| author | haftmann | 
| Tue, 04 May 2021 17:57:16 +0000 | |
| changeset 73621 | b4b70d13c995 | 
| parent 71848 | 3c7852327787 | 
| child 74965 | 9469d9223689 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Library/Nat_Bijection.thy | 
| 35700 | 2 | Author: Brian Huffman | 
| 3 | Author: Florian Haftmann | |
| 4 | Author: Stefan Richter | |
| 5 | Author: Tobias Nipkow | |
| 6 | Author: Alexander Krauss | |
| 7 | *) | |
| 8 | ||
| 60500 | 9 | section \<open>Bijections between natural numbers and other types\<close> | 
| 35700 | 10 | |
| 11 | theory Nat_Bijection | |
| 63625 | 12 | imports Main | 
| 35700 | 13 | begin | 
| 14 | ||
| 69593 | 15 | subsection \<open>Type \<^typ>\<open>nat \<times> nat\<close>\<close> | 
| 35700 | 16 | |
| 63625 | 17 | text \<open>Triangle numbers: 0, 1, 3, 6, 10, 15, ...\<close> | 
| 35700 | 18 | |
| 62046 | 19 | definition triangle :: "nat \<Rightarrow> nat" | 
| 20 | where "triangle n = (n * Suc n) div 2" | |
| 35700 | 21 | |
| 22 | lemma triangle_0 [simp]: "triangle 0 = 0" | |
| 63625 | 23 | by (simp add: triangle_def) | 
| 35700 | 24 | |
| 25 | lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n" | |
| 63625 | 26 | by (simp add: triangle_def) | 
| 35700 | 27 | |
| 62046 | 28 | definition prod_encode :: "nat \<times> nat \<Rightarrow> nat" | 
| 29 | where "prod_encode = (\<lambda>(m, n). triangle (m + n) + m)" | |
| 35700 | 30 | |
| 69593 | 31 | text \<open>In this auxiliary function, \<^term>\<open>triangle k + m\<close> is an invariant.\<close> | 
| 35700 | 32 | |
| 62046 | 33 | fun prod_decode_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" | 
| 63625 | 34 | where "prod_decode_aux k m = | 
| 35700 | 35 | (if m \<le> k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))" | 
| 36 | ||
| 37 | declare prod_decode_aux.simps [simp del] | |
| 38 | ||
| 62046 | 39 | definition prod_decode :: "nat \<Rightarrow> nat \<times> nat" | 
| 40 | where "prod_decode = prod_decode_aux 0" | |
| 35700 | 41 | |
| 63625 | 42 | lemma prod_encode_prod_decode_aux: "prod_encode (prod_decode_aux k m) = triangle k + m" | 
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 43 | proof (induction k m rule: prod_decode_aux.induct) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 44 | case (1 k m) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 45 | then show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 46 | by (simp add: prod_encode_def prod_decode_aux.simps) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 47 | qed | 
| 35700 | 48 | |
| 49 | lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n" | |
| 63625 | 50 | by (simp add: prod_decode_def prod_encode_prod_decode_aux) | 
| 35700 | 51 | |
| 62046 | 52 | lemma prod_decode_triangle_add: "prod_decode (triangle k + m) = prod_decode_aux k m" | 
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 53 | proof (induct k arbitrary: m) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 54 | case 0 | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 55 | then show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 56 | by (simp add: prod_decode_def) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 57 | next | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 58 | case (Suc k) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 59 | then show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 60 | by (metis ab_semigroup_add_class.add_ac(1) add_diff_cancel_left' le_add1 not_less_eq_eq prod_decode_aux.simps triangle_Suc) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 61 | qed | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 62 | |
| 35700 | 63 | |
| 64 | lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x" | |
| 63625 | 65 | unfolding prod_encode_def | 
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 66 | proof (induct x) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 67 | case (Pair a b) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 68 | then show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 69 | by (simp add: prod_decode_triangle_add prod_decode_aux.simps) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 70 | qed | 
| 35700 | 71 | |
| 72 | lemma inj_prod_encode: "inj_on prod_encode A" | |
| 63625 | 73 | by (rule inj_on_inverseI) (rule prod_encode_inverse) | 
| 35700 | 74 | |
| 75 | lemma inj_prod_decode: "inj_on prod_decode A" | |
| 63625 | 76 | by (rule inj_on_inverseI) (rule prod_decode_inverse) | 
| 35700 | 77 | |
| 78 | lemma surj_prod_encode: "surj prod_encode" | |
| 63625 | 79 | by (rule surjI) (rule prod_decode_inverse) | 
| 35700 | 80 | |
| 81 | lemma surj_prod_decode: "surj prod_decode" | |
| 63625 | 82 | by (rule surjI) (rule prod_encode_inverse) | 
| 35700 | 83 | |
| 84 | lemma bij_prod_encode: "bij prod_encode" | |
| 63625 | 85 | by (rule bijI [OF inj_prod_encode surj_prod_encode]) | 
| 35700 | 86 | |
| 87 | lemma bij_prod_decode: "bij prod_decode" | |
| 63625 | 88 | by (rule bijI [OF inj_prod_decode surj_prod_decode]) | 
| 35700 | 89 | |
| 90 | lemma prod_encode_eq: "prod_encode x = prod_encode y \<longleftrightarrow> x = y" | |
| 63625 | 91 | by (rule inj_prod_encode [THEN inj_eq]) | 
| 35700 | 92 | |
| 93 | lemma prod_decode_eq: "prod_decode x = prod_decode y \<longleftrightarrow> x = y" | |
| 63625 | 94 | by (rule inj_prod_decode [THEN inj_eq]) | 
| 35700 | 95 | |
| 62046 | 96 | |
| 60500 | 97 | text \<open>Ordering properties\<close> | 
| 35700 | 98 | |
| 99 | lemma le_prod_encode_1: "a \<le> prod_encode (a, b)" | |
| 63625 | 100 | by (simp add: prod_encode_def) | 
| 35700 | 101 | |
| 102 | lemma le_prod_encode_2: "b \<le> prod_encode (a, b)" | |
| 63625 | 103 | by (induct b) (simp_all add: prod_encode_def) | 
| 35700 | 104 | |
| 105 | ||
| 69593 | 106 | subsection \<open>Type \<^typ>\<open>nat + nat\<close>\<close> | 
| 35700 | 107 | |
| 62046 | 108 | definition sum_encode :: "nat + nat \<Rightarrow> nat" | 
| 63625 | 109 | where "sum_encode x = (case x of Inl a \<Rightarrow> 2 * a | Inr b \<Rightarrow> Suc (2 * b))" | 
| 35700 | 110 | |
| 62046 | 111 | definition sum_decode :: "nat \<Rightarrow> nat + nat" | 
| 63625 | 112 | where "sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))" | 
| 35700 | 113 | |
| 114 | lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x" | |
| 63625 | 115 | by (induct x) (simp_all add: sum_decode_def sum_encode_def) | 
| 35700 | 116 | |
| 117 | lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n" | |
| 58834 | 118 | by (simp add: even_two_times_div_two sum_decode_def sum_encode_def) | 
| 35700 | 119 | |
| 120 | lemma inj_sum_encode: "inj_on sum_encode A" | |
| 63625 | 121 | by (rule inj_on_inverseI) (rule sum_encode_inverse) | 
| 35700 | 122 | |
| 123 | lemma inj_sum_decode: "inj_on sum_decode A" | |
| 63625 | 124 | by (rule inj_on_inverseI) (rule sum_decode_inverse) | 
| 35700 | 125 | |
| 126 | lemma surj_sum_encode: "surj sum_encode" | |
| 63625 | 127 | by (rule surjI) (rule sum_decode_inverse) | 
| 35700 | 128 | |
| 129 | lemma surj_sum_decode: "surj sum_decode" | |
| 63625 | 130 | by (rule surjI) (rule sum_encode_inverse) | 
| 35700 | 131 | |
| 132 | lemma bij_sum_encode: "bij sum_encode" | |
| 63625 | 133 | by (rule bijI [OF inj_sum_encode surj_sum_encode]) | 
| 35700 | 134 | |
| 135 | lemma bij_sum_decode: "bij sum_decode" | |
| 63625 | 136 | by (rule bijI [OF inj_sum_decode surj_sum_decode]) | 
| 35700 | 137 | |
| 138 | lemma sum_encode_eq: "sum_encode x = sum_encode y \<longleftrightarrow> x = y" | |
| 63625 | 139 | by (rule inj_sum_encode [THEN inj_eq]) | 
| 35700 | 140 | |
| 141 | lemma sum_decode_eq: "sum_decode x = sum_decode y \<longleftrightarrow> x = y" | |
| 63625 | 142 | by (rule inj_sum_decode [THEN inj_eq]) | 
| 35700 | 143 | |
| 144 | ||
| 69593 | 145 | subsection \<open>Type \<^typ>\<open>int\<close>\<close> | 
| 35700 | 146 | |
| 62046 | 147 | definition int_encode :: "int \<Rightarrow> nat" | 
| 63625 | 148 | where "int_encode i = sum_encode (if 0 \<le> i then Inl (nat i) else Inr (nat (- i - 1)))" | 
| 35700 | 149 | |
| 62046 | 150 | definition int_decode :: "nat \<Rightarrow> int" | 
| 63625 | 151 | where "int_decode n = (case sum_decode n of Inl a \<Rightarrow> int a | Inr b \<Rightarrow> - int b - 1)" | 
| 35700 | 152 | |
| 153 | lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x" | |
| 63625 | 154 | by (simp add: int_decode_def int_encode_def) | 
| 35700 | 155 | |
| 156 | lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n" | |
| 63625 | 157 | unfolding int_decode_def int_encode_def | 
| 158 | using sum_decode_inverse [of n] by (cases "sum_decode n") simp_all | |
| 35700 | 159 | |
| 160 | lemma inj_int_encode: "inj_on int_encode A" | |
| 63625 | 161 | by (rule inj_on_inverseI) (rule int_encode_inverse) | 
| 35700 | 162 | |
| 163 | lemma inj_int_decode: "inj_on int_decode A" | |
| 63625 | 164 | by (rule inj_on_inverseI) (rule int_decode_inverse) | 
| 35700 | 165 | |
| 166 | lemma surj_int_encode: "surj int_encode" | |
| 63625 | 167 | by (rule surjI) (rule int_decode_inverse) | 
| 35700 | 168 | |
| 169 | lemma surj_int_decode: "surj int_decode" | |
| 63625 | 170 | by (rule surjI) (rule int_encode_inverse) | 
| 35700 | 171 | |
| 172 | lemma bij_int_encode: "bij int_encode" | |
| 63625 | 173 | by (rule bijI [OF inj_int_encode surj_int_encode]) | 
| 35700 | 174 | |
| 175 | lemma bij_int_decode: "bij int_decode" | |
| 63625 | 176 | by (rule bijI [OF inj_int_decode surj_int_decode]) | 
| 35700 | 177 | |
| 178 | lemma int_encode_eq: "int_encode x = int_encode y \<longleftrightarrow> x = y" | |
| 63625 | 179 | by (rule inj_int_encode [THEN inj_eq]) | 
| 35700 | 180 | |
| 181 | lemma int_decode_eq: "int_decode x = int_decode y \<longleftrightarrow> x = y" | |
| 63625 | 182 | by (rule inj_int_decode [THEN inj_eq]) | 
| 35700 | 183 | |
| 184 | ||
| 69593 | 185 | subsection \<open>Type \<^typ>\<open>nat list\<close>\<close> | 
| 35700 | 186 | |
| 62046 | 187 | fun list_encode :: "nat list \<Rightarrow> nat" | 
| 63625 | 188 | where | 
| 189 | "list_encode [] = 0" | |
| 190 | | "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))" | |
| 35700 | 191 | |
| 62046 | 192 | function list_decode :: "nat \<Rightarrow> nat list" | 
| 63625 | 193 | where | 
| 194 | "list_decode 0 = []" | |
| 195 | | "list_decode (Suc n) = (case prod_decode n of (x, y) \<Rightarrow> x # list_decode y)" | |
| 196 | by pat_completeness auto | |
| 35700 | 197 | |
| 198 | termination list_decode | |
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 199 | proof - | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 200 | have "\<And>n x y. (x, y) = prod_decode n \<Longrightarrow> y < Suc n" | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 201 | by (metis le_imp_less_Suc le_prod_encode_2 prod_decode_inverse) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 202 | then show ?thesis | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 203 | using "termination" by blast | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 204 | qed | 
| 35700 | 205 | |
| 206 | lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x" | |
| 63625 | 207 | by (induct x rule: list_encode.induct) simp_all | 
| 35700 | 208 | |
| 209 | lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n" | |
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 210 | proof (induct n rule: list_decode.induct) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 211 | case (2 n) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 212 | then show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 213 | by (metis list_encode.simps(2) list_encode_inverse prod_decode_inverse surj_pair) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 214 | qed auto | 
| 35700 | 215 | |
| 216 | lemma inj_list_encode: "inj_on list_encode A" | |
| 63625 | 217 | by (rule inj_on_inverseI) (rule list_encode_inverse) | 
| 35700 | 218 | |
| 219 | lemma inj_list_decode: "inj_on list_decode A" | |
| 63625 | 220 | by (rule inj_on_inverseI) (rule list_decode_inverse) | 
| 35700 | 221 | |
| 222 | lemma surj_list_encode: "surj list_encode" | |
| 63625 | 223 | by (rule surjI) (rule list_decode_inverse) | 
| 35700 | 224 | |
| 225 | lemma surj_list_decode: "surj list_decode" | |
| 63625 | 226 | by (rule surjI) (rule list_encode_inverse) | 
| 35700 | 227 | |
| 228 | lemma bij_list_encode: "bij list_encode" | |
| 63625 | 229 | by (rule bijI [OF inj_list_encode surj_list_encode]) | 
| 35700 | 230 | |
| 231 | lemma bij_list_decode: "bij list_decode" | |
| 63625 | 232 | by (rule bijI [OF inj_list_decode surj_list_decode]) | 
| 35700 | 233 | |
| 234 | lemma list_encode_eq: "list_encode x = list_encode y \<longleftrightarrow> x = y" | |
| 63625 | 235 | by (rule inj_list_encode [THEN inj_eq]) | 
| 35700 | 236 | |
| 237 | lemma list_decode_eq: "list_decode x = list_decode y \<longleftrightarrow> x = y" | |
| 63625 | 238 | by (rule inj_list_decode [THEN inj_eq]) | 
| 35700 | 239 | |
| 240 | ||
| 60500 | 241 | subsection \<open>Finite sets of naturals\<close> | 
| 35700 | 242 | |
| 60500 | 243 | subsubsection \<open>Preliminaries\<close> | 
| 35700 | 244 | |
| 245 | lemma finite_vimage_Suc_iff: "finite (Suc -` F) \<longleftrightarrow> finite F" | |
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 246 | proof | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 247 | have "F \<subseteq> insert 0 (Suc ` Suc -` F)" | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 248 | using nat.nchotomy by force | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 249 | moreover | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 250 | assume "finite (Suc -` F)" | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 251 | then have "finite (insert 0 (Suc ` Suc -` F))" | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 252 | by blast | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 253 | ultimately show "finite F" | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 254 | using finite_subset by blast | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 255 | qed (force intro: finite_vimageI inj_Suc) | 
| 35700 | 256 | |
| 257 | lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A" | |
| 63625 | 258 | by auto | 
| 35700 | 259 | |
| 63625 | 260 | lemma vimage_Suc_insert_Suc: "Suc -` insert (Suc n) A = insert n (Suc -` A)" | 
| 261 | by auto | |
| 35700 | 262 | |
| 263 | lemma div2_even_ext_nat: | |
| 58834 | 264 | fixes x y :: nat | 
| 265 | assumes "x div 2 = y div 2" | |
| 63625 | 266 | and "even x \<longleftrightarrow> even y" | 
| 58834 | 267 | shows "x = y" | 
| 268 | proof - | |
| 60500 | 269 | from \<open>even x \<longleftrightarrow> even y\<close> have "x mod 2 = y mod 2" | 
| 58834 | 270 | by (simp only: even_iff_mod_2_eq_zero) auto | 
| 271 | with assms have "x div 2 * 2 + x mod 2 = y div 2 * 2 + y mod 2" | |
| 272 | by simp | |
| 273 | then show ?thesis | |
| 274 | by simp | |
| 275 | qed | |
| 35700 | 276 | |
| 58710 
7216a10d69ba
augmented and tuned facts on even/odd and division
 haftmann parents: 
57512diff
changeset | 277 | |
| 60500 | 278 | subsubsection \<open>From sets to naturals\<close> | 
| 35700 | 279 | |
| 62046 | 280 | definition set_encode :: "nat set \<Rightarrow> nat" | 
| 67399 | 281 | where "set_encode = sum ((^) 2)" | 
| 35700 | 282 | |
| 283 | lemma set_encode_empty [simp]: "set_encode {} = 0"
 | |
| 59506 
4af607652318
Not a simprule, as it complicates proofs
 paulson <lp15@cam.ac.uk> parents: 
58881diff
changeset | 284 | by (simp add: set_encode_def) | 
| 
4af607652318
Not a simprule, as it complicates proofs
 paulson <lp15@cam.ac.uk> parents: 
58881diff
changeset | 285 | |
| 63625 | 286 | lemma set_encode_inf: "\<not> finite A \<Longrightarrow> set_encode A = 0" | 
| 287 | by (simp add: set_encode_def) | |
| 288 | ||
| 289 | lemma set_encode_insert [simp]: "finite A \<Longrightarrow> n \<notin> A \<Longrightarrow> set_encode (insert n A) = 2^n + set_encode A" | |
| 290 | by (simp add: set_encode_def) | |
| 35700 | 291 | |
| 292 | lemma even_set_encode_iff: "finite A \<Longrightarrow> even (set_encode A) \<longleftrightarrow> 0 \<notin> A" | |
| 63625 | 293 | by (induct set: finite) (auto simp: set_encode_def) | 
| 35700 | 294 | |
| 295 | lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2" | |
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 296 | proof (induction A rule: infinite_finite_induct) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 297 | case (infinite A) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 298 | then show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 299 | by (simp add: finite_vimage_Suc_iff set_encode_inf) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 300 | next | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 301 | case (insert x A) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 302 | show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 303 | proof (cases x) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 304 | case 0 | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 305 | with insert show ?thesis | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 306 | by (simp add: even_set_encode_iff vimage_Suc_insert_0) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 307 | next | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 308 | case (Suc y) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 309 | with insert show ?thesis | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 310 | by (simp add: finite_vimageI add.commute vimage_Suc_insert_Suc) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 311 | qed | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 312 | qed auto | 
| 35700 | 313 | |
| 314 | lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric] | |
| 315 | ||
| 62046 | 316 | |
| 60500 | 317 | subsubsection \<open>From naturals to sets\<close> | 
| 35700 | 318 | |
| 62046 | 319 | definition set_decode :: "nat \<Rightarrow> nat set" | 
| 320 |   where "set_decode x = {n. odd (x div 2 ^ n)}"
 | |
| 35700 | 321 | |
| 322 | lemma set_decode_0 [simp]: "0 \<in> set_decode x \<longleftrightarrow> odd x" | |
| 63625 | 323 | by (simp add: set_decode_def) | 
| 35700 | 324 | |
| 63625 | 325 | lemma set_decode_Suc [simp]: "Suc n \<in> set_decode x \<longleftrightarrow> n \<in> set_decode (x div 2)" | 
| 326 | by (simp add: set_decode_def div_mult2_eq) | |
| 35700 | 327 | |
| 328 | lemma set_decode_zero [simp]: "set_decode 0 = {}"
 | |
| 63625 | 329 | by (simp add: set_decode_def) | 
| 35700 | 330 | |
| 331 | lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x" | |
| 63625 | 332 | by auto | 
| 35700 | 333 | |
| 334 | lemma set_decode_plus_power_2: | |
| 335 | "n \<notin> set_decode z \<Longrightarrow> set_decode (2 ^ n + z) = insert n (set_decode z)" | |
| 60352 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59506diff
changeset | 336 | proof (induct n arbitrary: z) | 
| 63625 | 337 | case 0 | 
| 338 | show ?case | |
| 60352 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59506diff
changeset | 339 | proof (rule set_eqI) | 
| 63625 | 340 | show "q \<in> set_decode (2 ^ 0 + z) \<longleftrightarrow> q \<in> insert 0 (set_decode z)" for q | 
| 341 | by (induct q) (use 0 in simp_all) | |
| 60352 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59506diff
changeset | 342 | qed | 
| 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59506diff
changeset | 343 | next | 
| 63625 | 344 | case (Suc n) | 
| 345 | show ?case | |
| 60352 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59506diff
changeset | 346 | proof (rule set_eqI) | 
| 63625 | 347 | show "q \<in> set_decode (2 ^ Suc n + z) \<longleftrightarrow> q \<in> insert (Suc n) (set_decode z)" for q | 
| 348 | by (induct q) (use Suc in simp_all) | |
| 60352 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59506diff
changeset | 349 | qed | 
| 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59506diff
changeset | 350 | qed | 
| 35700 | 351 | |
| 352 | lemma finite_set_decode [simp]: "finite (set_decode n)" | |
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 353 | proof (induction n rule: less_induct) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 354 | case (less n) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 355 | show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 356 | proof (cases "n = 0") | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 357 | case False | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 358 | then show ?thesis | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 359 | using less.IH [of "n div 2"] finite_vimage_Suc_iff set_decode_div_2 by auto | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 360 | qed auto | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 361 | qed | 
| 35700 | 362 | |
| 62046 | 363 | |
| 60500 | 364 | subsubsection \<open>Proof of isomorphism\<close> | 
| 35700 | 365 | |
| 366 | lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n" | |
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 367 | proof (induction n rule: less_induct) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 368 | case (less n) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 369 | show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 370 | proof (cases "n = 0") | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 371 | case False | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 372 | then have "set_encode (set_decode (n div 2)) = n div 2" | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 373 | using less.IH by auto | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 374 | then show ?thesis | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 375 | by (metis div2_even_ext_nat even_set_encode_iff finite_set_decode set_decode_0 set_decode_div_2 set_encode_div_2) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 376 | qed auto | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 377 | qed | 
| 35700 | 378 | |
| 379 | lemma set_encode_inverse [simp]: "finite A \<Longrightarrow> set_decode (set_encode A) = A" | |
| 71848 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 380 | proof (induction rule: finite_induct) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 381 | case (insert x A) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 382 | then show ?case | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 383 | by (simp add: set_decode_plus_power_2) | 
| 
3c7852327787
A few new theorems, plus some tidying up
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 384 | qed auto | 
| 35700 | 385 | |
| 386 | lemma inj_on_set_encode: "inj_on set_encode (Collect finite)" | |
| 63625 | 387 | by (rule inj_on_inverseI [where g = "set_decode"]) simp | 
| 35700 | 388 | |
| 63625 | 389 | lemma set_encode_eq: "finite A \<Longrightarrow> finite B \<Longrightarrow> set_encode A = set_encode B \<longleftrightarrow> A = B" | 
| 390 | by (rule iffI) (simp_all add: inj_onD [OF inj_on_set_encode]) | |
| 35700 | 391 | |
| 62046 | 392 | lemma subset_decode_imp_le: | 
| 393 | assumes "set_decode m \<subseteq> set_decode n" | |
| 394 | shows "m \<le> n" | |
| 51414 | 395 | proof - | 
| 396 | have "n = m + set_encode (set_decode n - set_decode m)" | |
| 397 | proof - | |
| 63625 | 398 | obtain A B where | 
| 399 | "m = set_encode A" "finite A" | |
| 400 | "n = set_encode B" "finite B" | |
| 51414 | 401 | by (metis finite_set_decode set_decode_inverse) | 
| 63625 | 402 | with assms show ?thesis | 
| 64267 | 403 | by auto (simp add: set_encode_def add.commute sum.subset_diff) | 
| 51414 | 404 | qed | 
| 63625 | 405 | then show ?thesis | 
| 51414 | 406 | by (metis le_add1) | 
| 407 | qed | |
| 408 | ||
| 35700 | 409 | end |