13208
|
1 |
(* Title: HOL/Prolog/Test.thy
|
|
2 |
Author: David von Oheimb (based on a lecture on Lambda Prolog by Nadathur)
|
|
3 |
*)
|
9015
|
4 |
|
17311
|
5 |
header {* Basic examples *}
|
9015
|
6 |
|
17311
|
7 |
theory Test
|
|
8 |
imports HOHH
|
|
9 |
begin
|
9015
|
10 |
|
17311
|
11 |
typedecl nat
|
|
12 |
|
|
13 |
typedecl 'a list
|
9015
|
14 |
|
17311
|
15 |
consts
|
|
16 |
Nil :: "'a list" ("[]")
|
|
17 |
Cons :: "'a => 'a list => 'a list" (infixr "#" 65)
|
9015
|
18 |
|
|
19 |
syntax
|
|
20 |
(* list Enumeration *)
|
35109
|
21 |
"_list" :: "args => 'a list" ("[(_)]")
|
9015
|
22 |
|
|
23 |
translations
|
|
24 |
"[x, xs]" == "x#[xs]"
|
|
25 |
"[x]" == "x#[]"
|
|
26 |
|
17311
|
27 |
typedecl person
|
9015
|
28 |
|
17311
|
29 |
consts
|
|
30 |
append :: "['a list, 'a list, 'a list] => bool"
|
|
31 |
reverse :: "['a list, 'a list] => bool"
|
9015
|
32 |
|
17311
|
33 |
mappred :: "[('a => 'b => bool), 'a list, 'b list] => bool"
|
|
34 |
mapfun :: "[('a => 'b), 'a list, 'b list] => bool"
|
9015
|
35 |
|
17311
|
36 |
bob :: person
|
|
37 |
sue :: person
|
|
38 |
ned :: person
|
9015
|
39 |
|
41310
|
40 |
nat23 :: nat ("23")
|
|
41 |
nat24 :: nat ("24")
|
|
42 |
nat25 :: nat ("25")
|
9015
|
43 |
|
17311
|
44 |
age :: "[person, nat] => bool"
|
9015
|
45 |
|
17311
|
46 |
eq :: "['a, 'a] => bool"
|
9015
|
47 |
|
17311
|
48 |
empty :: "['b] => bool"
|
|
49 |
add :: "['a, 'b, 'b] => bool"
|
|
50 |
remove :: "['a, 'b, 'b] => bool"
|
|
51 |
bag_appl:: "['a, 'a, 'a, 'a] => bool"
|
9015
|
52 |
|
17311
|
53 |
axioms
|
|
54 |
append: "append [] xs xs ..
|
|
55 |
append (x#xs) ys (x#zs) :- append xs ys zs"
|
|
56 |
reverse: "reverse L1 L2 :- (!rev_aux.
|
|
57 |
(!L. rev_aux [] L L )..
|
|
58 |
(!X L1 L2 L3. rev_aux (X#L1) L2 L3 :- rev_aux L1 L2 (X#L3))
|
|
59 |
=> rev_aux L1 L2 [])"
|
9015
|
60 |
|
17311
|
61 |
mappred: "mappred P [] [] ..
|
|
62 |
mappred P (x#xs) (y#ys) :- P x y & mappred P xs ys"
|
|
63 |
mapfun: "mapfun f [] [] ..
|
|
64 |
mapfun f (x#xs) (f x#ys) :- mapfun f xs ys"
|
9015
|
65 |
|
17311
|
66 |
age: "age bob 24 ..
|
|
67 |
age sue 23 ..
|
|
68 |
age ned 23"
|
9015
|
69 |
|
17311
|
70 |
eq: "eq x x"
|
9015
|
71 |
|
|
72 |
(* actual definitions of empty and add is hidden -> yields abstract data type *)
|
|
73 |
|
17311
|
74 |
bag_appl: "bag_appl A B X Y:- (? S1 S2 S3 S4 S5.
|
|
75 |
empty S1 &
|
|
76 |
add A S1 S2 &
|
|
77 |
add B S2 S3 &
|
|
78 |
remove X S3 S4 &
|
|
79 |
remove Y S4 S5 &
|
|
80 |
empty S5)"
|
|
81 |
|
21425
|
82 |
lemmas prog_Test = append reverse mappred mapfun age eq bag_appl
|
|
83 |
|
36319
|
84 |
schematic_lemma "append ?x ?y [a,b,c,d]"
|
21425
|
85 |
apply (prolog prog_Test)
|
|
86 |
back
|
|
87 |
back
|
|
88 |
back
|
|
89 |
back
|
|
90 |
done
|
|
91 |
|
36319
|
92 |
schematic_lemma "append [a,b] y ?L"
|
21425
|
93 |
apply (prolog prog_Test)
|
|
94 |
done
|
|
95 |
|
36319
|
96 |
schematic_lemma "!y. append [a,b] y (?L y)"
|
21425
|
97 |
apply (prolog prog_Test)
|
|
98 |
done
|
|
99 |
|
36319
|
100 |
schematic_lemma "reverse [] ?L"
|
21425
|
101 |
apply (prolog prog_Test)
|
|
102 |
done
|
|
103 |
|
36319
|
104 |
schematic_lemma "reverse [23] ?L"
|
21425
|
105 |
apply (prolog prog_Test)
|
|
106 |
done
|
|
107 |
|
36319
|
108 |
schematic_lemma "reverse [23,24,?x] ?L"
|
21425
|
109 |
apply (prolog prog_Test)
|
|
110 |
done
|
|
111 |
|
36319
|
112 |
schematic_lemma "reverse ?L [23,24,?x]"
|
21425
|
113 |
apply (prolog prog_Test)
|
|
114 |
done
|
|
115 |
|
36319
|
116 |
schematic_lemma "mappred age ?x [23,24]"
|
21425
|
117 |
apply (prolog prog_Test)
|
|
118 |
back
|
|
119 |
done
|
|
120 |
|
36319
|
121 |
schematic_lemma "mappred (%x y. ? z. age z y) ?x [23,24]"
|
21425
|
122 |
apply (prolog prog_Test)
|
|
123 |
done
|
|
124 |
|
36319
|
125 |
schematic_lemma "mappred ?P [bob,sue] [24,23]"
|
21425
|
126 |
apply (prolog prog_Test)
|
|
127 |
done
|
|
128 |
|
36319
|
129 |
schematic_lemma "mapfun f [bob,bob,sue] [?x,?y,?z]"
|
21425
|
130 |
apply (prolog prog_Test)
|
|
131 |
done
|
|
132 |
|
36319
|
133 |
schematic_lemma "mapfun (%x. h x 25) [bob,sue] ?L"
|
21425
|
134 |
apply (prolog prog_Test)
|
|
135 |
done
|
|
136 |
|
36319
|
137 |
schematic_lemma "mapfun ?F [24,25] [h bob 24,h bob 25]"
|
21425
|
138 |
apply (prolog prog_Test)
|
|
139 |
done
|
|
140 |
|
36319
|
141 |
schematic_lemma "mapfun ?F [24] [h 24 24]"
|
21425
|
142 |
apply (prolog prog_Test)
|
|
143 |
back
|
|
144 |
back
|
|
145 |
back
|
|
146 |
done
|
|
147 |
|
|
148 |
lemma "True"
|
|
149 |
apply (prolog prog_Test)
|
|
150 |
done
|
|
151 |
|
36319
|
152 |
schematic_lemma "age ?x 24 & age ?y 23"
|
21425
|
153 |
apply (prolog prog_Test)
|
|
154 |
back
|
|
155 |
done
|
|
156 |
|
36319
|
157 |
schematic_lemma "age ?x 24 | age ?x 23"
|
21425
|
158 |
apply (prolog prog_Test)
|
|
159 |
back
|
|
160 |
back
|
|
161 |
done
|
|
162 |
|
|
163 |
lemma "? x y. age x y"
|
|
164 |
apply (prolog prog_Test)
|
|
165 |
done
|
|
166 |
|
|
167 |
lemma "!x y. append [] x x"
|
|
168 |
apply (prolog prog_Test)
|
|
169 |
done
|
|
170 |
|
36319
|
171 |
schematic_lemma "age sue 24 .. age bob 23 => age ?x ?y"
|
21425
|
172 |
apply (prolog prog_Test)
|
|
173 |
back
|
|
174 |
back
|
|
175 |
back
|
|
176 |
back
|
|
177 |
done
|
|
178 |
|
|
179 |
(*set trace_DEPTH_FIRST;*)
|
|
180 |
lemma "age bob 25 :- age bob 24 => age bob 25"
|
|
181 |
apply (prolog prog_Test)
|
|
182 |
done
|
|
183 |
(*reset trace_DEPTH_FIRST;*)
|
|
184 |
|
36319
|
185 |
schematic_lemma "(!x. age x 25 :- age x 23) => age ?x 25 & age ?y 25"
|
21425
|
186 |
apply (prolog prog_Test)
|
|
187 |
back
|
|
188 |
back
|
|
189 |
back
|
|
190 |
done
|
|
191 |
|
|
192 |
lemma "!x. ? y. eq x y"
|
|
193 |
apply (prolog prog_Test)
|
|
194 |
done
|
|
195 |
|
36319
|
196 |
schematic_lemma "? P. P & eq P ?x"
|
21425
|
197 |
apply (prolog prog_Test)
|
|
198 |
(*
|
|
199 |
back
|
|
200 |
back
|
|
201 |
back
|
|
202 |
back
|
|
203 |
back
|
|
204 |
back
|
|
205 |
back
|
|
206 |
back
|
|
207 |
*)
|
|
208 |
done
|
|
209 |
|
|
210 |
lemma "? P. eq P (True & True) & P"
|
|
211 |
apply (prolog prog_Test)
|
|
212 |
done
|
|
213 |
|
|
214 |
lemma "? P. eq P op | & P k True"
|
|
215 |
apply (prolog prog_Test)
|
|
216 |
done
|
|
217 |
|
|
218 |
lemma "? P. eq P (Q => True) & P"
|
|
219 |
apply (prolog prog_Test)
|
|
220 |
done
|
|
221 |
|
|
222 |
(* P flexible: *)
|
|
223 |
lemma "(!P k l. P k l :- eq P Q) => Q a b"
|
|
224 |
apply (prolog prog_Test)
|
|
225 |
done
|
|
226 |
(*
|
|
227 |
loops:
|
|
228 |
lemma "(!P k l. P k l :- eq P (%x y. x | y)) => a | b"
|
|
229 |
*)
|
|
230 |
|
|
231 |
(* implication and disjunction in atom: *)
|
|
232 |
lemma "? Q. (!p q. R(q :- p) => R(Q p q)) & Q (t | s) (s | t)"
|
|
233 |
by fast
|
|
234 |
|
|
235 |
(* disjunction in atom: *)
|
|
236 |
lemma "(!P. g P :- (P => b | a)) => g(a | b)"
|
42793
|
237 |
apply (tactic "step_tac (put_claset HOL_cs @{context}) 1")
|
|
238 |
apply (tactic "step_tac (put_claset HOL_cs @{context}) 1")
|
|
239 |
apply (tactic "step_tac (put_claset HOL_cs @{context}) 1")
|
21425
|
240 |
prefer 2
|
|
241 |
apply fast
|
|
242 |
apply fast
|
|
243 |
done
|
|
244 |
|
|
245 |
(*
|
|
246 |
hangs:
|
|
247 |
lemma "(!P. g P :- (P => b | a)) => g(a | b)"
|
|
248 |
by fast
|
|
249 |
*)
|
|
250 |
|
36319
|
251 |
schematic_lemma "!Emp Stk.(
|
21425
|
252 |
empty (Emp::'b) ..
|
|
253 |
(!(X::nat) S. add X (S::'b) (Stk X S)) ..
|
|
254 |
(!(X::nat) S. remove X ((Stk X S)::'b) S))
|
|
255 |
=> bag_appl 23 24 ?X ?Y"
|
|
256 |
oops
|
|
257 |
|
36319
|
258 |
schematic_lemma "!Qu. (
|
21425
|
259 |
(!L. empty (Qu L L)) ..
|
|
260 |
(!(X::nat) L K. add X (Qu L (X#K)) (Qu L K)) ..
|
|
261 |
(!(X::nat) L K. remove X (Qu (X#L) K) (Qu L K)))
|
|
262 |
=> bag_appl 23 24 ?X ?Y"
|
|
263 |
oops
|
|
264 |
|
|
265 |
lemma "D & (!y. E) :- (!x. True & True) :- True => D"
|
|
266 |
apply (prolog prog_Test)
|
|
267 |
done
|
|
268 |
|
36319
|
269 |
schematic_lemma "P x .. P y => P ?X"
|
21425
|
270 |
apply (prolog prog_Test)
|
|
271 |
back
|
|
272 |
done
|
|
273 |
(*
|
|
274 |
back
|
|
275 |
-> problem with DEPTH_SOLVE:
|
|
276 |
Exception- THM ("dest_state", 1, ["P x & P y --> P y"]) raised
|
|
277 |
Exception raised at run-time
|
|
278 |
*)
|
17311
|
279 |
|
9015
|
280 |
end
|