| author | blanchet | 
| Tue, 10 Nov 2009 13:54:00 +0100 | |
| changeset 33583 | b5e0909cd5ea | 
| parent 32960 | 69916a850301 | 
| child 35802 | 362431732b5e | 
| permissions | -rw-r--r-- | 
| 28583 | 1 | theory Live imports Natural | 
| 2 | begin | |
| 3 | ||
| 4 | text{* Which variables/locations does an expression depend on?
 | |
| 5 | Any set of variables that completely determine the value of the expression, | |
| 6 | in the worst case all locations: *} | |
| 7 | ||
| 8 | consts Dep :: "((loc \<Rightarrow> 'a) \<Rightarrow> 'b) \<Rightarrow> loc set" | |
| 9 | specification (Dep) | |
| 10 | dep_on: "(\<forall>x\<in>Dep e. s x = t x) \<Longrightarrow> e s = e t" | |
| 11 | by(rule_tac x="%x. UNIV" in exI)(simp add: expand_fun_eq[symmetric]) | |
| 12 | ||
| 13 | text{* The following definition of @{const Dep} looks very tempting
 | |
| 14 | @{prop"Dep e = {a. EX s t. (ALL x. x\<noteq>a \<longrightarrow> s x = t x) \<and> e s \<noteq> e t}"}
 | |
| 15 | but does not work in case @{text e} depends on an infinite set of variables.
 | |
| 16 | For example, if @{term"e s"} tests if @{text s} is 0 at infinitely many locations. Then @{term"Dep e"} incorrectly yields the empty set!
 | |
| 17 | ||
| 18 | If we had a concrete representation of expressions, we would simply write | |
| 19 | a recursive free-variables function. | |
| 20 | *} | |
| 21 | ||
| 22 | primrec L :: "com \<Rightarrow> loc set \<Rightarrow> loc set" where | |
| 23 | "L SKIP A = A" | | |
| 24 | "L (x :== e) A = A-{x} \<union> Dep e" |
 | |
| 25 | "L (c1; c2) A = (L c1 \<circ> L c2) A" | | |
| 26 | "L (IF b THEN c1 ELSE c2) A = Dep b \<union> L c1 A \<union> L c2 A" | | |
| 27 | "L (WHILE b DO c) A = Dep b \<union> A \<union> L c A" | |
| 28 | ||
| 29 | primrec "kill" :: "com \<Rightarrow> loc set" where | |
| 30 | "kill SKIP = {}" |
 | |
| 31 | "kill (x :== e) = {x}" |
 | |
| 32 | "kill (c1; c2) = kill c1 \<union> kill c2" | | |
| 33 | "kill (IF b THEN c1 ELSE c2) = Dep b \<union> kill c1 \<inter> kill c2" | | |
| 34 | "kill (WHILE b DO c) = {}"
 | |
| 35 | ||
| 36 | primrec gen :: "com \<Rightarrow> loc set" where | |
| 37 | "gen SKIP = {}" |
 | |
| 38 | "gen (x :== e) = Dep e" | | |
| 39 | "gen (c1; c2) = gen c1 \<union> (gen c2-kill c1)" | | |
| 40 | "gen (IF b THEN c1 ELSE c2) = Dep b \<union> gen c1 \<union> gen c2" | | |
| 41 | "gen (WHILE b DO c) = Dep b \<union> gen c" | |
| 42 | ||
| 43 | lemma L_gen_kill: "L c A = gen c \<union> (A - kill c)" | |
| 44 | by(induct c arbitrary:A) auto | |
| 45 | ||
| 46 | lemma L_idemp: "L c (L c A) \<subseteq> L c A" | |
| 47 | by(fastsimp simp add:L_gen_kill) | |
| 48 | ||
| 49 | theorem L_sound: "\<forall> x \<in> L c A. s x = t x \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow> | |
| 50 | \<forall>x\<in>A. s' x = t' x" | |
| 51 | proof (induct c arbitrary: A s t s' t') | |
| 52 | case SKIP then show ?case by auto | |
| 53 | next | |
| 54 | case (Assign x e) then show ?case | |
| 55 | by (auto simp:update_def ball_Un dest!: dep_on) | |
| 56 | next | |
| 57 | case (Semi c1 c2) | |
| 58 | from Semi(4) obtain s'' where s1: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s''" and s2: "\<langle>c2,s''\<rangle> \<longrightarrow>\<^sub>c s'" | |
| 59 | by auto | |
| 60 | from Semi(5) obtain t'' where t1: "\<langle>c1,t\<rangle> \<longrightarrow>\<^sub>c t''" and t2: "\<langle>c2,t''\<rangle> \<longrightarrow>\<^sub>c t'" | |
| 61 | by auto | |
| 62 | show ?case using Semi(1)[OF _ s1 t1] Semi(2)[OF _ s2 t2] Semi(3) by fastsimp | |
| 63 | next | |
| 64 | case (Cond b c1 c2) | |
| 65 | show ?case | |
| 66 | proof cases | |
| 67 | assume "b s" | |
| 68 | hence s: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by simp | |
| 69 | have "b t" using `b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on) | |
| 70 | hence t: "\<langle>c1,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto | |
| 71 | show ?thesis using Cond(1)[OF _ s t] Cond(3) by fastsimp | |
| 72 | next | |
| 73 | assume "\<not> b s" | |
| 74 | hence s: "\<langle>c2,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by auto | |
| 75 | have "\<not> b t" using `\<not> b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on) | |
| 76 | hence t: "\<langle>c2,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto | |
| 77 | show ?thesis using Cond(2)[OF _ s t] Cond(3) by fastsimp | |
| 78 | qed | |
| 79 | next | |
| 80 | case (While b c) note IH = this | |
| 81 |   { fix cw
 | |
| 82 | have "\<langle>cw,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> cw = (While b c) \<Longrightarrow> \<langle>cw,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow> | |
| 83 | \<forall> x \<in> L cw A. s x = t x \<Longrightarrow> \<forall>x\<in>A. s' x = t' x" | |
| 84 | proof (induct arbitrary: t A pred:evalc) | |
| 85 | case WhileFalse | |
| 86 | have "\<not> b t" using WhileFalse by (simp add: ball_Un)(blast dest:dep_on) | |
| 87 | then have "t' = t" using WhileFalse by auto | |
| 88 | then show ?case using WhileFalse by auto | |
| 89 | next | |
| 90 | case (WhileTrue _ s _ s'' s') | |
| 91 | have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''" using WhileTrue(2,6) by simp | |
| 92 | have "b t" using WhileTrue by (simp add: ball_Un)(blast dest:dep_on) | |
| 93 | then obtain t'' where "\<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t''" and "\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'" | |
| 94 | using WhileTrue(6,7) by auto | |
| 28867 | 95 | have "\<forall>x\<in>Dep b \<union> A \<union> L c A. s'' x = t'' x" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
28867diff
changeset | 96 | using IH(1)[OF _ `\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''` `\<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t''`] WhileTrue(6,8) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
28867diff
changeset | 97 | by (auto simp:L_gen_kill) | 
| 28867 | 98 | moreover then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto | 
| 99 | ultimately show ?case using WhileTrue(5,6) `\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis | |
| 28583 | 100 | qed auto } | 
| 101 | from this[OF IH(3) _ IH(4,2)] show ?case by metis | |
| 102 | qed | |
| 103 | ||
| 28867 | 104 | |
| 105 | primrec bury :: "com \<Rightarrow> loc set \<Rightarrow> com" where | |
| 106 | "bury SKIP _ = SKIP" | | |
| 107 | "bury (x :== e) A = (if x:A then x:== e else SKIP)" | | |
| 108 | "bury (c1; c2) A = (bury c1 (L c2 A); bury c2 A)" | | |
| 109 | "bury (IF b THEN c1 ELSE c2) A = (IF b THEN bury c1 A ELSE bury c2 A)" | | |
| 110 | "bury (WHILE b DO c) A = (WHILE b DO bury c (Dep b \<union> A \<union> L c A))" | |
| 111 | ||
| 112 | theorem bury_sound: | |
| 113 | "\<forall> x \<in> L c A. s x = t x \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>bury c A,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow> | |
| 114 | \<forall>x\<in>A. s' x = t' x" | |
| 115 | proof (induct c arbitrary: A s t s' t') | |
| 116 | case SKIP then show ?case by auto | |
| 117 | next | |
| 118 | case (Assign x e) then show ?case | |
| 119 | by (auto simp:update_def ball_Un split:split_if_asm dest!: dep_on) | |
| 120 | next | |
| 121 | case (Semi c1 c2) | |
| 122 | from Semi(4) obtain s'' where s1: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s''" and s2: "\<langle>c2,s''\<rangle> \<longrightarrow>\<^sub>c s'" | |
| 123 | by auto | |
| 124 | from Semi(5) obtain t'' where t1: "\<langle>bury c1 (L c2 A),t\<rangle> \<longrightarrow>\<^sub>c t''" and t2: "\<langle>bury c2 A,t''\<rangle> \<longrightarrow>\<^sub>c t'" | |
| 125 | by auto | |
| 126 | show ?case using Semi(1)[OF _ s1 t1] Semi(2)[OF _ s2 t2] Semi(3) by fastsimp | |
| 127 | next | |
| 128 | case (Cond b c1 c2) | |
| 129 | show ?case | |
| 130 | proof cases | |
| 131 | assume "b s" | |
| 132 | hence s: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by simp | |
| 133 | have "b t" using `b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on) | |
| 134 | hence t: "\<langle>bury c1 A,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto | |
| 135 | show ?thesis using Cond(1)[OF _ s t] Cond(3) by fastsimp | |
| 136 | next | |
| 137 | assume "\<not> b s" | |
| 138 | hence s: "\<langle>c2,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by auto | |
| 139 | have "\<not> b t" using `\<not> b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on) | |
| 140 | hence t: "\<langle>bury c2 A,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto | |
| 141 | show ?thesis using Cond(2)[OF _ s t] Cond(3) by fastsimp | |
| 142 | qed | |
| 143 | next | |
| 144 | case (While b c) note IH = this | |
| 145 |   { fix cw
 | |
| 146 | have "\<langle>cw,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> cw = (While b c) \<Longrightarrow> \<langle>bury cw A,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow> | |
| 147 | \<forall> x \<in> L cw A. s x = t x \<Longrightarrow> \<forall>x\<in>A. s' x = t' x" | |
| 148 | proof (induct arbitrary: t A pred:evalc) | |
| 149 | case WhileFalse | |
| 150 | have "\<not> b t" using WhileFalse by (simp add: ball_Un)(blast dest:dep_on) | |
| 151 | then have "t' = t" using WhileFalse by auto | |
| 152 | then show ?case using WhileFalse by auto | |
| 153 | next | |
| 154 | case (WhileTrue _ s _ s'' s') | |
| 155 | have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''" using WhileTrue(2,6) by simp | |
| 156 | have "b t" using WhileTrue by (simp add: ball_Un)(blast dest:dep_on) | |
| 157 | then obtain t'' where tt'': "\<langle>bury c (Dep b \<union> A \<union> L c A),t\<rangle> \<longrightarrow>\<^sub>c t''" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
28867diff
changeset | 158 | and "\<langle>bury (While b c) A,t''\<rangle> \<longrightarrow>\<^sub>c t'" | 
| 28867 | 159 | using WhileTrue(6,7) by auto | 
| 160 | have "\<forall>x\<in>Dep b \<union> A \<union> L c A. s'' x = t'' x" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
28867diff
changeset | 161 | using IH(1)[OF _ `\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''` tt''] WhileTrue(6,8) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
28867diff
changeset | 162 | by (auto simp:L_gen_kill) | 
| 28867 | 163 | moreover then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto | 
| 164 | ultimately show ?case | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
28867diff
changeset | 165 | using WhileTrue(5,6) `\<langle>bury (While b c) A,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis | 
| 28867 | 166 | qed auto } | 
| 167 | from this[OF IH(3) _ IH(4,2)] show ?case by metis | |
| 168 | qed | |
| 169 | ||
| 170 | ||
| 28583 | 171 | end |