        by (simp add: pos_less_divide_eq K)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   290
      thus ?case
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   291
        by (simp add: order_le_less_trans [OF elim(1)])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   292
    qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   293
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   294
next
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   295
  assume "\<not> 0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   296
  hence K: "K \<le> 0" by (simp only: not_less)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   297
  show ?thesis
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   298
  proof (rule ZfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   299
    fix r :: real
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   300
    assume "0 < r"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   301
    from g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   302
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   303
      case (elim x)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   304
      also have "norm (f x) * K \<le> norm (f x) * 0"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   305
        using K norm_ge_zero by (rule mult_left_mono)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   306
      finally show ?case
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   307
        using `0 < r` by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   308
    qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   309
  qed
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   310
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   311
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   312
lemma Zfun_le: "\<lbrakk>Zfun g F; \<forall>x. norm (f x) \<le> norm (g x)\<rbrakk> \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   313
  by (erule_tac K="1" in Zfun_imp_Zfun, simp)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   314
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   315
lemma Zfun_add:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   316
  assumes f: "Zfun f F" and g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   317
  shows "Zfun (\<lambda>x. f x + g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   318
proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   319
  fix r::real assume "0 < r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   320
  hence r: "0 < r / 2" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   321
  have "eventually (\<lambda>x. norm (f x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   322
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   323
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   324
  have "eventually (\<lambda>x. norm (g x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   325
    using g r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   326
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   327
  show "eventually (\<lambda>x. norm (f x + g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   328
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   329
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   330
    have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   331
      by (rule norm_triangle_ineq)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   332
    also have "\<dots> < r/2 + r/2"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   333
      using elim by (rule add_strict_mono)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   334
    finally show ?case
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   335
      by simp
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   336
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   337
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   338
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   339
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   340
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   341
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   342
lemma Zfun_diff: "\<lbrakk>Zfun f F; Zfun g F\<rbrakk> \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   343
  by (simp only: diff_minus Zfun_add Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   344
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   345
lemma (in bounded_linear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   346
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   347
  shows "Zfun (\<lambda>x. f (g x)) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   348
proof -
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   349
  obtain K where "\<And>x. norm (f x) \<le> norm x * K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   350
    using bounded by fast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   351
  then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   352
    by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   353
  with g show ?thesis
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   354
    by (rule Zfun_imp_Zfun)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   355
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   356
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   357
lemma (in bounded_bilinear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   358
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   359
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   360
  shows "Zfun (\<lambda>x. f x ** g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   361
proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   362
  fix r::real assume r: "0 < r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   363
  obtain K where K: "0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   364
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   365
    using pos_bounded by fast
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   366
  from K have K': "0 < inverse K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   367
    by (rule positive_imp_inverse_positive)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   368
  have "eventually (\<lambda>x. norm (f x) < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   369
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   370
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   371
  have "eventually (\<lambda>x. norm (g x) < inverse K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   372
    using g K' by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   373
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   374
  show "eventually (\<lambda>x. norm (f x ** g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   375
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   376
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   377
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   378
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   379
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   380
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   381
    also from K have "r * inverse K * K = r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   382
      by simp
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   383
    finally show ?case .
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   384
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   385
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   386
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   387
lemma (in bounded_bilinear) Zfun_left:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   388
  "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   389
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   390
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   391
lemma (in bounded_bilinear) Zfun_right:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   392
  "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   393
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   394
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   395
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   396
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   397
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   398
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   399
lemma tendsto_Zfun_iff: "(f ---> a) F = Zfun (\<lambda>x. f x - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   400
  by (simp only: tendsto_iff Zfun_def dist_norm)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   401
44205
18da2a87421c generalize constant 'lim' and limit uniqueness theorems to class t2_space
huffman
parents: 44195
diff changeset
   402
subsubsection {* Distance and norms *}
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   403
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   404
lemma tendsto_dist [tendsto_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   405
  fixes l m :: "'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   406
  assumes f: "(f ---> l) F" and g: "(g ---> m) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   407
  shows "((\<lambda>x. dist (f x) (g x)) ---> dist l m) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   408
proof (rule tendstoI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   409
  fix e :: real assume "0 < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   410
  hence e2: "0 < e/2" by simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   411
  from tendstoD [OF f e2] tendstoD [OF g e2]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   412
  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   413
  proof (eventually_elim)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   414
    case (elim x)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   415
    then show "dist (dist (f x) (g x)) (dist l m) < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   416
      unfolding dist_real_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   417
      using dist_triangle2 [of "f x" "g x" "l"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   418
      using dist_triangle2 [of "g x" "l" "m"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   419
      using dist_triangle3 [of "l" "m" "f x"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   420
      using dist_triangle [of "f x" "m" "g x"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   421
      by arith
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   422
  qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   423
qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   424
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   425
lemma continuous_dist[continuous_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   426
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   427
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   428
  unfolding continuous_def by (rule tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   429
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   430
lemma continuous_on_dist[continuous_on_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   431
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   432
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   433
  unfolding continuous_on_def by (auto intro: tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   434
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   435
lemma tendsto_norm [tendsto_intros]:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   436
  "(f ---> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) ---> norm a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   437
  unfolding norm_conv_dist by (intro tendsto_intros)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   438
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   439
lemma continuous_norm [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   440
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   441
  unfolding continuous_def by (rule tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   442
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   443
lemma continuous_on_norm [continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   444
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   445
  unfolding continuous_on_def by (auto intro: tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   446
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   447
lemma tendsto_norm_zero:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   448
  "(f ---> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) ---> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   449
  by (drule tendsto_norm, simp)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   450
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   451
lemma tendsto_norm_zero_cancel:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   452
  "((\<lambda>x. norm (f x)) ---> 0) F \<Longrightarrow> (f ---> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   453
  unfolding tendsto_iff dist_norm by simp
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   454
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   455
lemma tendsto_norm_zero_iff:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   456
  "((\<lambda>x. norm (f x)) ---> 0) F \<longleftrightarrow> (f ---> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   457
  unfolding tendsto_iff dist_norm by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   458
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   459
lemma tendsto_rabs [tendsto_intros]:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   460
  "(f ---> (l::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) ---> \<bar>l\<bar>) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   461
  by (fold real_norm_def, rule tendsto_norm)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   462
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   463
lemma continuous_rabs [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   464
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   465
  unfolding real_norm_def[symmetric] by (rule continuous_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   466
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   467
lemma continuous_on_rabs [continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   468
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   469
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   470
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   471
lemma tendsto_rabs_zero:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   472
  "(f ---> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   473
  by (fold real_norm_def, rule tendsto_norm_zero)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   474
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   475
lemma tendsto_rabs_zero_cancel:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   476
  "((\<lambda>x. \<bar>f x\<bar>) ---> (0::real)) F \<Longrightarrow> (f ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   477
  by (fold real_norm_def, rule tendsto_norm_zero_cancel)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   478
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   479
lemma tendsto_rabs_zero_iff:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   480
  "((\<lambda>x. \<bar>f x\<bar>) ---> (0::real)) F \<longleftrightarrow> (f ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   481
  by (fold real_norm_def, rule tendsto_norm_zero_iff)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   482
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   483
subsubsection {* Addition and subtraction *}
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   484
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   485
lemma tendsto_add [tendsto_intros]:
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   486
  fixes a b :: "'a::real_normed_vector"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   487
  shows "\<lbrakk>(f ---> a) F; (g ---> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x + g x) ---> a + b) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   488
  by (simp only: tendsto_Zfun_iff add_diff_add Zfun_add)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   489
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   490
lemma continuous_add [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   491
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   492
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   493
  unfolding continuous_def by (rule tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   494
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   495
lemma continuous_on_add [continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   496
  fixes f g :: "_ \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   497
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   498
  unfolding continuous_on_def by (auto intro: tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   499
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   500
lemma tendsto_add_zero:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   501
  fixes f g :: "_ \<Rightarrow> 'b::real_normed_vector"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   502
  shows "\<lbrakk>(f ---> 0) F; (g ---> 0) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x + g x) ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   503
  by (drule (1) tendsto_add, simp)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   504
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   505
lemma tendsto_minus [tendsto_intros]:
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   506
  fixes a :: "'a::real_normed_vector"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   507
  shows "(f ---> a) F \<Longrightarrow> ((\<lambda>x. - f x) ---> - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   508
  by (simp only: tendsto_Zfun_iff minus_diff_minus Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   509
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   510
lemma continuous_minus [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   511
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   512
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   513
  unfolding continuous_def by (rule tendsto_minus)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   514
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   515
lemma continuous_on_minus [continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   516
  fixes f :: "_ \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   517
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   518
  unfolding continuous_on_def by (auto intro: tendsto_minus)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   519
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   520
lemma tendsto_minus_cancel:
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   521
  fixes a :: "'a::real_normed_vector"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   522
  shows "((\<lambda>x. - f x) ---> - a) F \<Longrightarrow> (f ---> a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   523
  by (drule tendsto_minus, simp)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   524
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   525
lemma tendsto_minus_cancel_left:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   526
    "(f ---> - (y::_::real_normed_vector)) F \<longleftrightarrow> ((\<lambda>x. - f x) ---> y) F"
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   527
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   528
  by auto
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   529
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   530
lemma tendsto_diff [tendsto_intros]:
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   531
  fixes a b :: "'a::real_normed_vector"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   532
  shows "\<lbrakk>(f ---> a) F; (g ---> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x - g x) ---> a - b) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   533
  by (simp add: diff_minus tendsto_add tendsto_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   534
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   535
lemma continuous_diff [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   536
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   537
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   538
  unfolding continuous_def by (rule tendsto_diff)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   539
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   540
lemma continuous_on_diff [continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   541
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   542
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   543
  unfolding continuous_on_def by (auto intro: tendsto_diff)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   544
31588
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   545
lemma tendsto_setsum [tendsto_intros]:
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   546
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   547
  assumes "\<And>i. i \<in> S \<Longrightarrow> (f i ---> a i) F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   548
  shows "((\<lambda>x. \<Sum>i\<in>S. f i x) ---> (\<Sum>i\<in>S. a i)) F"
31588
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   549
proof (cases "finite S")
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   550
  assume "finite S" thus ?thesis using assms
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   551
    by (induct, simp add: tendsto_const, simp add: tendsto_add)
31588
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   552
next
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   553
  assume "\<not> finite S" thus ?thesis
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   554
    by (simp add: tendsto_const)
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   555
qed
2651f172c38b add lemma tendsto_setsum
huffman
parents: 31565
diff changeset
   556
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   557
lemma continuous_setsum [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   558
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   559
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   560
  unfolding continuous_def by (rule tendsto_setsum)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   561
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   562
lemma continuous_on_setsum [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   563
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   564
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Sum>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   565
  unfolding continuous_on_def by (auto intro: tendsto_setsum)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   566
50999
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   567
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'b=real]
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   568
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   569
subsubsection {* Linear operators and multiplication *}
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   570
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   571
lemma (in bounded_linear) tendsto:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   572
  "(g ---> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) ---> f a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   573
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   574
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   575
lemma (in bounded_linear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   576
  "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   577
  using tendsto[of g _ F] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   578
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   579
lemma (in bounded_linear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   580
  "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   581
  using tendsto[of g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   582
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   583
lemma (in bounded_linear) tendsto_zero:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   584
  "(g ---> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   585
  by (drule tendsto, simp only: zero)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   586
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   587
lemma (in bounded_bilinear) tendsto:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   588
  "\<lbrakk>(f ---> a) F; (g ---> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ** g x) ---> a ** b) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   589
  by (simp only: tendsto_Zfun_iff prod_diff_prod
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   590
                 Zfun_add Zfun Zfun_left Zfun_right)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   591
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   592
lemma (in bounded_bilinear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   593
  "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   594
  using tendsto[of f _ F g] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   595
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   596
lemma (in bounded_bilinear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   597
  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   598
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   599
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   600
lemma (in bounded_bilinear) tendsto_zero:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   601
  assumes f: "(f ---> 0) F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   602
  assumes g: "(g ---> 0) F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   603
  shows "((\<lambda>x. f x ** g x) ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   604
  using tendsto [OF f g] by (simp add: zero_left)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   605
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   606
lemma (in bounded_bilinear) tendsto_left_zero:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   607
  "(f ---> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   608
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   609
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   610
lemma (in bounded_bilinear) tendsto_right_zero:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   611
  "(f ---> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) ---> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   612
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   613
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   614
lemmas tendsto_of_real [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   615
  bounded_linear.tendsto [OF bounded_linear_of_real]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   616
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   617
lemmas tendsto_scaleR [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   618
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   619
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   620
lemmas tendsto_mult [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   621
  bounded_bilinear.tendsto [OF bounded_bilinear_mult]
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   622
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   623
lemmas continuous_of_real [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   624
  bounded_linear.continuous [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   625
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   626
lemmas continuous_scaleR [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   627
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   628
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   629
lemmas continuous_mult [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   630
  bounded_bilinear.continuous [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   631
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   632
lemmas continuous_on_of_real [continuous_on_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   633
  bounded_linear.continuous_on [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   634
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   635
lemmas continuous_on_scaleR [continuous_on_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   636
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   637
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   638
lemmas continuous_on_mult [continuous_on_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   639
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   640
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   641
lemmas tendsto_mult_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   642
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   643
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   644
lemmas tendsto_mult_left_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   645
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   646
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   647
lemmas tendsto_mult_right_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   648
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   649
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   650
lemma tendsto_power [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   651
  fixes f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   652
  shows "(f ---> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) ---> a ^ n) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   653
  by (induct n) (simp_all add: tendsto_const tendsto_mult)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   654
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   655
lemma continuous_power [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   656
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   657
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   658
  unfolding continuous_def by (rule tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   659
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   660
lemma continuous_on_power [continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   661
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   662
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   663
  unfolding continuous_on_def by (auto intro: tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   664
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   665
lemma tendsto_setprod [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   666
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   667
  assumes "\<And>i. i \<in> S \<Longrightarrow> (f i ---> L i) F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   668
  shows "((\<lambda>x. \<Prod>i\<in>S. f i x) ---> (\<Prod>i\<in>S. L i)) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   669
proof (cases "finite S")
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   670
  assume "finite S" thus ?thesis using assms
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   671
    by (induct, simp add: tendsto_const, simp add: tendsto_mult)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   672
next
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   673
  assume "\<not> finite S" thus ?thesis
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   674
    by (simp add: tendsto_const)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   675
qed
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   676
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   677
lemma continuous_setprod [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   678
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   679
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   680
  unfolding continuous_def by (rule tendsto_setprod)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   681
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   682
lemma continuous_on_setprod [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   683
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   684
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   685
  unfolding continuous_on_def by (auto intro: tendsto_setprod)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   686
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   687
subsubsection {* Inverse and division *}
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   688
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   689
lemma (in bounded_bilinear) Zfun_prod_Bfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   690
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   691
  assumes g: "Bfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   692
  shows "Zfun (\<lambda>x. f x ** g x) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   693
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   694
  obtain K where K: "0 \<le> K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   695
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   696
    using nonneg_bounded by fast
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   697
  obtain B where B: "0 < B"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   698
    and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   699
    using g by (rule BfunE)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   700
  have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   701
  using norm_g proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   702
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   703
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   704
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   705
    also have "\<dots> \<le> norm (f x) * B * K"
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   706
      by (intro mult_mono' order_refl norm_g norm_ge_zero
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   707
                mult_nonneg_nonneg K elim)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   708
    also have "\<dots> = norm (f x) * (B * K)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   709
      by (rule mult_assoc)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   710
    finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   711
  qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   712
  with f show ?thesis
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   713
    by (rule Zfun_imp_Zfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   714
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   715
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   716
lemma (in bounded_bilinear) flip:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   717
  "bounded_bilinear (\<lambda>x y. y ** x)"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   718
  apply default
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   719
  apply (rule add_right)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   720
  apply (rule add_left)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   721
  apply (rule scaleR_right)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   722
  apply (rule scaleR_left)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   723
  apply (subst mult_commute)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   724
  using bounded by fast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   725
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   726
lemma (in bounded_bilinear) Bfun_prod_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   727
  assumes f: "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   728
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   729
  shows "Zfun (\<lambda>x. f x ** g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   730
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   731
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   732
lemma Bfun_inverse_lemma:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   733
  fixes x :: "'a::real_normed_div_algebra"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   734
  shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   735
  apply (subst nonzero_norm_inverse, clarsimp)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   736
  apply (erule (1) le_imp_inverse_le)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   737
  done
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   738
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   739
lemma Bfun_inverse:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   740
  fixes a :: "'a::real_normed_div_algebra"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   741
  assumes f: "(f ---> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   742
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   743
  shows "Bfun (\<lambda>x. inverse (f x)) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   744
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   745
  from a have "0 < norm a" by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   746
  hence "\<exists>r>0. r < norm a" by (rule dense)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   747
  then obtain r where r1: "0 < r" and r2: "r < norm a" by fast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   748
  have "eventually (\<lambda>x. dist (f x) a < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   749
    using tendstoD [OF f r1] by fast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   750
  hence "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   751
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   752
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   753
    hence 1: "norm (f x - a) < r"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   754
      by (simp add: dist_norm)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   755
    hence 2: "f x \<noteq> 0" using r2 by auto
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   756
    hence "norm (inverse (f x)) = inverse (norm (f x))"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   757
      by (rule nonzero_norm_inverse)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   758
    also have "\<dots> \<le> inverse (norm a - r)"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   759
    proof (rule le_imp_inverse_le)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   760
      show "0 < norm a - r" using r2 by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   761
    next
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   762
      have "norm a - norm (f x) \<le> norm (a - f x)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   763
        by (rule norm_triangle_ineq2)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   764
      also have "\<dots> = norm (f x - a)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   765
        by (rule norm_minus_commute)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   766
      also have "\<dots> < r" using 1 .
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   767
      finally show "norm a - r \<le> norm (f x)" by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   768
    qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   769
    finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   770
  qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   771
  thus ?thesis by (rule BfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   772
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   773
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   774
lemma tendsto_inverse [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   775
  fixes a :: "'a::real_normed_div_algebra"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   776
  assumes f: "(f ---> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   777
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   778
  shows "((\<lambda>x. inverse (f x)) ---> inverse a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   779
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   780
  from a have "0 < norm a" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   781
  with f have "eventually (\<lambda>x. dist (f x) a < norm a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   782
    by (rule tendstoD)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   783
  then have "eventually (\<lambda>x. f x \<noteq> 0) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   784
    unfolding dist_norm by (auto elim!: eventually_elim1)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   785
  with a have "eventually (\<lambda>x. inverse (f x) - inverse a =
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   786
    - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   787
    by (auto elim!: eventually_elim1 simp: inverse_diff_inverse)
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   788
  moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   789
    by (intro Zfun_minus Zfun_mult_left
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   790
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   791
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   792
  ultimately show ?thesis
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   793
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   794
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   795
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   796
lemma continuous_inverse:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   797
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   798
  assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   799
  shows "continuous F (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   800
  using assms unfolding continuous_def by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   801
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   802
lemma continuous_at_within_inverse[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   803
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   804
  assumes "continuous (at a within s) f" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   805
  shows "continuous (at a within s) (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   806
  using assms unfolding continuous_within by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   807
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   808
lemma isCont_inverse[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   809
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   810
  assumes "isCont f a" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   811
  shows "isCont (\<lambda>x. inverse (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   812
  using assms unfolding continuous_at by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   813
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   814
lemma continuous_on_inverse[continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   815
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   816
  assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   817
  shows "continuous_on s (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   818
  using assms unfolding continuous_on_def by (fast intro: tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   819
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   820
lemma tendsto_divide [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   821
  fixes a b :: "'a::real_normed_field"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   822
  shows "\<lbrakk>(f ---> a) F; (g ---> b) F; b \<noteq> 0\<rbrakk>
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   823
    \<Longrightarrow> ((\<lambda>x. f x / g x) ---> a / b) F"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   824
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   825
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   826
lemma continuous_divide:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   827
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   828
  assumes "continuous F f" and "continuous F g" and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   829
  shows "continuous F (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   830
  using assms unfolding continuous_def by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   831
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   832
lemma continuous_at_within_divide[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   833
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   834
  assumes "continuous (at a within s) f" "continuous (at a within s) g" and "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   835
  shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   836
  using assms unfolding continuous_within by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   837
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   838
lemma isCont_divide[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   839
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   840
  assumes "isCont f a" "isCont g a" "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   841
  shows "isCont (\<lambda>x. (f x) / g x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   842
  using assms unfolding continuous_at by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   843
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   844
lemma continuous_on_divide[continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   845
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   846
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. g x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   847
  shows "continuous_on s (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   848
  using assms unfolding continuous_on_def by (fast intro: tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   849
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   850
lemma tendsto_sgn [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   851
  fixes l :: "'a::real_normed_vector"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   852
  shows "\<lbrakk>(f ---> l) F; l \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. sgn (f x)) ---> sgn l) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   853
  unfolding sgn_div_norm by (simp add: tendsto_intros)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   854
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   855
lemma continuous_sgn:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   856
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   857
  assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   858
  shows "continuous F (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   859
  using assms unfolding continuous_def by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   860
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   861
lemma continuous_at_within_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   862
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   863
  assumes "continuous (at a within s) f" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   864
  shows "continuous (at a within s) (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   865
  using assms unfolding continuous_within by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   866
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   867
lemma isCont_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   868
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   869
  assumes "isCont f a" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   870
  shows "isCont (\<lambda>x. sgn (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   871
  using assms unfolding continuous_at by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   872
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   873
lemma continuous_on_sgn[continuous_on_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   874
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   875
  assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   876
  shows "continuous_on s (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   877
  using assms unfolding continuous_on_def by (fast intro: tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   878
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   879
lemma filterlim_at_infinity:
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   880
  fixes f :: "_ \<Rightarrow> 'a\<Colon>real_normed_vector"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   881
  assumes "0 \<le> c"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   882
  shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   883
  unfolding filterlim_iff eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   884
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   885
  fix P :: "'a \<Rightarrow> bool" and b
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   886
  assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   887
    and P: "\<forall>x. b \<le> norm x \<longrightarrow> P x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   888
  have "max b (c + 1) > c" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   889
  with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   890
    by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   891
  then show "eventually (\<lambda>x. P (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   892
  proof eventually_elim
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   893
    fix x assume "max b (c + 1) \<le> norm (f x)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   894
    with P show "P (f x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   895
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   896
qed force
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
   897
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
   898
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   899
subsection {* Relate @{const at}, @{const at_left} and @{const at_right} *}
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   900
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   901
text {*
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   902
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   903
This lemmas are useful for conversion between @{term "at x"} to @{term "at_left x"} and
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   904
@{term "at_right x"} and also @{term "at_right 0"}.
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   905
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   906
*}
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   907
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
   908
lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   909
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   910
lemma filtermap_homeomorph:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   911
  assumes f: "continuous (at a) f"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   912
  assumes g: "continuous (at (f a)) g"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   913
  assumes bij1: "\<forall>x. f (g x) = x" and bij2: "\<forall>x. g (f x) = x"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   914
  shows "filtermap f (nhds a) = nhds (f a)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   915
  unfolding filter_eq_iff eventually_filtermap eventually_nhds
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   916
proof safe
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   917
  fix P S assume S: "open S" "f a \<in> S" and P: "\<forall>x\<in>S. P x"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   918
  from continuous_within_topological[THEN iffD1, rule_format, OF f S] P
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   919
  show "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P (f x))" by auto
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   920
next
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   921
  fix P S assume S: "open S" "a \<in> S" and P: "\<forall>x\<in>S. P (f x)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   922
  with continuous_within_topological[THEN iffD1, rule_format, OF g, of S] bij2
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   923
  obtain A where "open A" "f a \<in> A" "(\<forall>y\<in>A. g y \<in> S)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   924
    by (metis UNIV_I)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   925
  with P bij1 show "\<exists>S. open S \<and> f a \<in> S \<and> (\<forall>x\<in>S. P x)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   926
    by (force intro!: exI[of _ A])
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   927
qed
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   928
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   929
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   930
  by (rule filtermap_homeomorph[where g="\<lambda>x. x + d"]) (auto intro: continuous_intros)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   931
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   932
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   933
  by (rule filtermap_homeomorph[where g=uminus]) (auto intro: continuous_minus)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   934
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   935
lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   936
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   937
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   938
lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d::real)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   939
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   940
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   941
lemma at_right_to_0: "at_right (a::real) = filtermap (\<lambda>x. x + a) (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   942
  using filtermap_at_right_shift[of "-a" 0] by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   943
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   944
lemma filterlim_at_right_to_0:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   945
  "filterlim f F (at_right (a::real)) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   946
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   947
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   948
lemma eventually_at_right_to_0:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   949
  "eventually P (at_right (a::real)) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   950
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   951
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   952
lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   953
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   954
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   955
lemma at_left_minus: "at_left (a::real) = filtermap (\<lambda>x. - x) (at_right (- a))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   956
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   957
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   958
lemma at_right_minus: "at_right (a::real) = filtermap (\<lambda>x. - x) (at_left (- a))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   959
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   960
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   961
lemma filterlim_at_left_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   962
  "filterlim f F (at_left (a::real)) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   963
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   964
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   965
lemma eventually_at_left_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   966
  "eventually P (at_left (a::real)) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   967
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   968
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   969
lemma at_top_mirror: "at_top = filtermap uminus (at_bot :: real filter)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   970
  unfolding filter_eq_iff eventually_filtermap eventually_at_top_linorder eventually_at_bot_linorder
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   971
  by (metis le_minus_iff minus_minus)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   972
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   973
lemma at_bot_mirror: "at_bot = filtermap uminus (at_top :: real filter)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   974
  unfolding at_top_mirror filtermap_filtermap by (simp add: filtermap_ident)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   975
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   976
lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   977
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   978
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   979
lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   980
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   981
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   982
lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   983
  unfolding filterlim_at_top eventually_at_bot_dense
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   984
  by (metis leI minus_less_iff order_less_asym)
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   985
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   986
lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   987
  unfolding filterlim_at_bot eventually_at_top_dense
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   988
  by (metis leI less_minus_iff order_less_asym)
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   989
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   990
lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   991
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   992
  using filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   993
  by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   994
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   995
lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
   996
  unfolding filterlim_uminus_at_top by simp
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
   997
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
   998
lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
   999
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1000
proof safe
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1001
  fix Z :: real assume [arith]: "0 < Z"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1002
  then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1003
    by (auto simp add: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1004
  then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1005
    by (auto elim!: eventually_elim1 simp: inverse_eq_divide field_simps)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1006
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1007
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1008
lemma filterlim_inverse_at_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1009
  "(f ---> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1010
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1011
     (simp add: filterlim_def eventually_filtermap eventually_elim1 at_within_def le_principal)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1012
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1013
lemma filterlim_inverse_at_bot_neg:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1014
  "LIM x (at_left (0::real)). inverse x :> at_bot"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1015
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1016
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1017
lemma filterlim_inverse_at_bot:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1018
  "(f ---> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1019
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1020
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1021
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1022
lemma tendsto_inverse_0:
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1023
  fixes x :: "_ \<Rightarrow> 'a\<Colon>real_normed_div_algebra"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1024
  shows "(inverse ---> (0::'a)) at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1025
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1026
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1027
  fix r :: real assume "0 < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1028
  show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1029
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1030
    fix x :: 'a
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1031
    from `0 < r` have "0 < inverse (r / 2)" by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1032
    also assume *: "inverse (r / 2) \<le> norm x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1033
    finally show "norm (inverse x) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1034
      using * `0 < r` by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1035
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1036
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1037
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1038
lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1039
proof (rule antisym)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1040
  have "(inverse ---> (0::real)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1041
    by (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1042
  then show "filtermap inverse at_top \<le> at_right (0::real)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1043
    by (simp add: le_principal eventually_filtermap eventually_gt_at_top filterlim_def at_within_def)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1044
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1045
  have "filtermap inverse (filtermap inverse (at_right (0::real))) \<le> filtermap inverse at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1046
    using filterlim_inverse_at_top_right unfolding filterlim_def by (rule filtermap_mono)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1047
  then show "at_right (0::real) \<le> filtermap inverse at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1048
    by (simp add: filtermap_ident filtermap_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1049
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1050
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1051
lemma eventually_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1052
  "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1053
  unfolding at_right_to_top eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1054
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1055
lemma filterlim_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1056
  "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1057
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1058
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1059
lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1060
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1061
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1062
lemma eventually_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1063
  "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1064
  unfolding at_top_to_right eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1065
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1066
lemma filterlim_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1067
  "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1068
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1069
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1070
lemma filterlim_inverse_at_infinity:
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1071
  fixes x :: "_ \<Rightarrow> 'a\<Colon>{real_normed_div_algebra, division_ring_inverse_zero}"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1072
  shows "filterlim inverse at_infinity (at (0::'a))"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1073
  unfolding filterlim_at_infinity[OF order_refl]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1074
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1075
  fix r :: real assume "0 < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1076
  then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1077
    unfolding eventually_at norm_inverse
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1078
    by (intro exI[of _ "inverse r"])
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1079
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1080
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1081
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1082
lemma filterlim_inverse_at_iff:
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1083
  fixes g :: "'a \<Rightarrow> 'b\<Colon>{real_normed_div_algebra, division_ring_inverse_zero}"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1084
  shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1085
  unfolding filterlim_def filtermap_filtermap[symmetric]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1086
proof
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1087
  assume "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1088
  then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1089
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1090
  also have "\<dots> \<le> at 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1091
    using tendsto_inverse_0[where 'a='b]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1092
    by (auto intro!: exI[of _ 1]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1093
             simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1094
  finally show "filtermap inverse (filtermap g F) \<le> at 0" .
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1095
next
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1096
  assume "filtermap inverse (filtermap g F) \<le> at 0"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1097
  then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1098
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1099
  with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1100
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1101
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1102
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1103
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) ---> 0) F"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1104
 by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1105
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1106
text {*
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1107
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1108
We only show rules for multiplication and addition when the functions are either against a real
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1109
value or against infinity. Further rules are easy to derive by using @{thm filterlim_uminus_at_top}.
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1110
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1111
*}
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1112
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1113
lemma filterlim_tendsto_pos_mult_at_top: 
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1114
  assumes f: "(f ---> c) F" and c: "0 < c"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1115
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1116
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1117
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1118
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1119
  fix Z :: real assume "0 < Z"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1120
  from f `0 < c` have "eventually (\<lambda>x. c / 2 < f x) F"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1121
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_elim1
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1122
             simp: dist_real_def abs_real_def split: split_if_asm)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1123
  moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1124
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1125
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1126
  proof eventually_elim
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1127
    fix x assume "c / 2 < f x" "Z / c * 2 \<le> g x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1128
    with `0 < Z` `0 < c` have "c / 2 * (Z / c * 2) \<le> f x * g x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1129
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1130
    with `0 < c` show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1131
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1132
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1133
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1134
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1135
lemma filterlim_at_top_mult_at_top: 
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1136
  assumes f: "LIM x F. f x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1137
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1138
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1139
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1140
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1141
  fix Z :: real assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1142
  from f have "eventually (\<lambda>x. 1 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1143
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1144
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1145
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1146
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1147
  proof eventually_elim
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1148
    fix x assume "1 \<le> f x" "Z \<le> g x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1149
    with `0 < Z` have "1 * Z \<le> f x * g x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1150
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1151
    then show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1152
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1153
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1154
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1155
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1156
lemma filterlim_tendsto_pos_mult_at_bot:
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1157
  assumes "(f ---> c) F" "0 < (c::real)" "filterlim g at_bot F"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1158
  shows "LIM x F. f x * g x :> at_bot"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1159
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3)
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1160
  unfolding filterlim_uminus_at_bot by simp
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1161
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1162
lemma filterlim_tendsto_add_at_top: 
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1163
  assumes f: "(f ---> c) F"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1164
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1165
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1166
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1167
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1168
  fix Z :: real assume "0 < Z"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1169
  from f have "eventually (\<lambda>x. c - 1 < f x) F"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1170
    by (auto dest!: tendstoD[where e=1] elim!: eventually_elim1 simp: dist_real_def)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1171
  moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1172
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1173
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1174
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1175
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1176
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1177
lemma LIM_at_top_divide:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1178
  fixes f g :: "'a \<Rightarrow> real"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1179
  assumes f: "(f ---> a) F" "0 < a"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1180
  assumes g: "(g ---> 0) F" "eventually (\<lambda>x. 0 < g x) F"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1181
  shows "LIM x F. f x / g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1182
  unfolding divide_inverse
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1183
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1184
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1185
lemma filterlim_at_top_add_at_top: 
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1186
  assumes f: "LIM x F. f x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1187
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1188
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1189
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1190
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1191
  fix Z :: real assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1192
  from f have "eventually (\<lambda>x. 0 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1193
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1194
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1195
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1196
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1197
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1198
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1199
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1200
lemma tendsto_divide_0:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1201
  fixes f :: "_ \<Rightarrow> 'a\<Colon>{real_normed_div_algebra, division_ring_inverse_zero}"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1202
  assumes f: "(f ---> c) F"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1203
  assumes g: "LIM x F. g x :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1204
  shows "((\<lambda>x. f x / g x) ---> 0) F"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1205
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]] by (simp add: divide_inverse)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1206
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1207
lemma linear_plus_1_le_power:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1208
  fixes x :: real
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1209
  assumes x: "0 \<le> x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1210
  shows "real n * x + 1 \<le> (x + 1) ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1211
proof (induct n)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1212
  case (Suc n)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1213
  have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1214
    by (simp add: field_simps real_of_nat_Suc mult_nonneg_nonneg x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1215
  also have "\<dots> \<le> (x + 1)^Suc n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1216
    using Suc x by (simp add: mult_left_mono)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1217
  finally show ?case .
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1218
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1219
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1220
lemma filterlim_realpow_sequentially_gt1:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1221
  fixes x :: "'a :: real_normed_div_algebra"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1222
  assumes x[arith]: "1 < norm x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1223
  shows "LIM n sequentially. x ^ n :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1224
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1225
  fix y :: real assume "0 < y"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1226
  have "0 < norm x - 1" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1227
  then obtain N::nat where "y < real N * (norm x - 1)" by (blast dest: reals_Archimedean3)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1228
  also have "\<dots> \<le> real N * (norm x - 1) + 1" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1229
  also have "\<dots> \<le> (norm x - 1 + 1) ^ N" by (rule linear_plus_1_le_power) simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1230
  also have "\<dots> = norm x ^ N" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1231
  finally have "\<forall>n\<ge>N. y \<le> norm x ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1232
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1233
  then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1234
    unfolding eventually_sequentially
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1235
    by (auto simp: norm_power)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1236
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1237
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1238
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1239
subsection {* Limits of Sequences *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1240
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1241
lemma [trans]: "X=Y ==> Y ----> z ==> X ----> z"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1242
  by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1243
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1244
lemma LIMSEQ_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1245
  fixes L :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1246
  shows "(X ----> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1247
unfolding LIMSEQ_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1248
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1249
lemma LIMSEQ_I:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1250
  fixes L :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1251
  shows "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X ----> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1252
by (simp add: LIMSEQ_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1253
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1254
lemma LIMSEQ_D:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1255
  fixes L :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1256
  shows "\<lbrakk>X ----> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1257
by (simp add: LIMSEQ_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1258
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1259
lemma LIMSEQ_linear: "\<lbrakk> X ----> x ; l > 0 \<rbrakk> \<Longrightarrow> (\<lambda> n. X (n * l)) ----> x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1260
  unfolding tendsto_def eventually_sequentially
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1261
  by (metis div_le_dividend div_mult_self1_is_m le_trans nat_mult_commute)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1262
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1263
lemma Bseq_inverse_lemma:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1264
  fixes x :: "'a::real_normed_div_algebra"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1265
  shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1266
apply (subst nonzero_norm_inverse, clarsimp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1267
apply (erule (1) le_imp_inverse_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1268
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1269
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1270
lemma Bseq_inverse:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1271
  fixes a :: "'a::real_normed_div_algebra"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1272
  shows "\<lbrakk>X ----> a; a \<noteq> 0\<rbrakk> \<Longrightarrow> Bseq (\<lambda>n. inverse (X n))"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1273
  by (rule Bfun_inverse)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1274
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1275
lemma LIMSEQ_diff_approach_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1276
  fixes L :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1277
  shows "g ----> L ==> (%x. f x - g x) ----> 0 ==> f ----> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1278
  by (drule (1) tendsto_add, simp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1279
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1280
lemma LIMSEQ_diff_approach_zero2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1281
  fixes L :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1282
  shows "f ----> L ==> (%x. f x - g x) ----> 0 ==> g ----> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1283
  by (drule (1) tendsto_diff, simp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1284
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1285
text{*An unbounded sequence's inverse tends to 0*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1286
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1287
lemma LIMSEQ_inverse_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1288
  "\<forall>r::real. \<exists>N. \<forall>n\<ge>N. r < X n \<Longrightarrow> (\<lambda>n. inverse (X n)) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1289
  apply (rule filterlim_compose[OF tendsto_inverse_0])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1290
  apply (simp add: filterlim_at_infinity[OF order_refl] eventually_sequentially)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1291
  apply (metis abs_le_D1 linorder_le_cases linorder_not_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1292
  done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1293
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1294
text{*The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1295
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1296
lemma LIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1297
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1298
            filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1299
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1300
text{*The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1301
infinity is now easily proved*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1302
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1303
lemma LIMSEQ_inverse_real_of_nat_add:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1304
     "(%n. r + inverse(real(Suc n))) ----> r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1305
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1306
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1307
lemma LIMSEQ_inverse_real_of_nat_add_minus:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1308
     "(%n. r + -inverse(real(Suc n))) ----> r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1309
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1310
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1311
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1312
lemma LIMSEQ_inverse_real_of_nat_add_minus_mult:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1313
     "(%n. r*( 1 + -inverse(real(Suc n)))) ----> r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1314
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1315
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1316
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1317
subsection {* Convergence on sequences *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1318
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1319
lemma convergent_add:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1320
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1321
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1322
  assumes "convergent (\<lambda>n. Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1323
  shows "convergent (\<lambda>n. X n + Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1324
  using assms unfolding convergent_def by (fast intro: tendsto_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1325
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1326
lemma convergent_setsum:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1327
  fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1328
  assumes "\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1329
  shows "convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1330
proof (cases "finite A")
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1331
  case True from this and assms show ?thesis
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1332
    by (induct A set: finite) (simp_all add: convergent_const convergent_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1333
qed (simp add: convergent_const)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1334
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1335
lemma (in bounded_linear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1336
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1337
  shows "convergent (\<lambda>n. f (X n))"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1338
  using assms unfolding convergent_def by (fast intro: tendsto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1339
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1340
lemma (in bounded_bilinear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1341
  assumes "convergent (\<lambda>n. X n)" and "convergent (\<lambda>n. Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1342
  shows "convergent (\<lambda>n. X n ** Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1343
  using assms unfolding convergent_def by (fast intro: tendsto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1344
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1345
lemma convergent_minus_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1346
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1347
  shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1348
apply (simp add: convergent_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1349
apply (auto dest: tendsto_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1350
apply (drule tendsto_minus, auto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1351
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1352
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1353
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1354
text {* A monotone sequence converges to its least upper bound. *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1355
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1356
lemma isLub_mono_imp_LIMSEQ:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1357
  fixes X :: "nat \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1358
  assumes u: "isLub UNIV {x. \<exists>n. X n = x} u" (* FIXME: use 'range X' *)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1359
  assumes X: "\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1360
  shows "X ----> u"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1361
proof (rule LIMSEQ_I)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1362
  have 1: "\<forall>n. X n \<le> u"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1363
    using isLubD2 [OF u] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1364
  have "\<forall>y. (\<forall>n. X n \<le> y) \<longrightarrow> u \<le> y"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1365
    using isLub_le_isUb [OF u] by (auto simp add: isUb_def setle_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1366
  hence 2: "\<forall>y<u. \<exists>n. y < X n"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1367
    by (metis not_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1368
  fix r :: real assume "0 < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1369
  hence "u - r < u" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1370
  hence "\<exists>m. u - r < X m" using 2 by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1371
  then obtain m where "u - r < X m" ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1372
  with X have "\<forall>n\<ge>m. u - r < X n"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1373
    by (fast intro: less_le_trans)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1374
  hence "\<exists>m. \<forall>n\<ge>m. u - r < X n" ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1375
  thus "\<exists>m. \<forall>n\<ge>m. norm (X n - u) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1376
    using 1 by (simp add: diff_less_eq add_commute)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1377
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1378
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1379
text{*A standard proof of the theorem for monotone increasing sequence*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1380
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1381
lemma Bseq_mono_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1382
   "Bseq X \<Longrightarrow> \<forall>m. \<forall>n \<ge> m. X m \<le> X n \<Longrightarrow> convergent (X::nat=>real)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1383
  by (metis Bseq_isLub isLub_mono_imp_LIMSEQ convergentI)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1384
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1385
text{*Main monotonicity theorem*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1386
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1387
lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent (X::nat\<Rightarrow>real)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1388
  by (metis monoseq_iff incseq_def decseq_eq_incseq convergent_minus_iff Bseq_minus_iff
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1389
            Bseq_mono_convergent)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1390
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1391
lemma Cauchy_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1392
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1393
  shows "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1394
  unfolding Cauchy_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1395
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1396
lemma CauchyI:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1397
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1398
  shows "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1399
by (simp add: Cauchy_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1400
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1401
lemma CauchyD:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1402
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1403
  shows "\<lbrakk>Cauchy X; 0 < e\<rbrakk> \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1404
by (simp add: Cauchy_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1405
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1406
lemma incseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1407
  fixes X :: "nat \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1408
  assumes "incseq X" and "\<forall>i. X i \<le> B"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1409
  obtains L where "X ----> L" "\<forall>i. X i \<le> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1410
proof atomize_elim
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1411
  from incseq_bounded[OF assms] `incseq X` Bseq_monoseq_convergent[of X]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1412
  obtain L where "X ----> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1413
    by (auto simp: convergent_def monoseq_def incseq_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1414
  with `incseq X` show "\<exists>L. X ----> L \<and> (\<forall>i. X i \<le> L)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1415
    by (auto intro!: exI[of _ L] incseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1416
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1417
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1418
lemma decseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1419
  fixes X :: "nat \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1420
  assumes "decseq X" and "\<forall>i. B \<le> X i"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1421
  obtains L where "X ----> L" "\<forall>i. L \<le> X i"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1422
proof atomize_elim
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1423
  from decseq_bounded[OF assms] `decseq X` Bseq_monoseq_convergent[of X]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1424
  obtain L where "X ----> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1425
    by (auto simp: convergent_def monoseq_def decseq_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1426
  with `decseq X` show "\<exists>L. X ----> L \<and> (\<forall>i. L \<le> X i)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1427
    by (auto intro!: exI[of _ L] decseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1428
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1429
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1430
subsubsection {* Cauchy Sequences are Bounded *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1431
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1432
text{*A Cauchy sequence is bounded -- this is the standard
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1433
  proof mechanization rather than the nonstandard proof*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1434
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1435
lemma lemmaCauchy: "\<forall>n \<ge> M. norm (X M - X n) < (1::real)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1436
          ==>  \<forall>n \<ge> M. norm (X n :: 'a::real_normed_vector) < 1 + norm (X M)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1437
apply (clarify, drule spec, drule (1) mp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1438
apply (simp only: norm_minus_commute)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1439
apply (drule order_le_less_trans [OF norm_triangle_ineq2])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1440
apply simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1441
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1442
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1443
subsection {* Power Sequences *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1444
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1445
text{*The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1446
"x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1447
  also fact that bounded and monotonic sequence converges.*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1448
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1449
lemma Bseq_realpow: "[| 0 \<le> (x::real); x \<le> 1 |] ==> Bseq (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1450
apply (simp add: Bseq_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1451
apply (rule_tac x = 1 in exI)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1452
apply (simp add: power_abs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1453
apply (auto dest: power_mono)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1454
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1455
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1456
lemma monoseq_realpow: fixes x :: real shows "[| 0 \<le> x; x \<le> 1 |] ==> monoseq (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1457
apply (clarify intro!: mono_SucI2)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1458
apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing, auto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1459
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1460
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1461
lemma convergent_realpow:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1462
  "[| 0 \<le> (x::real); x \<le> 1 |] ==> convergent (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1463
by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1464
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1465
lemma LIMSEQ_inverse_realpow_zero: "1 < (x::real) \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1466
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1467
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1468
lemma LIMSEQ_realpow_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1469
  "\<lbrakk>0 \<le> (x::real); x < 1\<rbrakk> \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1470
proof cases
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1471
  assume "0 \<le> x" and "x \<noteq> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1472
  hence x0: "0 < x" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1473
  assume x1: "x < 1"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1474
  from x0 x1 have "1 < inverse x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1475
    by (rule one_less_inverse)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1476
  hence "(\<lambda>n. inverse (inverse x ^ n)) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1477
    by (rule LIMSEQ_inverse_realpow_zero)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1478
  thus ?thesis by (simp add: power_inverse)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1479
qed (rule LIMSEQ_imp_Suc, simp add: tendsto_const)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1480
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1481
lemma LIMSEQ_power_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1482
  fixes x :: "'a::{real_normed_algebra_1}"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1483
  shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1484
apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1485
apply (simp only: tendsto_Zfun_iff, erule Zfun_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1486
apply (simp add: power_abs norm_power_ineq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1487
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1488
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1489
lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1490
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1491
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1492
text{*Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}*}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1493
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1494
lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1495
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1496
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1497
lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) ----> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1498
  by (rule LIMSEQ_power_zero) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1499
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1500
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1501
subsection {* Limits of Functions *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1502
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1503
lemma LIM_eq:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1504
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1505
  shows "f -- a --> L =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1506
     (\<forall>r>0.\<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1507
by (simp add: LIM_def dist_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1508
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1509
lemma LIM_I:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1510
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1511
  shows "(!!r. 0<r ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1512
      ==> f -- a --> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1513
by (simp add: LIM_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1514
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1515
lemma LIM_D:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1516
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1517
  shows "[| f -- a --> L; 0<r |]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1518
      ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1519
by (simp add: LIM_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1520
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1521
lemma LIM_offset:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1522
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1523
  shows "f -- a --> L \<Longrightarrow> (\<lambda>x. f (x + k)) -- a - k --> L"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1524
  unfolding filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1525
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1526
lemma LIM_offset_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1527
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1528
  shows "f -- a --> L \<Longrightarrow> (\<lambda>h. f (a + h)) -- 0 --> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1529
by (drule_tac k="a" in LIM_offset, simp add: add_commute)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1530
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1531
lemma LIM_offset_zero_cancel:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1532
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1533
  shows "(\<lambda>h. f (a + h)) -- 0 --> L \<Longrightarrow> f -- a --> L"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1534
by (drule_tac k="- a" in LIM_offset, simp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1535
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1536
lemma LIM_offset_zero_iff:
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1537
  fixes f :: "'a :: real_normed_vector \<Rightarrow> _"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1538
  shows  "f -- a --> L \<longleftrightarrow> (\<lambda>h. f (a + h)) -- 0 --> L"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1539
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1540
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1541
lemma LIM_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1542
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1543
  shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. f x - l) ---> 0) F"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1544
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1545
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1546
lemma LIM_zero_cancel:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1547
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1548
  shows "((\<lambda>x. f x - l) ---> 0) F \<Longrightarrow> (f ---> l) F"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1549
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1550
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1551
lemma LIM_zero_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1552
  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1553
  shows "((\<lambda>x. f x - l) ---> 0) F = (f ---> l) F"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1554
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1555
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1556
lemma LIM_imp_LIM:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1557
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1558
  fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1559
  assumes f: "f -- a --> l"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1560
  assumes le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1561
  shows "g -- a --> m"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1562
  by (rule metric_LIM_imp_LIM [OF f],
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1563
    simp add: dist_norm le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1564
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1565
lemma LIM_equal2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1566
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1567
  assumes 1: "0 < R"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1568
  assumes 2: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < R\<rbrakk> \<Longrightarrow> f x = g x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1569
  shows "g -- a --> l \<Longrightarrow> f -- a --> l"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1570
by (rule metric_LIM_equal2 [OF 1 2], simp_all add: dist_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1571
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1572
lemma LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1573
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1574
  assumes f: "f -- a --> b"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1575
  assumes g: "g -- b --> c"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1576
  assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1577
  shows "(\<lambda>x. g (f x)) -- a --> c"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1578
by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1579
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1580
lemma real_LIM_sandwich_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1581
  fixes f g :: "'a::topological_space \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1582
  assumes f: "f -- a --> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1583
  assumes 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1584
  assumes 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1585
  shows "g -- a --> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1586
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1587
  fix x assume x: "x \<noteq> a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1588
  have "norm (g x - 0) = g x" by (simp add: 1 x)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1589
  also have "g x \<le> f x" by (rule 2 [OF x])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1590
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1591
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1592
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1593
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1594
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1595
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1596
subsection {* Continuity *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1597
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1598
lemma LIM_isCont_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1599
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1600
  shows "(f -- a --> f a) = ((\<lambda>h. f (a + h)) -- 0 --> f a)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1601
by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1602
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1603
lemma isCont_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1604
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1605
  shows "isCont f x = (\<lambda>h. f (x + h)) -- 0 --> f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1606
by (simp add: isCont_def LIM_isCont_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1607
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1608
lemma isCont_LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1609
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1610
  assumes f [unfolded isCont_def]: "isCont f a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1611
  assumes g: "g -- f a --> l"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1612
  assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1613
  shows "(\<lambda>x. g (f x)) -- a --> l"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1614
by (rule LIM_compose2 [OF f g inj])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1615
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1616
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1617
lemma isCont_norm [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1618
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1619
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1620
  by (fact continuous_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1621
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1622
lemma isCont_rabs [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1623
  fixes f :: "'a::t2_space \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1624
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1625
  by (fact continuous_rabs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1626
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1627
lemma isCont_add [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1628
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1629
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1630
  by (fact continuous_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1631
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1632
lemma isCont_minus [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1633
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1634
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1635
  by (fact continuous_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1636
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1637
lemma isCont_diff [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1638
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1639
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1640
  by (fact continuous_diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1641
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1642
lemma isCont_mult [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1643
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1644
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x * g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1645
  by (fact continuous_mult)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1646
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1647
lemma (in bounded_linear) isCont:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1648
  "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1649
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1650
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1651
lemma (in bounded_bilinear) isCont:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1652
  "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1653
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1654
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1655
lemmas isCont_scaleR [simp] = 
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1656
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1657
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1658
lemmas isCont_of_real [simp] =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1659
  bounded_linear.isCont [OF bounded_linear_of_real]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1660
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1661
lemma isCont_power [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1662
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1663
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1664
  by (fact continuous_power)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1665
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1666
lemma isCont_setsum [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1667
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1668
  shows "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1669
  by (auto intro: continuous_setsum)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1670
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1671
lemmas isCont_intros =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1672
  isCont_ident isCont_const isCont_norm isCont_rabs isCont_add isCont_minus
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1673
  isCont_diff isCont_mult isCont_inverse isCont_divide isCont_scaleR
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1674
  isCont_of_real isCont_power isCont_sgn isCont_setsum
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1675
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1676
subsection {* Uniform Continuity *}
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1677
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1678
definition
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1679
  isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1680
  "isUCont f = (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1681
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1682
lemma isUCont_isCont: "isUCont f ==> isCont f x"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1683
by (simp add: isUCont_def isCont_def LIM_def, force)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1684
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1685
lemma isUCont_Cauchy:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1686
  "\<lbrakk>isUCont f; Cauchy X\<rbrakk> \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1687
unfolding isUCont_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1688
apply (rule metric_CauchyI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1689
apply (drule_tac x=e in spec, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1690
apply (drule_tac e=s in metric_CauchyD, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1691
apply (rule_tac x=M in exI, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1692
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1693
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1694
lemma (in bounded_linear) isUCont: "isUCont f"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1695
unfolding isUCont_def dist_norm
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1696
proof (intro allI impI)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1697
  fix r::real assume r: "0 < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1698
  obtain K where K: "0 < K" and norm_le: "\<And>x. norm (f x) \<le> norm x * K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1699
    using pos_bounded by fast
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1700
  show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1701
  proof (rule exI, safe)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1702
    from r K show "0 < r / K" by (rule divide_pos_pos)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1703
  next
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1704
    fix x y :: 'a
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1705
    assume xy: "norm (x - y) < r / K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1706
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1707
    also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1708
    also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1709
    finally show "norm (f x - f y) < r" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1710
  qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1711
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1712
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1713
lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1714
by (rule isUCont [THEN isUCont_Cauchy])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1715
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1716
lemma LIM_less_bound: 
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1717
  fixes f :: "real \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1718
  assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1719
  shows "0 \<le> f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1720
proof (rule tendsto_le_const)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1721
  show "(f ---> f x) (at_left x)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1722
    using `isCont f x` by (simp add: filterlim_at_split isCont_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1723
  show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1724
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1725
qed simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1726
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1727
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1728
subsection {* Nested Intervals and Bisection -- Needed for Compactness *}
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1729
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1730
lemma nested_sequence_unique:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1731
  assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) ----> 0"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1732
  shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f ----> l) \<and> ((\<forall>n. l \<le> g n) \<and> g ----> l)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1733
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1734
  have "incseq f" unfolding incseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1735
  have "decseq g" unfolding decseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1736
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1737
  { fix n
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1738
    from `decseq g` have "g n \<le> g 0" by (rule decseqD) simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1739
    with `\<forall>n. f n \<le> g n`[THEN spec, of n] have "f n \<le> g 0" by auto }
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1740
  then obtain u where "f ----> u" "\<forall>i. f i \<le> u"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1741
    using incseq_convergent[OF `incseq f`] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1742
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1743
  { fix n
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1744
    from `incseq f` have "f 0 \<le> f n" by (rule incseqD) simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1745
    with `\<forall>n. f n \<le> g n`[THEN spec, of n] have "f 0 \<le> g n" by simp }
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1746
  then obtain l where "g ----> l" "\<forall>i. l \<le> g i"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1747
    using decseq_convergent[OF `decseq g`] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1748
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF `f ----> u` `g ----> l`]]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1749
  ultimately show ?thesis by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1750
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1751
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1752
lemma Bolzano[consumes 1, case_names trans local]:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1753
  fixes P :: "real \<Rightarrow> real \<Rightarrow> bool"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1754
  assumes [arith]: "a \<le> b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1755
  assumes trans: "\<And>a b c. \<lbrakk>P a b; P b c; a \<le> b; b \<le> c\<rbrakk> \<Longrightarrow> P a c"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1756
  assumes local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1757
  shows "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1758
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1759
  def bisect \<equiv> "nat_rec (a, b) (\<lambda>n (x, y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1760
  def l \<equiv> "\<lambda>n. fst (bisect n)" and u \<equiv> "\<lambda>n. snd (bisect n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1761
  have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1762
    and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1763
    by (simp_all add: l_def u_def bisect_def split: prod.split)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1764
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1765
  { fix n have "l n \<le> u n" by (induct n) auto } note this[simp]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1766
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1767
  have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l ----> x) \<and> ((\<forall>n. x \<le> u n) \<and> u ----> x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1768
  proof (safe intro!: nested_sequence_unique)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1769
    fix n show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" by (induct n) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1770
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1771
    { fix n have "l n - u n = (a - b) / 2^n" by (induct n) (auto simp: field_simps) }
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1772
    then show "(\<lambda>n. l n - u n) ----> 0" by (simp add: LIMSEQ_divide_realpow_zero)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1773
  qed fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1774
  then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l ----> x" "u ----> x" by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1775
  obtain d where "0 < d" and d: "\<And>a b. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1776
    using `l 0 \<le> x` `x \<le> u 0` local[of x] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1777
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1778
  show "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1779
  proof (rule ccontr)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1780
    assume "\<not> P a b" 
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1781
    { fix n have "\<not> P (l n) (u n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1782
      proof (induct n)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1783
        case (Suc n) with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1784
      qed (simp add: `\<not> P a b`) }
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1785
    moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1786
    { have "eventually (\<lambda>n. x - d / 2 < l n) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1787
        using `0 < d` `l ----> x` by (intro order_tendstoD[of _ x]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1788
      moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1789
        using `0 < d` `u ----> x` by (intro order_tendstoD[of _ x]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1790
      ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1791
      proof eventually_elim
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1792
        fix n assume "x - d / 2 < l n" "u n < x + d / 2"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1793
        from add_strict_mono[OF this] have "u n - l n < d" by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1794
        with x show "P (l n) (u n)" by (rule d)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1795
      qed }
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1796
    ultimately show False by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1797
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1798
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1799
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1800
lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1801
proof (cases "a \<le> b", rule compactI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1802
  fix C assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1803
  def T == "{a .. b}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1804
  from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1805
  proof (induct rule: Bolzano)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1806
    case (trans a b c)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1807
    then have *: "{a .. c} = {a .. b} \<union> {b .. c}" by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1808
    from trans obtain C1 C2 where "C1\<subseteq>C \<and> finite C1 \<and> {a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C \<and> finite C2 \<and> {b..c} \<subseteq> \<Union>C2"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1809
      by (auto simp: *)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1810
    with trans show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1811
      unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1812
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1813
    case (local x)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1814
    then have "x \<in> \<Union>C" using C by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1815
    with C(2) obtain c where "x \<in> c" "open c" "c \<in> C" by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1816
    then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1817
      by (auto simp: open_real_def dist_real_def subset_eq Ball_def abs_less_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1818
    with `c \<in> C` show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1819
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1820
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1821
qed simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1822
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1823
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1824
subsection {* Boundedness of continuous functions *}
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1825
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1826
text{*By bisection, function continuous on closed interval is bounded above*}
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1827
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1828
lemma isCont_eq_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1829
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1830
  shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1831
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1832
  using continuous_attains_sup[of "{a .. b}" f]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1833
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1834
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1835
lemma isCont_eq_Lb:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1836
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1837
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1838
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1839
  using continuous_attains_inf[of "{a .. b}" f]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1840
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1841
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1842
lemma isCont_bounded:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1843
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1844
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1845
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1846
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1847
lemma isCont_has_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1848
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1849
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1850
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1851
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1852
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1853
(*HOL style here: object-level formulations*)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1854
lemma IVT_objl: "(f(a::real) \<le> (y::real) & y \<le> f(b) & a \<le> b &
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1855
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1856
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1857
  by (blast intro: IVT)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1858
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1859
lemma IVT2_objl: "(f(b::real) \<le> (y::real) & y \<le> f(a) & a \<le> b &
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1860
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1861
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1862
  by (blast intro: IVT2)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1863
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1864
lemma isCont_Lb_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1865
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1866
  assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1867
  shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and> 
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1868
               (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1869
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1870
  obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1871
    using isCont_eq_Ub[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1872
  obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1873
    using isCont_eq_Lb[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1874
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1875
    using IVT[of f L _ M] IVT2[of f L _ M] M L assms
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1876
    apply (rule_tac x="f L" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1877
    apply (rule_tac x="f M" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1878
    apply (cases "L \<le> M")
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1879
    apply (simp, metis order_trans)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1880
    apply (simp, metis order_trans)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1881
    done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1882
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1883
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1884
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1885
text{*Continuity of inverse function*}
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1886
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1887
lemma isCont_inverse_function:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1888
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1889
  assumes d: "0 < d"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1890
      and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> g (f z) = z"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1891
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> isCont f z"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1892
  shows "isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1893
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1894
  let ?A = "f (x - d)" and ?B = "f (x + d)" and ?D = "{x - d..x + d}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1895
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1896
  have f: "continuous_on ?D f"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1897
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1898
  then have g: "continuous_on (f`?D) g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1899
    using inj by (intro continuous_on_inv) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1900
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1901
  from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1902
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1903
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1904
    by (rule continuous_on_subset)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1905
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1906
  have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1907
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1908
  then have "f x \<in> {min ?A ?B <..< max ?A ?B}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1909
    by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1910
  ultimately
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1911
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1912
    by (simp add: continuous_on_eq_continuous_at)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1913
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1914
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1915
lemma isCont_inverse_function2:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1916
  fixes f g :: "real \<Rightarrow> real" shows
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1917
  "\<lbrakk>a < x; x < b;
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1918
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z;
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1919
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1920
   \<Longrightarrow> isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1921
apply (rule isCont_inverse_function
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1922
       [where f=f and d="min (x - a) (b - x)"])
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1923
apply (simp_all add: abs_le_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1924
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1925
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1926
(* need to rename second isCont_inverse *)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1927
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1928
lemma isCont_inv_fun:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1929
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1930
  shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;  
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1931
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]  
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1932
      ==> isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1933
by (rule isCont_inverse_function)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1934
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1935
text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*}
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1936
lemma LIM_fun_gt_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1937
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1938
  shows "f -- c --> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1939
apply (drule (1) LIM_D, clarify)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1940
apply (rule_tac x = s in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1941
apply (simp add: abs_less_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1942
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1943
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1944
lemma LIM_fun_less_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1945
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1946
  shows "f -- c --> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1947
apply (drule LIM_D [where r="-l"], simp, clarify)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1948
apply (rule_tac x = s in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1949
apply (simp add: abs_less_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1950
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1951
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1952
lemma LIM_fun_not_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1953
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1954
  shows "f -- c --> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1955
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp add: neq_iff)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  1956
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
  1957
end
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1958