| author | wenzelm | 
| Mon, 25 Oct 2010 21:23:09 +0200 | |
| changeset 40133 | b61d52de66f0 | 
| parent 39302 | d7728f65b353 | 
| child 42870 | 36abaf4cce1f | 
| permissions | -rw-r--r-- | 
| 31708 | 1 | |
| 32554 | 2 | (* Authors: Jeremy Avigad and Amine Chaieb *) | 
| 31708 | 3 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 4 | header {* Generic transfer machinery;  specific transfer from nats to ints and back. *}
 | 
| 31708 | 5 | |
| 32558 | 6 | theory Nat_Transfer | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 7 | imports Nat_Numeral | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 8 | uses ("Tools/transfer.ML")
 | 
| 31708 | 9 | begin | 
| 10 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 11 | subsection {* Generic transfer machinery *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 12 | |
| 35821 | 13 | definition transfer_morphism:: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 14 | where "transfer_morphism f A \<longleftrightarrow> (\<forall>P. (\<forall>x. P x) \<longrightarrow> (\<forall>y. A y \<longrightarrow> P (f y)))" | |
| 35644 | 15 | |
| 16 | lemma transfer_morphismI: | |
| 35821 | 17 | assumes "\<And>P y. (\<And>x. P x) \<Longrightarrow> A y \<Longrightarrow> P (f y)" | 
| 18 | shows "transfer_morphism f A" | |
| 19 | using assms by (auto simp add: transfer_morphism_def) | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 20 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 21 | use "Tools/transfer.ML" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 22 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 23 | setup Transfer.setup | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 24 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 25 | |
| 31708 | 26 | subsection {* Set up transfer from nat to int *}
 | 
| 27 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 28 | text {* set up transfer direction *}
 | 
| 31708 | 29 | |
| 35644 | 30 | lemma transfer_morphism_nat_int: "transfer_morphism nat (op <= (0::int))" | 
| 35821 | 31 | by (rule transfer_morphismI) simp | 
| 31708 | 32 | |
| 35683 | 33 | declare transfer_morphism_nat_int [transfer add | 
| 34 | mode: manual | |
| 31708 | 35 | return: nat_0_le | 
| 35683 | 36 | labels: nat_int | 
| 31708 | 37 | ] | 
| 38 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 39 | text {* basic functions and relations *}
 | 
| 31708 | 40 | |
| 35683 | 41 | lemma transfer_nat_int_numerals [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 42 | "(0::nat) = nat 0" | 
| 43 | "(1::nat) = nat 1" | |
| 44 | "(2::nat) = nat 2" | |
| 45 | "(3::nat) = nat 3" | |
| 46 | by auto | |
| 47 | ||
| 48 | definition | |
| 49 | tsub :: "int \<Rightarrow> int \<Rightarrow> int" | |
| 50 | where | |
| 51 | "tsub x y = (if x >= y then x - y else 0)" | |
| 52 | ||
| 53 | lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y" | |
| 54 | by (simp add: tsub_def) | |
| 55 | ||
| 35683 | 56 | lemma transfer_nat_int_functions [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 57 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)" | 
| 58 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)" | |
| 59 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)" | |
| 60 | "(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)" | |
| 61 | by (auto simp add: eq_nat_nat_iff nat_mult_distrib | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 62 | nat_power_eq tsub_def) | 
| 31708 | 63 | |
| 35683 | 64 | lemma transfer_nat_int_function_closures [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 65 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0" | 
| 66 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0" | |
| 67 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0" | |
| 68 | "(x::int) >= 0 \<Longrightarrow> x^n >= 0" | |
| 69 | "(0::int) >= 0" | |
| 70 | "(1::int) >= 0" | |
| 71 | "(2::int) >= 0" | |
| 72 | "(3::int) >= 0" | |
| 73 | "int z >= 0" | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 74 | by (auto simp add: zero_le_mult_iff tsub_def) | 
| 31708 | 75 | |
| 35683 | 76 | lemma transfer_nat_int_relations [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 77 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | 
| 78 | (nat (x::int) = nat y) = (x = y)" | |
| 79 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | |
| 80 | (nat (x::int) < nat y) = (x < y)" | |
| 81 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | |
| 82 | (nat (x::int) <= nat y) = (x <= y)" | |
| 83 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | |
| 84 | (nat (x::int) dvd nat y) = (x dvd y)" | |
| 32558 | 85 | by (auto simp add: zdvd_int) | 
| 31708 | 86 | |
| 87 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 88 | text {* first-order quantifiers *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 89 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 90 | lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 91 | by (simp split add: split_nat) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 92 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 93 | lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 94 | proof | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 95 | assume "\<exists>x. P x" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 96 | then obtain x where "P x" .. | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 97 | then have "int x \<ge> 0 \<and> P (nat (int x))" by simp | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 98 | then show "\<exists>x\<ge>0. P (nat x)" .. | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 99 | next | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 100 | assume "\<exists>x\<ge>0. P (nat x)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 101 | then show "\<exists>x. P x" by auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 102 | qed | 
| 31708 | 103 | |
| 35683 | 104 | lemma transfer_nat_int_quantifiers [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 105 | "(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))" | 
| 106 | "(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))" | |
| 107 | by (rule all_nat, rule ex_nat) | |
| 108 | ||
| 109 | (* should we restrict these? *) | |
| 110 | lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> | |
| 111 | (ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)" | |
| 112 | by auto | |
| 113 | ||
| 114 | lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> | |
| 115 | (EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)" | |
| 116 | by auto | |
| 117 | ||
| 35644 | 118 | declare transfer_morphism_nat_int [transfer add | 
| 31708 | 119 | cong: all_cong ex_cong] | 
| 120 | ||
| 121 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 122 | text {* if *}
 | 
| 31708 | 123 | |
| 35683 | 124 | lemma nat_if_cong [transfer key: transfer_morphism_nat_int]: | 
| 125 | "(if P then (nat x) else (nat y)) = nat (if P then x else y)" | |
| 31708 | 126 | by auto | 
| 127 | ||
| 128 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 129 | text {* operations with sets *}
 | 
| 31708 | 130 | |
| 131 | definition | |
| 132 | nat_set :: "int set \<Rightarrow> bool" | |
| 133 | where | |
| 134 | "nat_set S = (ALL x:S. x >= 0)" | |
| 135 | ||
| 136 | lemma transfer_nat_int_set_functions: | |
| 137 | "card A = card (int ` A)" | |
| 138 |     "{} = nat ` ({}::int set)"
 | |
| 139 | "A Un B = nat ` (int ` A Un int ` B)" | |
| 140 | "A Int B = nat ` (int ` A Int int ` B)" | |
| 141 |     "{x. P x} = nat ` {x. x >= 0 & P(nat x)}"
 | |
| 142 | apply (rule card_image [symmetric]) | |
| 143 | apply (auto simp add: inj_on_def image_def) | |
| 144 | apply (rule_tac x = "int x" in bexI) | |
| 145 | apply auto | |
| 146 | apply (rule_tac x = "int x" in bexI) | |
| 147 | apply auto | |
| 148 | apply (rule_tac x = "int x" in bexI) | |
| 149 | apply auto | |
| 150 | apply (rule_tac x = "int x" in exI) | |
| 151 | apply auto | |
| 152 | done | |
| 153 | ||
| 154 | lemma transfer_nat_int_set_function_closures: | |
| 155 |     "nat_set {}"
 | |
| 156 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" | |
| 157 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" | |
| 158 |     "nat_set {x. x >= 0 & P x}"
 | |
| 159 | "nat_set (int ` C)" | |
| 160 | "nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *) | |
| 161 | unfolding nat_set_def apply auto | |
| 162 | done | |
| 163 | ||
| 164 | lemma transfer_nat_int_set_relations: | |
| 165 | "(finite A) = (finite (int ` A))" | |
| 166 | "(x : A) = (int x : int ` A)" | |
| 167 | "(A = B) = (int ` A = int ` B)" | |
| 168 | "(A < B) = (int ` A < int ` B)" | |
| 169 | "(A <= B) = (int ` A <= int ` B)" | |
| 170 | apply (rule iffI) | |
| 171 | apply (erule finite_imageI) | |
| 172 | apply (erule finite_imageD) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 173 | apply (auto simp add: image_def set_eq_iff inj_on_def) | 
| 31708 | 174 | apply (drule_tac x = "int x" in spec, auto) | 
| 175 | apply (drule_tac x = "int x" in spec, auto) | |
| 176 | apply (drule_tac x = "int x" in spec, auto) | |
| 177 | done | |
| 178 | ||
| 179 | lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow> | |
| 180 | (int ` nat ` A = A)" | |
| 181 | by (auto simp add: nat_set_def image_def) | |
| 182 | ||
| 183 | lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow> | |
| 184 |     {(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}"
 | |
| 185 | by auto | |
| 186 | ||
| 35644 | 187 | declare transfer_morphism_nat_int [transfer add | 
| 31708 | 188 | return: transfer_nat_int_set_functions | 
| 189 | transfer_nat_int_set_function_closures | |
| 190 | transfer_nat_int_set_relations | |
| 191 | transfer_nat_int_set_return_embed | |
| 192 | cong: transfer_nat_int_set_cong | |
| 193 | ] | |
| 194 | ||
| 195 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 196 | text {* setsum and setprod *}
 | 
| 31708 | 197 | |
| 198 | (* this handles the case where the *domain* of f is nat *) | |
| 199 | lemma transfer_nat_int_sum_prod: | |
| 200 | "setsum f A = setsum (%x. f (nat x)) (int ` A)" | |
| 201 | "setprod f A = setprod (%x. f (nat x)) (int ` A)" | |
| 202 | apply (subst setsum_reindex) | |
| 203 | apply (unfold inj_on_def, auto) | |
| 204 | apply (subst setprod_reindex) | |
| 205 | apply (unfold inj_on_def o_def, auto) | |
| 206 | done | |
| 207 | ||
| 208 | (* this handles the case where the *range* of f is nat *) | |
| 209 | lemma transfer_nat_int_sum_prod2: | |
| 210 | "setsum f A = nat(setsum (%x. int (f x)) A)" | |
| 211 | "setprod f A = nat(setprod (%x. int (f x)) A)" | |
| 212 | apply (subst int_setsum [symmetric]) | |
| 213 | apply auto | |
| 214 | apply (subst int_setprod [symmetric]) | |
| 215 | apply auto | |
| 216 | done | |
| 217 | ||
| 218 | lemma transfer_nat_int_sum_prod_closure: | |
| 219 | "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0" | |
| 220 | "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0" | |
| 221 | unfolding nat_set_def | |
| 222 | apply (rule setsum_nonneg) | |
| 223 | apply auto | |
| 224 | apply (rule setprod_nonneg) | |
| 225 | apply auto | |
| 226 | done | |
| 227 | ||
| 228 | (* this version doesn't work, even with nat_set A \<Longrightarrow> | |
| 229 | x : A \<Longrightarrow> x >= 0 turned on. Why not? | |
| 230 | ||
| 231 | also: what does =simp=> do? | |
| 232 | ||
| 233 | lemma transfer_nat_int_sum_prod_closure: | |
| 234 | "(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0" | |
| 235 | "(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0" | |
| 236 | unfolding nat_set_def simp_implies_def | |
| 237 | apply (rule setsum_nonneg) | |
| 238 | apply auto | |
| 239 | apply (rule setprod_nonneg) | |
| 240 | apply auto | |
| 241 | done | |
| 242 | *) | |
| 243 | ||
| 244 | (* Making A = B in this lemma doesn't work. Why not? | |
| 245 | Also, why aren't setsum_cong and setprod_cong enough, | |
| 246 | with the previously mentioned rule turned on? *) | |
| 247 | ||
| 248 | lemma transfer_nat_int_sum_prod_cong: | |
| 249 | "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> | |
| 250 | setsum f A = setsum g B" | |
| 251 | "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> | |
| 252 | setprod f A = setprod g B" | |
| 253 | unfolding nat_set_def | |
| 254 | apply (subst setsum_cong, assumption) | |
| 255 | apply auto [2] | |
| 256 | apply (subst setprod_cong, assumption, auto) | |
| 257 | done | |
| 258 | ||
| 35644 | 259 | declare transfer_morphism_nat_int [transfer add | 
| 31708 | 260 | return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2 | 
| 261 | transfer_nat_int_sum_prod_closure | |
| 262 | cong: transfer_nat_int_sum_prod_cong] | |
| 263 | ||
| 264 | ||
| 265 | subsection {* Set up transfer from int to nat *}
 | |
| 266 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 267 | text {* set up transfer direction *}
 | 
| 31708 | 268 | |
| 35683 | 269 | lemma transfer_morphism_int_nat: "transfer_morphism int (\<lambda>n. True)" | 
| 35821 | 270 | by (rule transfer_morphismI) simp | 
| 31708 | 271 | |
| 35644 | 272 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 273 | mode: manual | 
| 274 | return: nat_int | |
| 35683 | 275 | labels: int_nat | 
| 31708 | 276 | ] | 
| 277 | ||
| 278 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 279 | text {* basic functions and relations *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 280 | |
| 31708 | 281 | definition | 
| 282 | is_nat :: "int \<Rightarrow> bool" | |
| 283 | where | |
| 284 | "is_nat x = (x >= 0)" | |
| 285 | ||
| 286 | lemma transfer_int_nat_numerals: | |
| 287 | "0 = int 0" | |
| 288 | "1 = int 1" | |
| 289 | "2 = int 2" | |
| 290 | "3 = int 3" | |
| 291 | by auto | |
| 292 | ||
| 293 | lemma transfer_int_nat_functions: | |
| 294 | "(int x) + (int y) = int (x + y)" | |
| 295 | "(int x) * (int y) = int (x * y)" | |
| 296 | "tsub (int x) (int y) = int (x - y)" | |
| 297 | "(int x)^n = int (x^n)" | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 298 | by (auto simp add: int_mult tsub_def int_power) | 
| 31708 | 299 | |
| 300 | lemma transfer_int_nat_function_closures: | |
| 301 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)" | |
| 302 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)" | |
| 303 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)" | |
| 304 | "is_nat x \<Longrightarrow> is_nat (x^n)" | |
| 305 | "is_nat 0" | |
| 306 | "is_nat 1" | |
| 307 | "is_nat 2" | |
| 308 | "is_nat 3" | |
| 309 | "is_nat (int z)" | |
| 310 | by (simp_all only: is_nat_def transfer_nat_int_function_closures) | |
| 311 | ||
| 312 | lemma transfer_int_nat_relations: | |
| 313 | "(int x = int y) = (x = y)" | |
| 314 | "(int x < int y) = (x < y)" | |
| 315 | "(int x <= int y) = (x <= y)" | |
| 316 | "(int x dvd int y) = (x dvd y)" | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 317 | by (auto simp add: zdvd_int) | 
| 32121 | 318 | |
| 35644 | 319 | declare transfer_morphism_int_nat [transfer add return: | 
| 31708 | 320 | transfer_int_nat_numerals | 
| 321 | transfer_int_nat_functions | |
| 322 | transfer_int_nat_function_closures | |
| 323 | transfer_int_nat_relations | |
| 324 | ] | |
| 325 | ||
| 326 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 327 | text {* first-order quantifiers *}
 | 
| 31708 | 328 | |
| 329 | lemma transfer_int_nat_quantifiers: | |
| 330 | "(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))" | |
| 331 | "(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))" | |
| 332 | apply (subst all_nat) | |
| 333 | apply auto [1] | |
| 334 | apply (subst ex_nat) | |
| 335 | apply auto | |
| 336 | done | |
| 337 | ||
| 35644 | 338 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 339 | return: transfer_int_nat_quantifiers] | 
| 340 | ||
| 341 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 342 | text {* if *}
 | 
| 31708 | 343 | |
| 344 | lemma int_if_cong: "(if P then (int x) else (int y)) = | |
| 345 | int (if P then x else y)" | |
| 346 | by auto | |
| 347 | ||
| 35644 | 348 | declare transfer_morphism_int_nat [transfer add return: int_if_cong] | 
| 31708 | 349 | |
| 350 | ||
| 351 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 352 | text {* operations with sets *}
 | 
| 31708 | 353 | |
| 354 | lemma transfer_int_nat_set_functions: | |
| 355 | "nat_set A \<Longrightarrow> card A = card (nat ` A)" | |
| 356 |     "{} = int ` ({}::nat set)"
 | |
| 357 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)" | |
| 358 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)" | |
| 359 |     "{x. x >= 0 & P x} = int ` {x. P(int x)}"
 | |
| 360 | (* need all variants of these! *) | |
| 361 | by (simp_all only: is_nat_def transfer_nat_int_set_functions | |
| 362 | transfer_nat_int_set_function_closures | |
| 363 | transfer_nat_int_set_return_embed nat_0_le | |
| 364 | cong: transfer_nat_int_set_cong) | |
| 365 | ||
| 366 | lemma transfer_int_nat_set_function_closures: | |
| 367 |     "nat_set {}"
 | |
| 368 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" | |
| 369 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" | |
| 370 |     "nat_set {x. x >= 0 & P x}"
 | |
| 371 | "nat_set (int ` C)" | |
| 372 | "nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x" | |
| 373 | by (simp_all only: transfer_nat_int_set_function_closures is_nat_def) | |
| 374 | ||
| 375 | lemma transfer_int_nat_set_relations: | |
| 376 | "nat_set A \<Longrightarrow> finite A = finite (nat ` A)" | |
| 377 | "is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)" | |
| 378 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)" | |
| 379 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)" | |
| 380 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)" | |
| 381 | by (simp_all only: is_nat_def transfer_nat_int_set_relations | |
| 382 | transfer_nat_int_set_return_embed nat_0_le) | |
| 383 | ||
| 384 | lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A" | |
| 385 | by (simp only: transfer_nat_int_set_relations | |
| 386 | transfer_nat_int_set_function_closures | |
| 387 | transfer_nat_int_set_return_embed nat_0_le) | |
| 388 | ||
| 389 | lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow> | |
| 390 |     {(x::nat). P x} = {x. P' x}"
 | |
| 391 | by auto | |
| 392 | ||
| 35644 | 393 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 394 | return: transfer_int_nat_set_functions | 
| 395 | transfer_int_nat_set_function_closures | |
| 396 | transfer_int_nat_set_relations | |
| 397 | transfer_int_nat_set_return_embed | |
| 398 | cong: transfer_int_nat_set_cong | |
| 399 | ] | |
| 400 | ||
| 401 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 402 | text {* setsum and setprod *}
 | 
| 31708 | 403 | |
| 404 | (* this handles the case where the *domain* of f is int *) | |
| 405 | lemma transfer_int_nat_sum_prod: | |
| 406 | "nat_set A \<Longrightarrow> setsum f A = setsum (%x. f (int x)) (nat ` A)" | |
| 407 | "nat_set A \<Longrightarrow> setprod f A = setprod (%x. f (int x)) (nat ` A)" | |
| 408 | apply (subst setsum_reindex) | |
| 409 | apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff) | |
| 410 | apply (subst setprod_reindex) | |
| 411 | apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff | |
| 412 | cong: setprod_cong) | |
| 413 | done | |
| 414 | ||
| 415 | (* this handles the case where the *range* of f is int *) | |
| 416 | lemma transfer_int_nat_sum_prod2: | |
| 417 | "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> setsum f A = int(setsum (%x. nat (f x)) A)" | |
| 418 | "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> | |
| 419 | setprod f A = int(setprod (%x. nat (f x)) A)" | |
| 420 | unfolding is_nat_def | |
| 421 | apply (subst int_setsum, auto) | |
| 422 | apply (subst int_setprod, auto simp add: cong: setprod_cong) | |
| 423 | done | |
| 424 | ||
| 35644 | 425 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 426 | return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2 | 
| 427 | cong: setsum_cong setprod_cong] | |
| 428 | ||
| 429 | end |