6580
|
1 |
(**** HOL examples -- process using Doc/tout HOL-eg.txt ****)
|
|
2 |
|
|
3 |
Pretty.setmargin 72; (*existing macros just allow this margin*)
|
|
4 |
print_depth 0;
|
|
5 |
|
|
6 |
|
|
7 |
(*** Conjunction rules ***)
|
|
8 |
|
|
9 |
val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
|
|
10 |
by (resolve_tac [and_def RS ssubst] 1);
|
|
11 |
by (resolve_tac [allI] 1);
|
|
12 |
by (resolve_tac [impI] 1);
|
|
13 |
by (eresolve_tac [mp RS mp] 1);
|
|
14 |
by (REPEAT (resolve_tac prems 1));
|
|
15 |
val conjI = result();
|
|
16 |
|
|
17 |
val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
|
|
18 |
prths (prems RL [and_def RS subst]);
|
|
19 |
prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
|
|
20 |
by (resolve_tac it 1);
|
|
21 |
by (REPEAT (ares_tac [impI] 1));
|
|
22 |
val conjunct1 = result();
|
|
23 |
|
|
24 |
|
|
25 |
(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***)
|
|
26 |
|
|
27 |
goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
|
|
28 |
by (resolve_tac [notI] 1);
|
|
29 |
by (eresolve_tac [rangeE] 1);
|
|
30 |
by (eresolve_tac [equalityCE] 1);
|
|
31 |
by (dresolve_tac [CollectD] 1);
|
|
32 |
by (contr_tac 1);
|
|
33 |
by (swap_res_tac [CollectI] 1);
|
|
34 |
by (assume_tac 1);
|
|
35 |
|
|
36 |
choplev 0;
|
|
37 |
by (best_tac (set_cs addSEs [equalityCE]) 1);
|
|
38 |
|
|
39 |
|
|
40 |
goal Set.thy "! f:: 'a=>'a set. ! x. ~ f(x) = ?S(f)";
|
|
41 |
by (REPEAT (resolve_tac [allI,notI] 1));
|
|
42 |
by (eresolve_tac [equalityCE] 1);
|
|
43 |
by (dresolve_tac [CollectD] 1);
|
|
44 |
by (contr_tac 1);
|
|
45 |
by (swap_res_tac [CollectI] 1);
|
|
46 |
by (assume_tac 1);
|
|
47 |
|
|
48 |
choplev 0;
|
|
49 |
by (best_tac (set_cs addSEs [equalityCE]) 1);
|
|
50 |
|
|
51 |
|
|
52 |
goal Set.thy "~ (? f:: 'a=>'a set. ! S. ? a. f(a) = S)";
|
|
53 |
by (best_tac (set_cs addSEs [equalityCE]) 1);
|
|
54 |
|
|
55 |
|
|
56 |
|
|
57 |
|
|
58 |
> val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
|
|
59 |
Level 0
|
|
60 |
P & Q
|
|
61 |
1. P & Q
|
|
62 |
> by (resolve_tac [and_def RS ssubst] 1);
|
|
63 |
Level 1
|
|
64 |
P & Q
|
|
65 |
1. ! R. (P --> Q --> R) --> R
|
|
66 |
> by (resolve_tac [allI] 1);
|
|
67 |
Level 2
|
|
68 |
P & Q
|
|
69 |
1. !!R. (P --> Q --> R) --> R
|
|
70 |
> by (resolve_tac [impI] 1);
|
|
71 |
Level 3
|
|
72 |
P & Q
|
|
73 |
1. !!R. P --> Q --> R ==> R
|
|
74 |
> by (eresolve_tac [mp RS mp] 1);
|
|
75 |
Level 4
|
|
76 |
P & Q
|
|
77 |
1. !!R. P
|
|
78 |
2. !!R. Q
|
|
79 |
> by (REPEAT (resolve_tac prems 1));
|
|
80 |
Level 5
|
|
81 |
P & Q
|
|
82 |
No subgoals!
|
|
83 |
|
|
84 |
|
|
85 |
|
|
86 |
> val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
|
|
87 |
Level 0
|
|
88 |
P
|
|
89 |
1. P
|
|
90 |
> prths (prems RL [and_def RS subst]);
|
|
91 |
! R. (P --> Q --> R) --> R [P & Q]
|
|
92 |
P & Q [P & Q]
|
|
93 |
|
|
94 |
> prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
|
|
95 |
P --> Q --> ?Q ==> ?Q [P & Q]
|
|
96 |
|
|
97 |
> by (resolve_tac it 1);
|
|
98 |
Level 1
|
|
99 |
P
|
|
100 |
1. P --> Q --> P
|
|
101 |
> by (REPEAT (ares_tac [impI] 1));
|
|
102 |
Level 2
|
|
103 |
P
|
|
104 |
No subgoals!
|
|
105 |
|
|
106 |
|
|
107 |
|
|
108 |
|
|
109 |
> goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
|
|
110 |
Level 0
|
|
111 |
~?S : range(f)
|
|
112 |
1. ~?S : range(f)
|
|
113 |
> by (resolve_tac [notI] 1);
|
|
114 |
Level 1
|
|
115 |
~?S : range(f)
|
|
116 |
1. ?S : range(f) ==> False
|
|
117 |
> by (eresolve_tac [rangeE] 1);
|
|
118 |
Level 2
|
|
119 |
~?S : range(f)
|
|
120 |
1. !!x. ?S = f(x) ==> False
|
|
121 |
> by (eresolve_tac [equalityCE] 1);
|
|
122 |
Level 3
|
|
123 |
~?S : range(f)
|
|
124 |
1. !!x. [| ?c3(x) : ?S; ?c3(x) : f(x) |] ==> False
|
|
125 |
2. !!x. [| ~?c3(x) : ?S; ~?c3(x) : f(x) |] ==> False
|
|
126 |
> by (dresolve_tac [CollectD] 1);
|
|
127 |
Level 4
|
|
128 |
~{x. ?P7(x)} : range(f)
|
|
129 |
1. !!x. [| ?c3(x) : f(x); ?P7(?c3(x)) |] ==> False
|
|
130 |
2. !!x. [| ~?c3(x) : {x. ?P7(x)}; ~?c3(x) : f(x) |] ==> False
|
|
131 |
> by (contr_tac 1);
|
|
132 |
Level 5
|
|
133 |
~{x. ~x : f(x)} : range(f)
|
|
134 |
1. !!x. [| ~x : {x. ~x : f(x)}; ~x : f(x) |] ==> False
|
|
135 |
> by (swap_res_tac [CollectI] 1);
|
|
136 |
Level 6
|
|
137 |
~{x. ~x : f(x)} : range(f)
|
|
138 |
1. !!x. [| ~x : f(x); ~False |] ==> ~x : f(x)
|
|
139 |
> by (assume_tac 1);
|
|
140 |
Level 7
|
|
141 |
~{x. ~x : f(x)} : range(f)
|
|
142 |
No subgoals!
|
|
143 |
|
|
144 |
> choplev 0;
|
|
145 |
Level 0
|
|
146 |
~?S : range(f)
|
|
147 |
1. ~?S : range(f)
|
|
148 |
> by (best_tac (set_cs addSEs [equalityCE]) 1);
|
|
149 |
Level 1
|
|
150 |
~{x. ~x : f(x)} : range(f)
|
|
151 |
No subgoals!
|