|
13957
|
1 |
(* Title : CStar.thy
|
|
|
2 |
Author : Jacques D. Fleuriot
|
|
|
3 |
Copyright : 2001 University of Edinburgh
|
|
|
4 |
*)
|
|
|
5 |
|
|
14407
|
6 |
header{*Star-transforms in NSA, Extending Sets of Complex Numbers
|
|
|
7 |
and Complex Functions*}
|
|
|
8 |
|
|
|
9 |
theory CStar = NSCA:
|
|
13957
|
10 |
|
|
|
11 |
constdefs
|
|
|
12 |
|
|
|
13 |
(* nonstandard extension of sets *)
|
|
14407
|
14 |
starsetC :: "complex set => hcomplex set" ("*sc* _" [80] 80)
|
|
|
15 |
"*sc* A == {x. \<forall>X \<in> Rep_hcomplex(x). {n. X n \<in> A} \<in> FreeUltrafilterNat}"
|
|
13957
|
16 |
|
|
|
17 |
(* internal sets *)
|
|
14407
|
18 |
starsetC_n :: "(nat => complex set) => hcomplex set" ("*scn* _" [80] 80)
|
|
|
19 |
"*scn* As == {x. \<forall>X \<in> Rep_hcomplex(x).
|
|
|
20 |
{n. X n \<in> (As n)} \<in> FreeUltrafilterNat}"
|
|
|
21 |
|
|
13957
|
22 |
InternalCSets :: "hcomplex set set"
|
|
14407
|
23 |
"InternalCSets == {X. \<exists>As. X = *scn* As}"
|
|
13957
|
24 |
|
|
|
25 |
(* star transform of functions f: Complex --> Complex *)
|
|
|
26 |
|
|
14407
|
27 |
starfunC :: "(complex => complex) => hcomplex => hcomplex"
|
|
|
28 |
("*fc* _" [80] 80)
|
|
|
29 |
"*fc* f ==
|
|
|
30 |
(%x. Abs_hcomplex(\<Union>X \<in> Rep_hcomplex(x). hcomplexrel``{%n. f (X n)}))"
|
|
13957
|
31 |
|
|
14407
|
32 |
starfunC_n :: "(nat => (complex => complex)) => hcomplex => hcomplex"
|
|
|
33 |
("*fcn* _" [80] 80)
|
|
|
34 |
"*fcn* F ==
|
|
|
35 |
(%x. Abs_hcomplex(\<Union>X \<in> Rep_hcomplex(x). hcomplexrel``{%n. (F n)(X n)}))"
|
|
13957
|
36 |
|
|
14407
|
37 |
InternalCFuns :: "(hcomplex => hcomplex) set"
|
|
|
38 |
"InternalCFuns == {X. \<exists>F. X = *fcn* F}"
|
|
13957
|
39 |
|
|
|
40 |
|
|
|
41 |
(* star transform of functions f: Real --> Complex *)
|
|
|
42 |
|
|
14407
|
43 |
starfunRC :: "(real => complex) => hypreal => hcomplex"
|
|
|
44 |
("*fRc* _" [80] 80)
|
|
|
45 |
"*fRc* f == (%x. Abs_hcomplex(\<Union>X \<in> Rep_hypreal(x). hcomplexrel``{%n. f (X n)}))"
|
|
13957
|
46 |
|
|
14407
|
47 |
starfunRC_n :: "(nat => (real => complex)) => hypreal => hcomplex"
|
|
|
48 |
("*fRcn* _" [80] 80)
|
|
|
49 |
"*fRcn* F == (%x. Abs_hcomplex(\<Union>X \<in> Rep_hypreal(x). hcomplexrel``{%n. (F n)(X n)}))"
|
|
13957
|
50 |
|
|
14407
|
51 |
InternalRCFuns :: "(hypreal => hcomplex) set"
|
|
|
52 |
"InternalRCFuns == {X. \<exists>F. X = *fRcn* F}"
|
|
13957
|
53 |
|
|
|
54 |
(* star transform of functions f: Complex --> Real; needed for Re and Im parts *)
|
|
|
55 |
|
|
14407
|
56 |
starfunCR :: "(complex => real) => hcomplex => hypreal"
|
|
|
57 |
("*fcR* _" [80] 80)
|
|
|
58 |
"*fcR* f == (%x. Abs_hypreal(\<Union>X \<in> Rep_hcomplex(x). hyprel``{%n. f (X n)}))"
|
|
|
59 |
|
|
|
60 |
starfunCR_n :: "(nat => (complex => real)) => hcomplex => hypreal"
|
|
|
61 |
("*fcRn* _" [80] 80)
|
|
|
62 |
"*fcRn* F == (%x. Abs_hypreal(\<Union>X \<in> Rep_hcomplex(x). hyprel``{%n. (F n)(X n)}))"
|
|
|
63 |
|
|
|
64 |
InternalCRFuns :: "(hcomplex => hypreal) set"
|
|
|
65 |
"InternalCRFuns == {X. \<exists>F. X = *fcRn* F}"
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
subsection{*Properties of the *-Transform Applied to Sets of Reals*}
|
|
|
69 |
|
|
|
70 |
lemma STARC_complex_set [simp]: "*sc*(UNIV::complex set) = (UNIV)"
|
|
|
71 |
by (simp add: starsetC_def)
|
|
|
72 |
declare STARC_complex_set
|
|
|
73 |
|
|
|
74 |
lemma STARC_empty_set: "*sc* {} = {}"
|
|
|
75 |
by (simp add: starsetC_def)
|
|
|
76 |
declare STARC_empty_set [simp]
|
|
|
77 |
|
|
|
78 |
lemma STARC_Un: "*sc* (A Un B) = *sc* A Un *sc* B"
|
|
|
79 |
apply (auto simp add: starsetC_def)
|
|
|
80 |
apply (drule bspec, assumption)
|
|
|
81 |
apply (rule_tac z = x in eq_Abs_hcomplex, simp, ultra)
|
|
|
82 |
apply (blast intro: FreeUltrafilterNat_subset)+
|
|
|
83 |
done
|
|
|
84 |
|
|
|
85 |
lemma starsetC_n_Un: "*scn* (%n. (A n) Un (B n)) = *scn* A Un *scn* B"
|
|
|
86 |
apply (auto simp add: starsetC_n_def)
|
|
|
87 |
apply (drule_tac x = Xa in bspec)
|
|
|
88 |
apply (rule_tac [2] z = x in eq_Abs_hcomplex)
|
|
|
89 |
apply (auto dest!: bspec, ultra+)
|
|
|
90 |
done
|
|
|
91 |
|
|
|
92 |
lemma InternalCSets_Un:
|
|
|
93 |
"[| X \<in> InternalCSets; Y \<in> InternalCSets |] ==> (X Un Y) \<in> InternalCSets"
|
|
|
94 |
by (auto simp add: InternalCSets_def starsetC_n_Un [symmetric])
|
|
|
95 |
|
|
|
96 |
lemma STARC_Int: "*sc* (A Int B) = *sc* A Int *sc* B"
|
|
|
97 |
apply (auto simp add: starsetC_def)
|
|
|
98 |
prefer 3 apply (blast intro: FreeUltrafilterNat_Int FreeUltrafilterNat_subset)
|
|
|
99 |
apply (blast intro: FreeUltrafilterNat_subset)+
|
|
|
100 |
done
|
|
|
101 |
|
|
|
102 |
lemma starsetC_n_Int: "*scn* (%n. (A n) Int (B n)) = *scn* A Int *scn* B"
|
|
|
103 |
apply (auto simp add: starsetC_n_def)
|
|
|
104 |
apply (auto dest!: bspec, ultra+)
|
|
|
105 |
done
|
|
|
106 |
|
|
|
107 |
lemma InternalCSets_Int:
|
|
|
108 |
"[| X \<in> InternalCSets; Y \<in> InternalCSets |] ==> (X Int Y) \<in> InternalCSets"
|
|
|
109 |
by (auto simp add: InternalCSets_def starsetC_n_Int [symmetric])
|
|
|
110 |
|
|
|
111 |
lemma STARC_Compl: "*sc* -A = -( *sc* A)"
|
|
|
112 |
apply (auto simp add: starsetC_def)
|
|
|
113 |
apply (rule_tac z = x in eq_Abs_hcomplex)
|
|
|
114 |
apply (rule_tac [2] z = x in eq_Abs_hcomplex)
|
|
|
115 |
apply (auto dest!: bspec, ultra+)
|
|
|
116 |
done
|
|
|
117 |
|
|
|
118 |
lemma starsetC_n_Compl: "*scn* ((%n. - A n)) = -( *scn* A)"
|
|
|
119 |
apply (auto simp add: starsetC_n_def)
|
|
|
120 |
apply (rule_tac z = x in eq_Abs_hcomplex)
|
|
|
121 |
apply (rule_tac [2] z = x in eq_Abs_hcomplex)
|
|
|
122 |
apply (auto dest!: bspec, ultra+)
|
|
|
123 |
done
|
|
|
124 |
|
|
|
125 |
lemma InternalCSets_Compl: "X :InternalCSets ==> -X \<in> InternalCSets"
|
|
|
126 |
by (auto simp add: InternalCSets_def starsetC_n_Compl [symmetric])
|
|
|
127 |
|
|
|
128 |
lemma STARC_mem_Compl: "x \<notin> *sc* F ==> x \<in> *sc* (- F)"
|
|
|
129 |
by (simp add: STARC_Compl)
|
|
|
130 |
|
|
|
131 |
lemma STARC_diff: "*sc* (A - B) = *sc* A - *sc* B"
|
|
|
132 |
by (simp add: Diff_eq STARC_Int STARC_Compl)
|
|
|
133 |
|
|
|
134 |
lemma starsetC_n_diff:
|
|
|
135 |
"*scn* (%n. (A n) - (B n)) = *scn* A - *scn* B"
|
|
|
136 |
apply (auto simp add: starsetC_n_def)
|
|
|
137 |
apply (rule_tac [2] z = x in eq_Abs_hcomplex)
|
|
|
138 |
apply (rule_tac [3] z = x in eq_Abs_hcomplex)
|
|
|
139 |
apply (auto dest!: bspec, ultra+)
|
|
|
140 |
done
|
|
|
141 |
|
|
|
142 |
lemma InternalCSets_diff:
|
|
|
143 |
"[| X \<in> InternalCSets; Y \<in> InternalCSets |] ==> (X - Y) \<in> InternalCSets"
|
|
|
144 |
by (auto simp add: InternalCSets_def starsetC_n_diff [symmetric])
|
|
|
145 |
|
|
|
146 |
lemma STARC_subset: "A \<le> B ==> *sc* A \<le> *sc* B"
|
|
|
147 |
apply (simp add: starsetC_def)
|
|
|
148 |
apply (blast intro: FreeUltrafilterNat_subset)+
|
|
|
149 |
done
|
|
|
150 |
|
|
|
151 |
lemma STARC_mem: "a \<in> A ==> hcomplex_of_complex a \<in> *sc* A"
|
|
|
152 |
apply (simp add: starsetC_def hcomplex_of_complex_def)
|
|
|
153 |
apply (auto intro: FreeUltrafilterNat_subset)
|
|
|
154 |
done
|
|
|
155 |
|
|
|
156 |
lemma STARC_hcomplex_of_complex_image_subset:
|
|
|
157 |
"hcomplex_of_complex ` A \<le> *sc* A"
|
|
|
158 |
apply (auto simp add: starsetC_def hcomplex_of_complex_def)
|
|
|
159 |
apply (blast intro: FreeUltrafilterNat_subset)
|
|
|
160 |
done
|
|
|
161 |
|
|
|
162 |
lemma STARC_SComplex_subset: "SComplex \<le> *sc* (UNIV:: complex set)"
|
|
|
163 |
by auto
|
|
|
164 |
|
|
|
165 |
lemma STARC_hcomplex_of_complex_Int:
|
|
|
166 |
"*sc* X Int SComplex = hcomplex_of_complex ` X"
|
|
|
167 |
apply (auto simp add: starsetC_def hcomplex_of_complex_def SComplex_def)
|
|
|
168 |
apply (fold hcomplex_of_complex_def)
|
|
|
169 |
apply (rule imageI, rule ccontr)
|
|
|
170 |
apply (drule bspec)
|
|
|
171 |
apply (rule lemma_hcomplexrel_refl)
|
|
|
172 |
prefer 2 apply (blast intro: FreeUltrafilterNat_subset, auto)
|
|
|
173 |
done
|
|
|
174 |
|
|
|
175 |
lemma lemma_not_hcomplexA:
|
|
|
176 |
"x \<notin> hcomplex_of_complex ` A ==> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
|
|
|
177 |
by auto
|
|
|
178 |
|
|
|
179 |
lemma starsetC_starsetC_n_eq: "*sc* X = *scn* (%n. X)"
|
|
|
180 |
by (simp add: starsetC_n_def starsetC_def)
|
|
|
181 |
|
|
|
182 |
lemma InternalCSets_starsetC_n [simp]: "( *sc* X) \<in> InternalCSets"
|
|
|
183 |
by (auto simp add: InternalCSets_def starsetC_starsetC_n_eq)
|
|
|
184 |
|
|
|
185 |
lemma InternalCSets_UNIV_diff:
|
|
|
186 |
"X \<in> InternalCSets ==> UNIV - X \<in> InternalCSets"
|
|
|
187 |
by (auto intro: InternalCSets_Compl)
|
|
|
188 |
|
|
|
189 |
text{*Nonstandard extension of a set (defined using a constant sequence) as a special case of an internal set*}
|
|
|
190 |
|
|
|
191 |
lemma starsetC_n_starsetC: "\<forall>n. (As n = A) ==> *scn* As = *sc* A"
|
|
|
192 |
by (simp add:starsetC_n_def starsetC_def)
|
|
|
193 |
|
|
|
194 |
|
|
|
195 |
subsection{*Theorems about Nonstandard Extensions of Functions*}
|
|
|
196 |
|
|
|
197 |
lemma starfunC_n_starfunC: "\<forall>n. (F n = f) ==> *fcn* F = *fc* f"
|
|
|
198 |
by (simp add: starfunC_n_def starfunC_def)
|
|
|
199 |
|
|
|
200 |
lemma starfunRC_n_starfunRC: "\<forall>n. (F n = f) ==> *fRcn* F = *fRc* f"
|
|
|
201 |
by (simp add: starfunRC_n_def starfunRC_def)
|
|
|
202 |
|
|
|
203 |
lemma starfunCR_n_starfunCR: "\<forall>n. (F n = f) ==> *fcRn* F = *fcR* f"
|
|
|
204 |
by (simp add: starfunCR_n_def starfunCR_def)
|
|
|
205 |
|
|
|
206 |
lemma starfunC_congruent:
|
|
|
207 |
"congruent hcomplexrel (%X. hcomplexrel``{%n. f (X n)})"
|
|
|
208 |
apply (auto simp add: hcomplexrel_iff congruent_def, ultra)
|
|
|
209 |
done
|
|
|
210 |
|
|
|
211 |
(* f::complex => complex *)
|
|
|
212 |
lemma starfunC:
|
|
|
213 |
"( *fc* f) (Abs_hcomplex(hcomplexrel``{%n. X n})) =
|
|
|
214 |
Abs_hcomplex(hcomplexrel `` {%n. f (X n)})"
|
|
|
215 |
apply (simp add: starfunC_def)
|
|
|
216 |
apply (rule arg_cong [where f = Abs_hcomplex])
|
|
|
217 |
apply (auto iff add: hcomplexrel_iff, ultra)
|
|
|
218 |
done
|
|
|
219 |
|
|
|
220 |
lemma starfunRC:
|
|
|
221 |
"( *fRc* f) (Abs_hypreal(hyprel``{%n. X n})) =
|
|
|
222 |
Abs_hcomplex(hcomplexrel `` {%n. f (X n)})"
|
|
|
223 |
apply (simp add: starfunRC_def)
|
|
|
224 |
apply (rule arg_cong [where f = Abs_hcomplex], auto, ultra)
|
|
|
225 |
done
|
|
|
226 |
|
|
|
227 |
lemma starfunCR:
|
|
|
228 |
"( *fcR* f) (Abs_hcomplex(hcomplexrel``{%n. X n})) =
|
|
|
229 |
Abs_hypreal(hyprel `` {%n. f (X n)})"
|
|
|
230 |
apply (simp add: starfunCR_def)
|
|
|
231 |
apply (rule arg_cong [where f = Abs_hypreal])
|
|
|
232 |
apply (auto iff add: hcomplexrel_iff, ultra)
|
|
|
233 |
done
|
|
|
234 |
|
|
|
235 |
(** multiplication: ( *f) x ( *g) = *(f x g) **)
|
|
|
236 |
|
|
|
237 |
lemma starfunC_mult: "( *fc* f) z * ( *fc* g) z = ( *fc* (%x. f x * g x)) z"
|
|
|
238 |
apply (rule_tac z = z in eq_Abs_hcomplex)
|
|
|
239 |
apply (auto simp add: starfunC hcomplex_mult)
|
|
|
240 |
done
|
|
|
241 |
declare starfunC_mult [symmetric, simp]
|
|
|
242 |
|
|
|
243 |
lemma starfunRC_mult:
|
|
|
244 |
"( *fRc* f) z * ( *fRc* g) z = ( *fRc* (%x. f x * g x)) z"
|
|
|
245 |
apply (rule eq_Abs_hypreal [of z])
|
|
|
246 |
apply (simp add: starfunRC hcomplex_mult)
|
|
|
247 |
done
|
|
|
248 |
declare starfunRC_mult [symmetric, simp]
|
|
|
249 |
|
|
|
250 |
lemma starfunCR_mult:
|
|
|
251 |
"( *fcR* f) z * ( *fcR* g) z = ( *fcR* (%x. f x * g x)) z"
|
|
|
252 |
apply (rule_tac z = z in eq_Abs_hcomplex)
|
|
|
253 |
apply (simp add: starfunCR hypreal_mult)
|
|
|
254 |
done
|
|
|
255 |
declare starfunCR_mult [symmetric, simp]
|
|
|
256 |
|
|
|
257 |
(** addition: ( *f) + ( *g) = *(f + g) **)
|
|
|
258 |
|
|
|
259 |
lemma starfunC_add: "( *fc* f) z + ( *fc* g) z = ( *fc* (%x. f x + g x)) z"
|
|
|
260 |
apply (rule_tac z = z in eq_Abs_hcomplex)
|
|
|
261 |
apply (simp add: starfunC hcomplex_add)
|
|
|
262 |
done
|
|
|
263 |
declare starfunC_add [symmetric, simp]
|
|
|
264 |
|
|
|
265 |
lemma starfunRC_add: "( *fRc* f) z + ( *fRc* g) z = ( *fRc* (%x. f x + g x)) z"
|
|
|
266 |
apply (rule eq_Abs_hypreal [of z])
|
|
|
267 |
apply (simp add: starfunRC hcomplex_add)
|
|
|
268 |
done
|
|
|
269 |
declare starfunRC_add [symmetric, simp]
|
|
|
270 |
|
|
|
271 |
lemma starfunCR_add: "( *fcR* f) z + ( *fcR* g) z = ( *fcR* (%x. f x + g x)) z"
|
|
|
272 |
apply (rule_tac z = z in eq_Abs_hcomplex)
|
|
|
273 |
apply (simp add: starfunCR hypreal_add)
|
|
|
274 |
done
|
|
|
275 |
declare starfunCR_add [symmetric, simp]
|
|
|
276 |
|
|
|
277 |
(** uminus **)
|
|
|
278 |
lemma starfunC_minus [simp]: "( *fc* (%x. - f x)) x = - ( *fc* f) x"
|
|
|
279 |
apply (rule_tac z = x in eq_Abs_hcomplex)
|
|
|
280 |
apply (simp add: starfunC hcomplex_minus)
|
|
|
281 |
done
|
|
|
282 |
|
|
|
283 |
lemma starfunRC_minus [simp]: "( *fRc* (%x. - f x)) x = - ( *fRc* f) x"
|
|
|
284 |
apply (rule eq_Abs_hypreal [of x])
|
|
|
285 |
apply (simp add: starfunRC hcomplex_minus)
|
|
|
286 |
done
|
|
|
287 |
|
|
|
288 |
lemma starfunCR_minus [simp]: "( *fcR* (%x. - f x)) x = - ( *fcR* f) x"
|
|
|
289 |
apply (rule_tac z = x in eq_Abs_hcomplex)
|
|
|
290 |
apply (simp add: starfunCR hypreal_minus)
|
|
|
291 |
done
|
|
|
292 |
|
|
|
293 |
(** addition: ( *f) - ( *g) = *(f - g) **)
|
|
|
294 |
|
|
|
295 |
lemma starfunC_diff: "( *fc* f) y - ( *fc* g) y = ( *fc* (%x. f x - g x)) y"
|
|
|
296 |
by (simp add: diff_minus)
|
|
|
297 |
declare starfunC_diff [symmetric, simp]
|
|
|
298 |
|
|
|
299 |
lemma starfunRC_diff:
|
|
|
300 |
"( *fRc* f) y - ( *fRc* g) y = ( *fRc* (%x. f x - g x)) y"
|
|
|
301 |
by (simp add: diff_minus)
|
|
|
302 |
declare starfunRC_diff [symmetric, simp]
|
|
|
303 |
|
|
|
304 |
lemma starfunCR_diff:
|
|
|
305 |
"( *fcR* f) y - ( *fcR* g) y = ( *fcR* (%x. f x - g x)) y"
|
|
|
306 |
by (simp add: diff_minus)
|
|
|
307 |
declare starfunCR_diff [symmetric, simp]
|
|
|
308 |
|
|
|
309 |
(** composition: ( *f) o ( *g) = *(f o g) **)
|
|
|
310 |
|
|
|
311 |
lemma starfunC_o2: "(%x. ( *fc* f) (( *fc* g) x)) = *fc* (%x. f (g x))"
|
|
|
312 |
apply (rule ext)
|
|
|
313 |
apply (rule_tac z = x in eq_Abs_hcomplex)
|
|
|
314 |
apply (simp add: starfunC)
|
|
|
315 |
done
|
|
|
316 |
|
|
|
317 |
lemma starfunC_o: "( *fc* f) o ( *fc* g) = ( *fc* (f o g))"
|
|
|
318 |
by (simp add: o_def starfunC_o2)
|
|
|
319 |
|
|
|
320 |
lemma starfunC_starfunRC_o2:
|
|
|
321 |
"(%x. ( *fc* f) (( *fRc* g) x)) = *fRc* (%x. f (g x))"
|
|
|
322 |
apply (rule ext)
|
|
|
323 |
apply (rule_tac z = x in eq_Abs_hypreal)
|
|
|
324 |
apply (simp add: starfunRC starfunC)
|
|
|
325 |
done
|
|
|
326 |
|
|
|
327 |
lemma starfun_starfunCR_o2:
|
|
|
328 |
"(%x. ( *f* f) (( *fcR* g) x)) = *fcR* (%x. f (g x))"
|
|
|
329 |
apply (rule ext)
|
|
|
330 |
apply (rule_tac z = x in eq_Abs_hcomplex)
|
|
|
331 |
apply (simp add: starfunCR starfun)
|
|
|
332 |
done
|
|
|
333 |
|
|
|
334 |
lemma starfunC_starfunRC_o: "( *fc* f) o ( *fRc* g) = ( *fRc* (f o g))"
|
|
|
335 |
by (simp add: o_def starfunC_starfunRC_o2)
|
|
|
336 |
|
|
|
337 |
lemma starfun_starfunCR_o: "( *f* f) o ( *fcR* g) = ( *fcR* (f o g))"
|
|
|
338 |
by (simp add: o_def starfun_starfunCR_o2)
|
|
|
339 |
|
|
|
340 |
lemma starfunC_const_fun [simp]: "( *fc* (%x. k)) z = hcomplex_of_complex k"
|
|
|
341 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
342 |
apply (simp add: starfunC hcomplex_of_complex_def)
|
|
|
343 |
done
|
|
|
344 |
|
|
|
345 |
lemma starfunRC_const_fun [simp]: "( *fRc* (%x. k)) z = hcomplex_of_complex k"
|
|
|
346 |
apply (rule eq_Abs_hypreal [of z])
|
|
|
347 |
apply (simp add: starfunRC hcomplex_of_complex_def)
|
|
|
348 |
done
|
|
|
349 |
|
|
|
350 |
lemma starfunCR_const_fun [simp]: "( *fcR* (%x. k)) z = hypreal_of_real k"
|
|
|
351 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
352 |
apply (simp add: starfunCR hypreal_of_real_def)
|
|
|
353 |
done
|
|
|
354 |
|
|
|
355 |
lemma starfunC_inverse: "inverse (( *fc* f) x) = ( *fc* (%x. inverse (f x))) x"
|
|
|
356 |
apply (rule eq_Abs_hcomplex [of x])
|
|
|
357 |
apply (simp add: starfunC hcomplex_inverse)
|
|
|
358 |
done
|
|
|
359 |
declare starfunC_inverse [symmetric, simp]
|
|
|
360 |
|
|
|
361 |
lemma starfunRC_inverse:
|
|
|
362 |
"inverse (( *fRc* f) x) = ( *fRc* (%x. inverse (f x))) x"
|
|
|
363 |
apply (rule eq_Abs_hypreal [of x])
|
|
|
364 |
apply (simp add: starfunRC hcomplex_inverse)
|
|
|
365 |
done
|
|
|
366 |
declare starfunRC_inverse [symmetric, simp]
|
|
|
367 |
|
|
|
368 |
lemma starfunCR_inverse:
|
|
|
369 |
"inverse (( *fcR* f) x) = ( *fcR* (%x. inverse (f x))) x"
|
|
|
370 |
apply (rule eq_Abs_hcomplex [of x])
|
|
|
371 |
apply (simp add: starfunCR hypreal_inverse)
|
|
|
372 |
done
|
|
|
373 |
declare starfunCR_inverse [symmetric, simp]
|
|
|
374 |
|
|
|
375 |
lemma starfunC_eq [simp]:
|
|
|
376 |
"( *fc* f) (hcomplex_of_complex a) = hcomplex_of_complex (f a)"
|
|
|
377 |
by (simp add: starfunC hcomplex_of_complex_def)
|
|
|
378 |
|
|
|
379 |
lemma starfunRC_eq [simp]:
|
|
|
380 |
"( *fRc* f) (hypreal_of_real a) = hcomplex_of_complex (f a)"
|
|
|
381 |
by (simp add: starfunRC hcomplex_of_complex_def hypreal_of_real_def)
|
|
13957
|
382 |
|
|
14407
|
383 |
lemma starfunCR_eq [simp]:
|
|
|
384 |
"( *fcR* f) (hcomplex_of_complex a) = hypreal_of_real (f a)"
|
|
|
385 |
by (simp add: starfunCR hcomplex_of_complex_def hypreal_of_real_def)
|
|
|
386 |
|
|
|
387 |
lemma starfunC_capprox:
|
|
|
388 |
"( *fc* f) (hcomplex_of_complex a) @c= hcomplex_of_complex (f a)"
|
|
|
389 |
by auto
|
|
|
390 |
|
|
|
391 |
lemma starfunRC_capprox:
|
|
|
392 |
"( *fRc* f) (hypreal_of_real a) @c= hcomplex_of_complex (f a)"
|
|
|
393 |
by auto
|
|
|
394 |
|
|
|
395 |
lemma starfunCR_approx:
|
|
|
396 |
"( *fcR* f) (hcomplex_of_complex a) @= hypreal_of_real (f a)"
|
|
|
397 |
by auto
|
|
|
398 |
|
|
|
399 |
(*
|
|
|
400 |
Goal "( *fcNat* (%n. z ^ n)) N = (hcomplex_of_complex z) hcpow N"
|
|
|
401 |
*)
|
|
|
402 |
|
|
|
403 |
lemma starfunC_hcpow: "( *fc* (%z. z ^ n)) Z = Z hcpow hypnat_of_nat n"
|
|
|
404 |
apply (rule eq_Abs_hcomplex [of Z])
|
|
|
405 |
apply (simp add: hcpow starfunC hypnat_of_nat_eq)
|
|
|
406 |
done
|
|
|
407 |
|
|
|
408 |
lemma starfunC_lambda_cancel:
|
|
|
409 |
"( *fc* (%h. f (x + h))) y = ( *fc* f) (hcomplex_of_complex x + y)"
|
|
|
410 |
apply (rule eq_Abs_hcomplex [of y])
|
|
|
411 |
apply (simp add: starfunC hcomplex_of_complex_def hcomplex_add)
|
|
|
412 |
done
|
|
|
413 |
|
|
|
414 |
lemma starfunCR_lambda_cancel:
|
|
|
415 |
"( *fcR* (%h. f (x + h))) y = ( *fcR* f) (hcomplex_of_complex x + y)"
|
|
|
416 |
apply (rule eq_Abs_hcomplex [of y])
|
|
|
417 |
apply (simp add: starfunCR hcomplex_of_complex_def hcomplex_add)
|
|
|
418 |
done
|
|
|
419 |
|
|
|
420 |
lemma starfunRC_lambda_cancel:
|
|
|
421 |
"( *fRc* (%h. f (x + h))) y = ( *fRc* f) (hypreal_of_real x + y)"
|
|
|
422 |
apply (rule eq_Abs_hypreal [of y])
|
|
|
423 |
apply (simp add: starfunRC hypreal_of_real_def hypreal_add)
|
|
|
424 |
done
|
|
|
425 |
|
|
|
426 |
lemma starfunC_lambda_cancel2:
|
|
|
427 |
"( *fc* (%h. f(g(x + h)))) y = ( *fc* (f o g)) (hcomplex_of_complex x + y)"
|
|
|
428 |
apply (rule eq_Abs_hcomplex [of y])
|
|
|
429 |
apply (simp add: starfunC hcomplex_of_complex_def hcomplex_add)
|
|
|
430 |
done
|
|
|
431 |
|
|
|
432 |
lemma starfunCR_lambda_cancel2:
|
|
|
433 |
"( *fcR* (%h. f(g(x + h)))) y = ( *fcR* (f o g)) (hcomplex_of_complex x + y)"
|
|
|
434 |
apply (rule eq_Abs_hcomplex [of y])
|
|
|
435 |
apply (simp add: starfunCR hcomplex_of_complex_def hcomplex_add)
|
|
|
436 |
done
|
|
|
437 |
|
|
|
438 |
lemma starfunRC_lambda_cancel2:
|
|
|
439 |
"( *fRc* (%h. f(g(x + h)))) y = ( *fRc* (f o g)) (hypreal_of_real x + y)"
|
|
|
440 |
apply (rule eq_Abs_hypreal [of y])
|
|
|
441 |
apply (simp add: starfunRC hypreal_of_real_def hypreal_add)
|
|
|
442 |
done
|
|
|
443 |
|
|
|
444 |
lemma starfunC_mult_CFinite_capprox:
|
|
|
445 |
"[| ( *fc* f) y @c= l; ( *fc* g) y @c= m; l: CFinite; m: CFinite |]
|
|
|
446 |
==> ( *fc* (%x. f x * g x)) y @c= l * m"
|
|
|
447 |
apply (drule capprox_mult_CFinite, assumption+)
|
|
|
448 |
apply (auto intro: capprox_sym [THEN [2] capprox_CFinite])
|
|
|
449 |
done
|
|
|
450 |
|
|
|
451 |
lemma starfunCR_mult_HFinite_capprox:
|
|
|
452 |
"[| ( *fcR* f) y @= l; ( *fcR* g) y @= m; l: HFinite; m: HFinite |]
|
|
|
453 |
==> ( *fcR* (%x. f x * g x)) y @= l * m"
|
|
|
454 |
apply (drule approx_mult_HFinite, assumption+)
|
|
|
455 |
apply (auto intro: approx_sym [THEN [2] approx_HFinite])
|
|
|
456 |
done
|
|
|
457 |
|
|
|
458 |
lemma starfunRC_mult_CFinite_capprox:
|
|
|
459 |
"[| ( *fRc* f) y @c= l; ( *fRc* g) y @c= m; l: CFinite; m: CFinite |]
|
|
|
460 |
==> ( *fRc* (%x. f x * g x)) y @c= l * m"
|
|
|
461 |
apply (drule capprox_mult_CFinite, assumption+)
|
|
|
462 |
apply (auto intro: capprox_sym [THEN [2] capprox_CFinite])
|
|
|
463 |
done
|
|
|
464 |
|
|
|
465 |
lemma starfunC_add_capprox:
|
|
|
466 |
"[| ( *fc* f) y @c= l; ( *fc* g) y @c= m |]
|
|
|
467 |
==> ( *fc* (%x. f x + g x)) y @c= l + m"
|
|
|
468 |
by (auto intro: capprox_add)
|
|
|
469 |
|
|
|
470 |
lemma starfunRC_add_capprox:
|
|
|
471 |
"[| ( *fRc* f) y @c= l; ( *fRc* g) y @c= m |]
|
|
|
472 |
==> ( *fRc* (%x. f x + g x)) y @c= l + m"
|
|
|
473 |
by (auto intro: capprox_add)
|
|
|
474 |
|
|
|
475 |
lemma starfunCR_add_approx:
|
|
|
476 |
"[| ( *fcR* f) y @= l; ( *fcR* g) y @= m
|
|
|
477 |
|] ==> ( *fcR* (%x. f x + g x)) y @= l + m"
|
|
|
478 |
by (auto intro: approx_add)
|
|
|
479 |
|
|
|
480 |
lemma starfunCR_cmod: "*fcR* cmod = hcmod"
|
|
|
481 |
apply (rule ext)
|
|
|
482 |
apply (rule_tac z = x in eq_Abs_hcomplex)
|
|
|
483 |
apply (simp add: starfunCR hcmod)
|
|
|
484 |
done
|
|
|
485 |
|
|
|
486 |
lemma starfunC_inverse_inverse: "( *fc* inverse) x = inverse(x)"
|
|
|
487 |
apply (rule eq_Abs_hcomplex [of x])
|
|
|
488 |
apply (simp add: starfunC hcomplex_inverse)
|
|
|
489 |
done
|
|
|
490 |
|
|
|
491 |
lemma starfunC_divide: "( *fc* f) y / ( *fc* g) y = ( *fc* (%x. f x / g x)) y"
|
|
|
492 |
by (simp add: divide_inverse_zero)
|
|
|
493 |
declare starfunC_divide [symmetric, simp]
|
|
|
494 |
|
|
|
495 |
lemma starfunCR_divide:
|
|
|
496 |
"( *fcR* f) y / ( *fcR* g) y = ( *fcR* (%x. f x / g x)) y"
|
|
|
497 |
by (simp add: divide_inverse_zero)
|
|
|
498 |
declare starfunCR_divide [symmetric, simp]
|
|
|
499 |
|
|
|
500 |
lemma starfunRC_divide:
|
|
|
501 |
"( *fRc* f) y / ( *fRc* g) y = ( *fRc* (%x. f x / g x)) y"
|
|
|
502 |
apply (simp add: divide_inverse_zero)
|
|
|
503 |
done
|
|
|
504 |
declare starfunRC_divide [symmetric, simp]
|
|
|
505 |
|
|
|
506 |
|
|
|
507 |
subsection{*Internal Functions - Some Redundancy With *Fc* Now*}
|
|
|
508 |
|
|
|
509 |
lemma starfunC_n_congruent:
|
|
|
510 |
"congruent hcomplexrel (%X. hcomplexrel``{%n. f n (X n)})"
|
|
|
511 |
by (auto simp add: congruent_def hcomplexrel_iff, ultra)
|
|
|
512 |
|
|
|
513 |
lemma starfunC_n:
|
|
|
514 |
"( *fcn* f) (Abs_hcomplex(hcomplexrel``{%n. X n})) =
|
|
|
515 |
Abs_hcomplex(hcomplexrel `` {%n. f n (X n)})"
|
|
|
516 |
apply (simp add: starfunC_n_def)
|
|
|
517 |
apply (rule arg_cong [where f = Abs_hcomplex])
|
|
|
518 |
apply (auto iff add: hcomplexrel_iff, ultra)
|
|
|
519 |
done
|
|
|
520 |
|
|
|
521 |
(** multiplication: ( *fn) x ( *gn) = *(fn x gn) **)
|
|
|
522 |
|
|
|
523 |
lemma starfunC_n_mult:
|
|
|
524 |
"( *fcn* f) z * ( *fcn* g) z = ( *fcn* (% i x. f i x * g i x)) z"
|
|
|
525 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
526 |
apply (simp add: starfunC_n hcomplex_mult)
|
|
|
527 |
done
|
|
|
528 |
|
|
|
529 |
(** addition: ( *fn) + ( *gn) = *(fn + gn) **)
|
|
|
530 |
|
|
|
531 |
lemma starfunC_n_add:
|
|
|
532 |
"( *fcn* f) z + ( *fcn* g) z = ( *fcn* (%i x. f i x + g i x)) z"
|
|
|
533 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
534 |
apply (simp add: starfunC_n hcomplex_add)
|
|
|
535 |
done
|
|
|
536 |
|
|
|
537 |
(** uminus **)
|
|
|
538 |
|
|
|
539 |
lemma starfunC_n_minus: "- ( *fcn* g) z = ( *fcn* (%i x. - g i x)) z"
|
|
|
540 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
541 |
apply (simp add: starfunC_n hcomplex_minus)
|
|
|
542 |
done
|
|
|
543 |
|
|
|
544 |
(** subtraction: ( *fn) - ( *gn) = *(fn - gn) **)
|
|
13957
|
545 |
|
|
14407
|
546 |
lemma starfunNat_n_diff:
|
|
|
547 |
"( *fcn* f) z - ( *fcn* g) z = ( *fcn* (%i x. f i x - g i x)) z"
|
|
|
548 |
by (simp add: diff_minus starfunC_n_add starfunC_n_minus)
|
|
|
549 |
|
|
|
550 |
(** composition: ( *fn) o ( *gn) = *(fn o gn) **)
|
|
|
551 |
|
|
|
552 |
lemma starfunC_n_const_fun [simp]:
|
|
|
553 |
"( *fcn* (%i x. k)) z = hcomplex_of_complex k"
|
|
|
554 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
555 |
apply (simp add: starfunC_n hcomplex_of_complex_def)
|
|
|
556 |
done
|
|
|
557 |
|
|
|
558 |
lemma starfunC_n_eq [simp]:
|
|
|
559 |
"( *fcn* f) (hcomplex_of_complex n) = Abs_hcomplex(hcomplexrel `` {%i. f i n})"
|
|
|
560 |
by (simp add: starfunC_n hcomplex_of_complex_def)
|
|
|
561 |
|
|
|
562 |
lemma starfunC_eq_iff: "(( *fc* f) = ( *fc* g)) = (f = g)"
|
|
|
563 |
apply auto
|
|
|
564 |
apply (rule ext, rule ccontr)
|
|
|
565 |
apply (drule_tac x = "hcomplex_of_complex (x) " in fun_cong)
|
|
|
566 |
apply (simp add: starfunC hcomplex_of_complex_def)
|
|
|
567 |
done
|
|
|
568 |
|
|
|
569 |
lemma starfunRC_eq_iff: "(( *fRc* f) = ( *fRc* g)) = (f = g)"
|
|
|
570 |
apply auto
|
|
|
571 |
apply (rule ext, rule ccontr)
|
|
|
572 |
apply (drule_tac x = "hypreal_of_real (x) " in fun_cong)
|
|
|
573 |
apply auto
|
|
|
574 |
done
|
|
|
575 |
|
|
|
576 |
lemma starfunCR_eq_iff: "(( *fcR* f) = ( *fcR* g)) = (f = g)"
|
|
|
577 |
apply auto
|
|
|
578 |
apply (rule ext, rule ccontr)
|
|
|
579 |
apply (drule_tac x = "hcomplex_of_complex (x) " in fun_cong)
|
|
|
580 |
apply auto
|
|
|
581 |
done
|
|
|
582 |
|
|
|
583 |
lemma starfunC_eq_Re_Im_iff:
|
|
|
584 |
"(( *fc* f) x = z) = ((( *fcR* (%x. Re(f x))) x = hRe (z)) &
|
|
|
585 |
(( *fcR* (%x. Im(f x))) x = hIm (z)))"
|
|
|
586 |
apply (rule eq_Abs_hcomplex [of x])
|
|
|
587 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
588 |
apply (auto simp add: starfunCR starfunC hIm hRe complex_Re_Im_cancel_iff, ultra+)
|
|
|
589 |
done
|
|
|
590 |
|
|
|
591 |
lemma starfunC_approx_Re_Im_iff:
|
|
|
592 |
"(( *fc* f) x @c= z) = ((( *fcR* (%x. Re(f x))) x @= hRe (z)) &
|
|
|
593 |
(( *fcR* (%x. Im(f x))) x @= hIm (z)))"
|
|
|
594 |
apply (rule eq_Abs_hcomplex [of x])
|
|
|
595 |
apply (rule eq_Abs_hcomplex [of z])
|
|
|
596 |
apply (simp add: starfunCR starfunC hIm hRe capprox_approx_iff)
|
|
|
597 |
done
|
|
|
598 |
|
|
|
599 |
lemma starfunC_Idfun_capprox:
|
|
|
600 |
"x @c= hcomplex_of_complex a ==> ( *fc* (%x. x)) x @c= hcomplex_of_complex a"
|
|
|
601 |
apply (rule eq_Abs_hcomplex [of x])
|
|
|
602 |
apply (simp add: starfunC)
|
|
|
603 |
done
|
|
|
604 |
|
|
|
605 |
lemma starfunC_Id [simp]: "( *fc* (%x. x)) x = x"
|
|
|
606 |
apply (rule eq_Abs_hcomplex [of x])
|
|
|
607 |
apply (simp add: starfunC)
|
|
|
608 |
done
|
|
13957
|
609 |
|
|
14407
|
610 |
ML
|
|
|
611 |
{*
|
|
|
612 |
val STARC_complex_set = thm "STARC_complex_set";
|
|
|
613 |
val STARC_empty_set = thm "STARC_empty_set";
|
|
|
614 |
val STARC_Un = thm "STARC_Un";
|
|
|
615 |
val starsetC_n_Un = thm "starsetC_n_Un";
|
|
|
616 |
val InternalCSets_Un = thm "InternalCSets_Un";
|
|
|
617 |
val STARC_Int = thm "STARC_Int";
|
|
|
618 |
val starsetC_n_Int = thm "starsetC_n_Int";
|
|
|
619 |
val InternalCSets_Int = thm "InternalCSets_Int";
|
|
|
620 |
val STARC_Compl = thm "STARC_Compl";
|
|
|
621 |
val starsetC_n_Compl = thm "starsetC_n_Compl";
|
|
|
622 |
val InternalCSets_Compl = thm "InternalCSets_Compl";
|
|
|
623 |
val STARC_mem_Compl = thm "STARC_mem_Compl";
|
|
|
624 |
val STARC_diff = thm "STARC_diff";
|
|
|
625 |
val starsetC_n_diff = thm "starsetC_n_diff";
|
|
|
626 |
val InternalCSets_diff = thm "InternalCSets_diff";
|
|
|
627 |
val STARC_subset = thm "STARC_subset";
|
|
|
628 |
val STARC_mem = thm "STARC_mem";
|
|
|
629 |
val STARC_hcomplex_of_complex_image_subset = thm "STARC_hcomplex_of_complex_image_subset";
|
|
|
630 |
val STARC_SComplex_subset = thm "STARC_SComplex_subset";
|
|
|
631 |
val STARC_hcomplex_of_complex_Int = thm "STARC_hcomplex_of_complex_Int";
|
|
|
632 |
val lemma_not_hcomplexA = thm "lemma_not_hcomplexA";
|
|
|
633 |
val starsetC_starsetC_n_eq = thm "starsetC_starsetC_n_eq";
|
|
|
634 |
val InternalCSets_starsetC_n = thm "InternalCSets_starsetC_n";
|
|
|
635 |
val InternalCSets_UNIV_diff = thm "InternalCSets_UNIV_diff";
|
|
|
636 |
val starsetC_n_starsetC = thm "starsetC_n_starsetC";
|
|
|
637 |
val starfunC_n_starfunC = thm "starfunC_n_starfunC";
|
|
|
638 |
val starfunRC_n_starfunRC = thm "starfunRC_n_starfunRC";
|
|
|
639 |
val starfunCR_n_starfunCR = thm "starfunCR_n_starfunCR";
|
|
|
640 |
val starfunC_congruent = thm "starfunC_congruent";
|
|
|
641 |
val starfunC = thm "starfunC";
|
|
|
642 |
val starfunRC = thm "starfunRC";
|
|
|
643 |
val starfunCR = thm "starfunCR";
|
|
|
644 |
val starfunC_mult = thm "starfunC_mult";
|
|
|
645 |
val starfunRC_mult = thm "starfunRC_mult";
|
|
|
646 |
val starfunCR_mult = thm "starfunCR_mult";
|
|
|
647 |
val starfunC_add = thm "starfunC_add";
|
|
|
648 |
val starfunRC_add = thm "starfunRC_add";
|
|
|
649 |
val starfunCR_add = thm "starfunCR_add";
|
|
|
650 |
val starfunC_minus = thm "starfunC_minus";
|
|
|
651 |
val starfunRC_minus = thm "starfunRC_minus";
|
|
|
652 |
val starfunCR_minus = thm "starfunCR_minus";
|
|
|
653 |
val starfunC_diff = thm "starfunC_diff";
|
|
|
654 |
val starfunRC_diff = thm "starfunRC_diff";
|
|
|
655 |
val starfunCR_diff = thm "starfunCR_diff";
|
|
|
656 |
val starfunC_o2 = thm "starfunC_o2";
|
|
|
657 |
val starfunC_o = thm "starfunC_o";
|
|
|
658 |
val starfunC_starfunRC_o2 = thm "starfunC_starfunRC_o2";
|
|
|
659 |
val starfun_starfunCR_o2 = thm "starfun_starfunCR_o2";
|
|
|
660 |
val starfunC_starfunRC_o = thm "starfunC_starfunRC_o";
|
|
|
661 |
val starfun_starfunCR_o = thm "starfun_starfunCR_o";
|
|
|
662 |
val starfunC_const_fun = thm "starfunC_const_fun";
|
|
|
663 |
val starfunRC_const_fun = thm "starfunRC_const_fun";
|
|
|
664 |
val starfunCR_const_fun = thm "starfunCR_const_fun";
|
|
|
665 |
val starfunC_inverse = thm "starfunC_inverse";
|
|
|
666 |
val starfunRC_inverse = thm "starfunRC_inverse";
|
|
|
667 |
val starfunCR_inverse = thm "starfunCR_inverse";
|
|
|
668 |
val starfunC_eq = thm "starfunC_eq";
|
|
|
669 |
val starfunRC_eq = thm "starfunRC_eq";
|
|
|
670 |
val starfunCR_eq = thm "starfunCR_eq";
|
|
|
671 |
val starfunC_capprox = thm "starfunC_capprox";
|
|
|
672 |
val starfunRC_capprox = thm "starfunRC_capprox";
|
|
|
673 |
val starfunCR_approx = thm "starfunCR_approx";
|
|
|
674 |
val starfunC_hcpow = thm "starfunC_hcpow";
|
|
|
675 |
val starfunC_lambda_cancel = thm "starfunC_lambda_cancel";
|
|
|
676 |
val starfunCR_lambda_cancel = thm "starfunCR_lambda_cancel";
|
|
|
677 |
val starfunRC_lambda_cancel = thm "starfunRC_lambda_cancel";
|
|
|
678 |
val starfunC_lambda_cancel2 = thm "starfunC_lambda_cancel2";
|
|
|
679 |
val starfunCR_lambda_cancel2 = thm "starfunCR_lambda_cancel2";
|
|
|
680 |
val starfunRC_lambda_cancel2 = thm "starfunRC_lambda_cancel2";
|
|
|
681 |
val starfunC_mult_CFinite_capprox = thm "starfunC_mult_CFinite_capprox";
|
|
|
682 |
val starfunCR_mult_HFinite_capprox = thm "starfunCR_mult_HFinite_capprox";
|
|
|
683 |
val starfunRC_mult_CFinite_capprox = thm "starfunRC_mult_CFinite_capprox";
|
|
|
684 |
val starfunC_add_capprox = thm "starfunC_add_capprox";
|
|
|
685 |
val starfunRC_add_capprox = thm "starfunRC_add_capprox";
|
|
|
686 |
val starfunCR_add_approx = thm "starfunCR_add_approx";
|
|
|
687 |
val starfunCR_cmod = thm "starfunCR_cmod";
|
|
|
688 |
val starfunC_inverse_inverse = thm "starfunC_inverse_inverse";
|
|
|
689 |
val starfunC_divide = thm "starfunC_divide";
|
|
|
690 |
val starfunCR_divide = thm "starfunCR_divide";
|
|
|
691 |
val starfunRC_divide = thm "starfunRC_divide";
|
|
|
692 |
val starfunC_n_congruent = thm "starfunC_n_congruent";
|
|
|
693 |
val starfunC_n = thm "starfunC_n";
|
|
|
694 |
val starfunC_n_mult = thm "starfunC_n_mult";
|
|
|
695 |
val starfunC_n_add = thm "starfunC_n_add";
|
|
|
696 |
val starfunC_n_minus = thm "starfunC_n_minus";
|
|
|
697 |
val starfunNat_n_diff = thm "starfunNat_n_diff";
|
|
|
698 |
val starfunC_n_const_fun = thm "starfunC_n_const_fun";
|
|
|
699 |
val starfunC_n_eq = thm "starfunC_n_eq";
|
|
|
700 |
val starfunC_eq_iff = thm "starfunC_eq_iff";
|
|
|
701 |
val starfunRC_eq_iff = thm "starfunRC_eq_iff";
|
|
|
702 |
val starfunCR_eq_iff = thm "starfunCR_eq_iff";
|
|
|
703 |
val starfunC_eq_Re_Im_iff = thm "starfunC_eq_Re_Im_iff";
|
|
|
704 |
val starfunC_approx_Re_Im_iff = thm "starfunC_approx_Re_Im_iff";
|
|
|
705 |
val starfunC_Idfun_capprox = thm "starfunC_Idfun_capprox";
|
|
|
706 |
val starfunC_Id = thm "starfunC_Id";
|
|
|
707 |
*}
|
|
|
708 |
|
|
|
709 |
end
|