author | haftmann |
Tue, 10 Jul 2007 17:30:49 +0200 | |
changeset 23708 | b5eb0b4dd17d |
parent 23574 | 42765aff66d6 |
child 23855 | b1a754e544b6 |
permissions | -rw-r--r-- |
23164 | 1 |
(* Title: HOL/Numeral.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1994 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
header {* Arithmetic on Binary Integers *} |
|
8 |
||
9 |
theory Numeral |
|
23708 | 10 |
imports Datatype IntDef |
23574 | 11 |
uses |
12 |
("Tools/numeral.ML") |
|
13 |
("Tools/numeral_syntax.ML") |
|
23164 | 14 |
begin |
15 |
||
16 |
subsection {* Binary representation *} |
|
17 |
||
18 |
text {* |
|
19 |
This formalization defines binary arithmetic in terms of the integers |
|
20 |
rather than using a datatype. This avoids multiple representations (leading |
|
21 |
zeroes, etc.) See @{text "ZF/Tools/twos-compl.ML"}, function @{text |
|
22 |
int_of_binary}, for the numerical interpretation. |
|
23 |
||
24 |
The representation expects that @{text "(m mod 2)"} is 0 or 1, |
|
25 |
even if m is negative; |
|
26 |
For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus |
|
27 |
@{text "-5 = (-3)*2 + 1"}. |
|
28 |
*} |
|
29 |
||
30 |
datatype bit = B0 | B1 |
|
31 |
||
32 |
text{* |
|
33 |
Type @{typ bit} avoids the use of type @{typ bool}, which would make |
|
34 |
all of the rewrite rules higher-order. |
|
35 |
*} |
|
36 |
||
37 |
definition |
|
38 |
Pls :: int where |
|
39 |
[code func del]:"Pls = 0" |
|
40 |
||
41 |
definition |
|
42 |
Min :: int where |
|
43 |
[code func del]:"Min = - 1" |
|
44 |
||
45 |
definition |
|
46 |
Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where |
|
47 |
[code func del]: "k BIT b = (case b of B0 \<Rightarrow> 0 | B1 \<Rightarrow> 1) + k + k" |
|
48 |
||
49 |
class number = type + -- {* for numeric types: nat, int, real, \dots *} |
|
50 |
fixes number_of :: "int \<Rightarrow> 'a" |
|
51 |
||
23574 | 52 |
use "Tools/numeral.ML" |
53 |
||
23164 | 54 |
syntax |
55 |
"_Numeral" :: "num_const \<Rightarrow> 'a" ("_") |
|
56 |
||
57 |
use "Tools/numeral_syntax.ML" |
|
58 |
setup NumeralSyntax.setup |
|
59 |
||
60 |
abbreviation |
|
61 |
"Numeral0 \<equiv> number_of Pls" |
|
62 |
||
63 |
abbreviation |
|
64 |
"Numeral1 \<equiv> number_of (Pls BIT B1)" |
|
65 |
||
66 |
lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)" |
|
67 |
-- {* Unfold all @{text let}s involving constants *} |
|
68 |
unfolding Let_def .. |
|
69 |
||
70 |
lemma Let_0 [simp]: "Let 0 f = f 0" |
|
71 |
unfolding Let_def .. |
|
72 |
||
73 |
lemma Let_1 [simp]: "Let 1 f = f 1" |
|
74 |
unfolding Let_def .. |
|
75 |
||
76 |
definition |
|
77 |
succ :: "int \<Rightarrow> int" where |
|
78 |
[code func del]: "succ k = k + 1" |
|
79 |
||
80 |
definition |
|
81 |
pred :: "int \<Rightarrow> int" where |
|
82 |
[code func del]: "pred k = k - 1" |
|
83 |
||
84 |
lemmas |
|
85 |
max_number_of [simp] = max_def |
|
86 |
[of "number_of u" "number_of v", standard, simp] |
|
87 |
and |
|
88 |
min_number_of [simp] = min_def |
|
89 |
[of "number_of u" "number_of v", standard, simp] |
|
90 |
-- {* unfolding @{text minx} and @{text max} on numerals *} |
|
91 |
||
92 |
lemmas numeral_simps = |
|
93 |
succ_def pred_def Pls_def Min_def Bit_def |
|
94 |
||
95 |
text {* Removal of leading zeroes *} |
|
96 |
||
97 |
lemma Pls_0_eq [simp, normal post]: |
|
98 |
"Pls BIT B0 = Pls" |
|
99 |
unfolding numeral_simps by simp |
|
100 |
||
101 |
lemma Min_1_eq [simp, normal post]: |
|
102 |
"Min BIT B1 = Min" |
|
103 |
unfolding numeral_simps by simp |
|
104 |
||
105 |
||
106 |
subsection {* The Functions @{term succ}, @{term pred} and @{term uminus} *} |
|
107 |
||
108 |
lemma succ_Pls [simp]: |
|
109 |
"succ Pls = Pls BIT B1" |
|
110 |
unfolding numeral_simps by simp |
|
111 |
||
112 |
lemma succ_Min [simp]: |
|
113 |
"succ Min = Pls" |
|
114 |
unfolding numeral_simps by simp |
|
115 |
||
116 |
lemma succ_1 [simp]: |
|
117 |
"succ (k BIT B1) = succ k BIT B0" |
|
118 |
unfolding numeral_simps by simp |
|
119 |
||
120 |
lemma succ_0 [simp]: |
|
121 |
"succ (k BIT B0) = k BIT B1" |
|
122 |
unfolding numeral_simps by simp |
|
123 |
||
124 |
lemma pred_Pls [simp]: |
|
125 |
"pred Pls = Min" |
|
126 |
unfolding numeral_simps by simp |
|
127 |
||
128 |
lemma pred_Min [simp]: |
|
129 |
"pred Min = Min BIT B0" |
|
130 |
unfolding numeral_simps by simp |
|
131 |
||
132 |
lemma pred_1 [simp]: |
|
133 |
"pred (k BIT B1) = k BIT B0" |
|
134 |
unfolding numeral_simps by simp |
|
135 |
||
136 |
lemma pred_0 [simp]: |
|
137 |
"pred (k BIT B0) = pred k BIT B1" |
|
138 |
unfolding numeral_simps by simp |
|
139 |
||
140 |
lemma minus_Pls [simp]: |
|
141 |
"- Pls = Pls" |
|
142 |
unfolding numeral_simps by simp |
|
143 |
||
144 |
lemma minus_Min [simp]: |
|
145 |
"- Min = Pls BIT B1" |
|
146 |
unfolding numeral_simps by simp |
|
147 |
||
148 |
lemma minus_1 [simp]: |
|
149 |
"- (k BIT B1) = pred (- k) BIT B1" |
|
150 |
unfolding numeral_simps by simp |
|
151 |
||
152 |
lemma minus_0 [simp]: |
|
153 |
"- (k BIT B0) = (- k) BIT B0" |
|
154 |
unfolding numeral_simps by simp |
|
155 |
||
156 |
||
157 |
subsection {* |
|
158 |
Binary Addition and Multiplication: @{term "op + \<Colon> int \<Rightarrow> int \<Rightarrow> int"} |
|
159 |
and @{term "op * \<Colon> int \<Rightarrow> int \<Rightarrow> int"} |
|
160 |
*} |
|
161 |
||
162 |
lemma add_Pls [simp]: |
|
163 |
"Pls + k = k" |
|
164 |
unfolding numeral_simps by simp |
|
165 |
||
166 |
lemma add_Min [simp]: |
|
167 |
"Min + k = pred k" |
|
168 |
unfolding numeral_simps by simp |
|
169 |
||
170 |
lemma add_BIT_11 [simp]: |
|
171 |
"(k BIT B1) + (l BIT B1) = (k + succ l) BIT B0" |
|
172 |
unfolding numeral_simps by simp |
|
173 |
||
174 |
lemma add_BIT_10 [simp]: |
|
175 |
"(k BIT B1) + (l BIT B0) = (k + l) BIT B1" |
|
176 |
unfolding numeral_simps by simp |
|
177 |
||
178 |
lemma add_BIT_0 [simp]: |
|
179 |
"(k BIT B0) + (l BIT b) = (k + l) BIT b" |
|
180 |
unfolding numeral_simps by simp |
|
181 |
||
182 |
lemma add_Pls_right [simp]: |
|
183 |
"k + Pls = k" |
|
184 |
unfolding numeral_simps by simp |
|
185 |
||
186 |
lemma add_Min_right [simp]: |
|
187 |
"k + Min = pred k" |
|
188 |
unfolding numeral_simps by simp |
|
189 |
||
190 |
lemma mult_Pls [simp]: |
|
191 |
"Pls * w = Pls" |
|
192 |
unfolding numeral_simps by simp |
|
193 |
||
194 |
lemma mult_Min [simp]: |
|
195 |
"Min * k = - k" |
|
196 |
unfolding numeral_simps by simp |
|
197 |
||
198 |
lemma mult_num1 [simp]: |
|
199 |
"(k BIT B1) * l = ((k * l) BIT B0) + l" |
|
200 |
unfolding numeral_simps int_distrib by simp |
|
201 |
||
202 |
lemma mult_num0 [simp]: |
|
203 |
"(k BIT B0) * l = (k * l) BIT B0" |
|
204 |
unfolding numeral_simps int_distrib by simp |
|
205 |
||
206 |
||
207 |
||
208 |
subsection {* Converting Numerals to Rings: @{term number_of} *} |
|
209 |
||
210 |
axclass number_ring \<subseteq> number, comm_ring_1 |
|
211 |
number_of_eq: "number_of k = of_int k" |
|
212 |
||
213 |
text {* self-embedding of the intergers *} |
|
214 |
||
215 |
instance int :: number_ring |
|
216 |
int_number_of_def: "number_of w \<equiv> of_int w" |
|
217 |
by intro_classes (simp only: int_number_of_def) |
|
218 |
||
219 |
lemmas [code func del] = int_number_of_def |
|
220 |
||
221 |
lemma number_of_is_id: |
|
222 |
"number_of (k::int) = k" |
|
223 |
unfolding int_number_of_def by simp |
|
224 |
||
225 |
lemma number_of_succ: |
|
226 |
"number_of (succ k) = (1 + number_of k ::'a::number_ring)" |
|
227 |
unfolding number_of_eq numeral_simps by simp |
|
228 |
||
229 |
lemma number_of_pred: |
|
230 |
"number_of (pred w) = (- 1 + number_of w ::'a::number_ring)" |
|
231 |
unfolding number_of_eq numeral_simps by simp |
|
232 |
||
233 |
lemma number_of_minus: |
|
234 |
"number_of (uminus w) = (- (number_of w)::'a::number_ring)" |
|
235 |
unfolding number_of_eq numeral_simps by simp |
|
236 |
||
237 |
lemma number_of_add: |
|
238 |
"number_of (v + w) = (number_of v + number_of w::'a::number_ring)" |
|
239 |
unfolding number_of_eq numeral_simps by simp |
|
240 |
||
241 |
lemma number_of_mult: |
|
242 |
"number_of (v * w) = (number_of v * number_of w::'a::number_ring)" |
|
243 |
unfolding number_of_eq numeral_simps by simp |
|
244 |
||
245 |
text {* |
|
246 |
The correctness of shifting. |
|
247 |
But it doesn't seem to give a measurable speed-up. |
|
248 |
*} |
|
249 |
||
250 |
lemma double_number_of_BIT: |
|
251 |
"(1 + 1) * number_of w = (number_of (w BIT B0) ::'a::number_ring)" |
|
252 |
unfolding number_of_eq numeral_simps left_distrib by simp |
|
253 |
||
254 |
text {* |
|
255 |
Converting numerals 0 and 1 to their abstract versions. |
|
256 |
*} |
|
257 |
||
258 |
lemma numeral_0_eq_0 [simp]: |
|
259 |
"Numeral0 = (0::'a::number_ring)" |
|
260 |
unfolding number_of_eq numeral_simps by simp |
|
261 |
||
262 |
lemma numeral_1_eq_1 [simp]: |
|
263 |
"Numeral1 = (1::'a::number_ring)" |
|
264 |
unfolding number_of_eq numeral_simps by simp |
|
265 |
||
266 |
text {* |
|
267 |
Special-case simplification for small constants. |
|
268 |
*} |
|
269 |
||
270 |
text{* |
|
271 |
Unary minus for the abstract constant 1. Cannot be inserted |
|
272 |
as a simprule until later: it is @{text number_of_Min} re-oriented! |
|
273 |
*} |
|
274 |
||
275 |
lemma numeral_m1_eq_minus_1: |
|
276 |
"(-1::'a::number_ring) = - 1" |
|
277 |
unfolding number_of_eq numeral_simps by simp |
|
278 |
||
279 |
lemma mult_minus1 [simp]: |
|
280 |
"-1 * z = -(z::'a::number_ring)" |
|
281 |
unfolding number_of_eq numeral_simps by simp |
|
282 |
||
283 |
lemma mult_minus1_right [simp]: |
|
284 |
"z * -1 = -(z::'a::number_ring)" |
|
285 |
unfolding number_of_eq numeral_simps by simp |
|
286 |
||
287 |
(*Negation of a coefficient*) |
|
288 |
lemma minus_number_of_mult [simp]: |
|
289 |
"- (number_of w) * z = number_of (uminus w) * (z::'a::number_ring)" |
|
290 |
unfolding number_of_eq by simp |
|
291 |
||
292 |
text {* Subtraction *} |
|
293 |
||
294 |
lemma diff_number_of_eq: |
|
295 |
"number_of v - number_of w = |
|
296 |
(number_of (v + uminus w)::'a::number_ring)" |
|
297 |
unfolding number_of_eq by simp |
|
298 |
||
299 |
lemma number_of_Pls: |
|
300 |
"number_of Pls = (0::'a::number_ring)" |
|
301 |
unfolding number_of_eq numeral_simps by simp |
|
302 |
||
303 |
lemma number_of_Min: |
|
304 |
"number_of Min = (- 1::'a::number_ring)" |
|
305 |
unfolding number_of_eq numeral_simps by simp |
|
306 |
||
307 |
lemma number_of_BIT: |
|
308 |
"number_of(w BIT x) = (case x of B0 => 0 | B1 => (1::'a::number_ring)) |
|
309 |
+ (number_of w) + (number_of w)" |
|
310 |
unfolding number_of_eq numeral_simps by (simp split: bit.split) |
|
311 |
||
312 |
||
313 |
subsection {* Equality of Binary Numbers *} |
|
314 |
||
315 |
text {* First version by Norbert Voelker *} |
|
316 |
||
317 |
lemma eq_number_of_eq: |
|
318 |
"((number_of x::'a::number_ring) = number_of y) = |
|
319 |
iszero (number_of (x + uminus y) :: 'a)" |
|
320 |
unfolding iszero_def number_of_add number_of_minus |
|
321 |
by (simp add: compare_rls) |
|
322 |
||
323 |
lemma iszero_number_of_Pls: |
|
324 |
"iszero ((number_of Pls)::'a::number_ring)" |
|
325 |
unfolding iszero_def numeral_0_eq_0 .. |
|
326 |
||
327 |
lemma nonzero_number_of_Min: |
|
328 |
"~ iszero ((number_of Min)::'a::number_ring)" |
|
329 |
unfolding iszero_def numeral_m1_eq_minus_1 by simp |
|
330 |
||
331 |
||
332 |
subsection {* Comparisons, for Ordered Rings *} |
|
333 |
||
334 |
lemma double_eq_0_iff: |
|
335 |
"(a + a = 0) = (a = (0::'a::ordered_idom))" |
|
336 |
proof - |
|
337 |
have "a + a = (1 + 1) * a" unfolding left_distrib by simp |
|
338 |
with zero_less_two [where 'a = 'a] |
|
339 |
show ?thesis by force |
|
340 |
qed |
|
341 |
||
342 |
lemma le_imp_0_less: |
|
343 |
assumes le: "0 \<le> z" |
|
344 |
shows "(0::int) < 1 + z" |
|
345 |
proof - |
|
23389 | 346 |
have "0 \<le> z" by fact |
23164 | 347 |
also have "... < z + 1" by (rule less_add_one) |
348 |
also have "... = 1 + z" by (simp add: add_ac) |
|
349 |
finally show "0 < 1 + z" . |
|
350 |
qed |
|
351 |
||
352 |
lemma odd_nonzero: |
|
353 |
"1 + z + z \<noteq> (0::int)"; |
|
354 |
proof (cases z rule: int_cases) |
|
355 |
case (nonneg n) |
|
356 |
have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) |
|
357 |
thus ?thesis using le_imp_0_less [OF le] |
|
358 |
by (auto simp add: add_assoc) |
|
359 |
next |
|
360 |
case (neg n) |
|
361 |
show ?thesis |
|
362 |
proof |
|
363 |
assume eq: "1 + z + z = 0" |
|
364 |
have "0 < 1 + (int n + int n)" |
|
365 |
by (simp add: le_imp_0_less add_increasing) |
|
366 |
also have "... = - (1 + z + z)" |
|
367 |
by (simp add: neg add_assoc [symmetric]) |
|
368 |
also have "... = 0" by (simp add: eq) |
|
369 |
finally have "0<0" .. |
|
370 |
thus False by blast |
|
371 |
qed |
|
372 |
qed |
|
373 |
||
374 |
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *} |
|
375 |
||
376 |
lemma Ints_double_eq_0_iff: |
|
377 |
assumes in_Ints: "a \<in> Ints" |
|
378 |
shows "(a + a = 0) = (a = (0::'a::ring_char_0))" |
|
379 |
proof - |
|
380 |
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] . |
|
381 |
then obtain z where a: "a = of_int z" .. |
|
382 |
show ?thesis |
|
383 |
proof |
|
384 |
assume "a = 0" |
|
385 |
thus "a + a = 0" by simp |
|
386 |
next |
|
387 |
assume eq: "a + a = 0" |
|
388 |
hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a) |
|
389 |
hence "z + z = 0" by (simp only: of_int_eq_iff) |
|
390 |
hence "z = 0" by (simp only: double_eq_0_iff) |
|
391 |
thus "a = 0" by (simp add: a) |
|
392 |
qed |
|
393 |
qed |
|
394 |
||
395 |
lemma Ints_odd_nonzero: |
|
396 |
assumes in_Ints: "a \<in> Ints" |
|
397 |
shows "1 + a + a \<noteq> (0::'a::ring_char_0)" |
|
398 |
proof - |
|
399 |
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] . |
|
400 |
then obtain z where a: "a = of_int z" .. |
|
401 |
show ?thesis |
|
402 |
proof |
|
403 |
assume eq: "1 + a + a = 0" |
|
404 |
hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a) |
|
405 |
hence "1 + z + z = 0" by (simp only: of_int_eq_iff) |
|
406 |
with odd_nonzero show False by blast |
|
407 |
qed |
|
408 |
qed |
|
409 |
||
410 |
lemma Ints_number_of: |
|
411 |
"(number_of w :: 'a::number_ring) \<in> Ints" |
|
412 |
unfolding number_of_eq Ints_def by simp |
|
413 |
||
414 |
lemma iszero_number_of_BIT: |
|
415 |
"iszero (number_of (w BIT x)::'a) = |
|
416 |
(x = B0 \<and> iszero (number_of w::'a::{ring_char_0,number_ring}))" |
|
417 |
by (simp add: iszero_def number_of_eq numeral_simps Ints_double_eq_0_iff |
|
418 |
Ints_odd_nonzero Ints_def split: bit.split) |
|
419 |
||
420 |
lemma iszero_number_of_0: |
|
421 |
"iszero (number_of (w BIT B0) :: 'a::{ring_char_0,number_ring}) = |
|
422 |
iszero (number_of w :: 'a)" |
|
423 |
by (simp only: iszero_number_of_BIT simp_thms) |
|
424 |
||
425 |
lemma iszero_number_of_1: |
|
426 |
"~ iszero (number_of (w BIT B1)::'a::{ring_char_0,number_ring})" |
|
427 |
by (simp add: iszero_number_of_BIT) |
|
428 |
||
429 |
||
430 |
subsection {* The Less-Than Relation *} |
|
431 |
||
432 |
lemma less_number_of_eq_neg: |
|
433 |
"((number_of x::'a::{ordered_idom,number_ring}) < number_of y) |
|
434 |
= neg (number_of (x + uminus y) :: 'a)" |
|
435 |
apply (subst less_iff_diff_less_0) |
|
436 |
apply (simp add: neg_def diff_minus number_of_add number_of_minus) |
|
437 |
done |
|
438 |
||
439 |
text {* |
|
440 |
If @{term Numeral0} is rewritten to 0 then this rule can't be applied: |
|
441 |
@{term Numeral0} IS @{term "number_of Pls"} |
|
442 |
*} |
|
443 |
||
444 |
lemma not_neg_number_of_Pls: |
|
445 |
"~ neg (number_of Pls ::'a::{ordered_idom,number_ring})" |
|
446 |
by (simp add: neg_def numeral_0_eq_0) |
|
447 |
||
448 |
lemma neg_number_of_Min: |
|
449 |
"neg (number_of Min ::'a::{ordered_idom,number_ring})" |
|
450 |
by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1) |
|
451 |
||
452 |
lemma double_less_0_iff: |
|
453 |
"(a + a < 0) = (a < (0::'a::ordered_idom))" |
|
454 |
proof - |
|
455 |
have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib) |
|
456 |
also have "... = (a < 0)" |
|
457 |
by (simp add: mult_less_0_iff zero_less_two |
|
458 |
order_less_not_sym [OF zero_less_two]) |
|
459 |
finally show ?thesis . |
|
460 |
qed |
|
461 |
||
462 |
lemma odd_less_0: |
|
463 |
"(1 + z + z < 0) = (z < (0::int))"; |
|
23365 | 464 |
proof (cases z rule: int_cases) |
23164 | 465 |
case (nonneg n) |
466 |
thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing |
|
467 |
le_imp_0_less [THEN order_less_imp_le]) |
|
468 |
next |
|
469 |
case (neg n) |
|
23307
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23164
diff
changeset
|
470 |
thus ?thesis by (simp del: of_nat_Suc of_nat_add |
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23164
diff
changeset
|
471 |
add: compare_rls of_nat_1 [symmetric] of_nat_add [symmetric]) |
23164 | 472 |
qed |
473 |
||
474 |
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *} |
|
475 |
||
476 |
lemma Ints_odd_less_0: |
|
477 |
assumes in_Ints: "a \<in> Ints" |
|
478 |
shows "(1 + a + a < 0) = (a < (0::'a::ordered_idom))"; |
|
479 |
proof - |
|
480 |
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] . |
|
481 |
then obtain z where a: "a = of_int z" .. |
|
482 |
hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))" |
|
483 |
by (simp add: a) |
|
484 |
also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0) |
|
485 |
also have "... = (a < 0)" by (simp add: a) |
|
486 |
finally show ?thesis . |
|
487 |
qed |
|
488 |
||
489 |
lemma neg_number_of_BIT: |
|
490 |
"neg (number_of (w BIT x)::'a) = |
|
491 |
neg (number_of w :: 'a::{ordered_idom,number_ring})" |
|
492 |
by (simp add: neg_def number_of_eq numeral_simps double_less_0_iff |
|
493 |
Ints_odd_less_0 Ints_def split: bit.split) |
|
494 |
||
495 |
||
496 |
text {* Less-Than or Equals *} |
|
497 |
||
498 |
text {* Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals. *} |
|
499 |
||
500 |
lemmas le_number_of_eq_not_less = |
|
501 |
linorder_not_less [of "number_of w" "number_of v", symmetric, |
|
502 |
standard] |
|
503 |
||
504 |
lemma le_number_of_eq: |
|
505 |
"((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y) |
|
506 |
= (~ (neg (number_of (y + uminus x) :: 'a)))" |
|
507 |
by (simp add: le_number_of_eq_not_less less_number_of_eq_neg) |
|
508 |
||
509 |
||
510 |
text {* Absolute value (@{term abs}) *} |
|
511 |
||
512 |
lemma abs_number_of: |
|
513 |
"abs(number_of x::'a::{ordered_idom,number_ring}) = |
|
514 |
(if number_of x < (0::'a) then -number_of x else number_of x)" |
|
515 |
by (simp add: abs_if) |
|
516 |
||
517 |
||
518 |
text {* Re-orientation of the equation nnn=x *} |
|
519 |
||
520 |
lemma number_of_reorient: |
|
521 |
"(number_of w = x) = (x = number_of w)" |
|
522 |
by auto |
|
523 |
||
524 |
||
525 |
subsection {* Simplification of arithmetic operations on integer constants. *} |
|
526 |
||
527 |
lemmas arith_extra_simps [standard, simp] = |
|
528 |
number_of_add [symmetric] |
|
529 |
number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric] |
|
530 |
number_of_mult [symmetric] |
|
531 |
diff_number_of_eq abs_number_of |
|
532 |
||
533 |
text {* |
|
534 |
For making a minimal simpset, one must include these default simprules. |
|
535 |
Also include @{text simp_thms}. |
|
536 |
*} |
|
537 |
||
538 |
lemmas arith_simps = |
|
539 |
bit.distinct |
|
540 |
Pls_0_eq Min_1_eq |
|
541 |
pred_Pls pred_Min pred_1 pred_0 |
|
542 |
succ_Pls succ_Min succ_1 succ_0 |
|
543 |
add_Pls add_Min add_BIT_0 add_BIT_10 add_BIT_11 |
|
544 |
minus_Pls minus_Min minus_1 minus_0 |
|
545 |
mult_Pls mult_Min mult_num1 mult_num0 |
|
546 |
add_Pls_right add_Min_right |
|
547 |
abs_zero abs_one arith_extra_simps |
|
548 |
||
549 |
text {* Simplification of relational operations *} |
|
550 |
||
551 |
lemmas rel_simps [simp] = |
|
552 |
eq_number_of_eq iszero_number_of_Pls nonzero_number_of_Min |
|
553 |
iszero_number_of_0 iszero_number_of_1 |
|
554 |
less_number_of_eq_neg |
|
555 |
not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1 |
|
556 |
neg_number_of_Min neg_number_of_BIT |
|
557 |
le_number_of_eq |
|
558 |
||
559 |
||
560 |
subsection {* Simplification of arithmetic when nested to the right. *} |
|
561 |
||
562 |
lemma add_number_of_left [simp]: |
|
563 |
"number_of v + (number_of w + z) = |
|
564 |
(number_of(v + w) + z::'a::number_ring)" |
|
565 |
by (simp add: add_assoc [symmetric]) |
|
566 |
||
567 |
lemma mult_number_of_left [simp]: |
|
568 |
"number_of v * (number_of w * z) = |
|
569 |
(number_of(v * w) * z::'a::number_ring)" |
|
570 |
by (simp add: mult_assoc [symmetric]) |
|
571 |
||
572 |
lemma add_number_of_diff1: |
|
573 |
"number_of v + (number_of w - c) = |
|
574 |
number_of(v + w) - (c::'a::number_ring)" |
|
575 |
by (simp add: diff_minus add_number_of_left) |
|
576 |
||
577 |
lemma add_number_of_diff2 [simp]: |
|
578 |
"number_of v + (c - number_of w) = |
|
579 |
number_of (v + uminus w) + (c::'a::number_ring)" |
|
580 |
apply (subst diff_number_of_eq [symmetric]) |
|
581 |
apply (simp only: compare_rls) |
|
582 |
done |
|
583 |
||
584 |
||
585 |
subsection {* Configuration of the code generator *} |
|
586 |
||
587 |
instance int :: eq .. |
|
588 |
||
589 |
code_datatype Pls Min Bit "number_of \<Colon> int \<Rightarrow> int" |
|
590 |
||
591 |
definition |
|
592 |
int_aux :: "int \<Rightarrow> nat \<Rightarrow> int" where |
|
593 |
"int_aux i n = (i + int n)" |
|
594 |
||
595 |
lemma [code]: |
|
596 |
"int_aux i 0 = i" |
|
597 |
"int_aux i (Suc n) = int_aux (i + 1) n" -- {* tail recursive *} |
|
598 |
by (simp add: int_aux_def)+ |
|
599 |
||
23365 | 600 |
lemma [code unfold]: |
23164 | 601 |
"int n = int_aux 0 n" |
602 |
by (simp add: int_aux_def) |
|
603 |
||
604 |
definition |
|
605 |
nat_aux :: "nat \<Rightarrow> int \<Rightarrow> nat" where |
|
606 |
"nat_aux n i = (n + nat i)" |
|
607 |
||
608 |
lemma [code]: "nat_aux n i = (if i <= 0 then n else nat_aux (Suc n) (i - 1))" |
|
609 |
-- {* tail recursive *} |
|
610 |
by (auto simp add: nat_aux_def nat_eq_iff linorder_not_le order_less_imp_le |
|
611 |
dest: zless_imp_add1_zle) |
|
612 |
||
613 |
lemma [code]: "nat i = nat_aux 0 i" |
|
614 |
by (simp add: nat_aux_def) |
|
615 |
||
616 |
lemma zero_is_num_zero [code func, code inline, symmetric, normal post]: |
|
617 |
"(0\<Colon>int) = number_of Numeral.Pls" |
|
618 |
by simp |
|
619 |
||
620 |
lemma one_is_num_one [code func, code inline, symmetric, normal post]: |
|
621 |
"(1\<Colon>int) = number_of (Numeral.Pls BIT bit.B1)" |
|
622 |
by simp |
|
623 |
||
624 |
code_modulename SML |
|
625 |
IntDef Integer |
|
626 |
||
627 |
code_modulename OCaml |
|
628 |
IntDef Integer |
|
629 |
||
630 |
code_modulename Haskell |
|
631 |
IntDef Integer |
|
632 |
||
633 |
code_modulename SML |
|
634 |
Numeral Integer |
|
635 |
||
636 |
code_modulename OCaml |
|
637 |
Numeral Integer |
|
638 |
||
639 |
code_modulename Haskell |
|
640 |
Numeral Integer |
|
641 |
||
642 |
(*FIXME: the IntInf.fromInt below hides a dependence on fixed-precision ints!*) |
|
643 |
||
644 |
types_code |
|
645 |
"int" ("int") |
|
646 |
attach (term_of) {* |
|
647 |
val term_of_int = HOLogic.mk_number HOLogic.intT o IntInf.fromInt; |
|
648 |
*} |
|
649 |
attach (test) {* |
|
650 |
fun gen_int i = one_of [~1, 1] * random_range 0 i; |
|
651 |
*} |
|
652 |
||
653 |
setup {* |
|
654 |
let |
|
655 |
||
656 |
fun number_of_codegen thy defs gr dep module b (Const (@{const_name Numeral.number_of}, Type ("fun", [_, T])) $ t) = |
|
657 |
if T = HOLogic.intT then |
|
658 |
(SOME (fst (Codegen.invoke_tycodegen thy defs dep module false (gr, T)), |
|
659 |
(Pretty.str o IntInf.toString o HOLogic.dest_numeral) t) handle TERM _ => NONE) |
|
660 |
else if T = HOLogic.natT then |
|
661 |
SOME (Codegen.invoke_codegen thy defs dep module b (gr, |
|
662 |
Const ("IntDef.nat", HOLogic.intT --> HOLogic.natT) $ |
|
663 |
(Const (@{const_name Numeral.number_of}, HOLogic.intT --> HOLogic.intT) $ t))) |
|
664 |
else NONE |
|
665 |
| number_of_codegen _ _ _ _ _ _ _ = NONE; |
|
666 |
||
667 |
in |
|
668 |
||
669 |
Codegen.add_codegen "number_of_codegen" number_of_codegen |
|
670 |
||
671 |
end |
|
672 |
*} |
|
673 |
||
674 |
consts_code |
|
675 |
"0 :: int" ("0") |
|
676 |
"1 :: int" ("1") |
|
677 |
"uminus :: int => int" ("~") |
|
678 |
"op + :: int => int => int" ("(_ +/ _)") |
|
679 |
"op * :: int => int => int" ("(_ */ _)") |
|
680 |
"op \<le> :: int => int => bool" ("(_ <=/ _)") |
|
681 |
"op < :: int => int => bool" ("(_ </ _)") |
|
682 |
||
683 |
quickcheck_params [default_type = int] |
|
684 |
||
685 |
(*setup continues in theory Presburger*) |
|
686 |
||
687 |
hide (open) const Pls Min B0 B1 succ pred |
|
688 |
||
689 |
end |