| 
10751
 | 
     1  | 
(*  Title:      HOL/Hyperreal/hypreal_arith.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow, TU Muenchen
  | 
| 
 | 
     4  | 
    Copyright   1999 TU Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Instantiation of the generic linear arithmetic package for type hypreal.
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
local
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
(* reduce contradictory <= to False *)
  | 
| 
 | 
    12  | 
val simps = 
  | 
| 
 | 
    13  | 
    [order_less_irrefl, zero_eq_numeral_0, one_eq_numeral_1,
  | 
| 
 | 
    14  | 
     add_hypreal_number_of, minus_hypreal_number_of, diff_hypreal_number_of,
  | 
| 
 | 
    15  | 
     mult_hypreal_number_of, eq_hypreal_number_of, less_hypreal_number_of,
  | 
| 
 | 
    16  | 
     le_hypreal_number_of_eq_not_less, hypreal_diff_def,
  | 
| 
 | 
    17  | 
     hypreal_minus_add_distrib, hypreal_minus_minus, hypreal_mult_assoc];
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
val add_rules =
  | 
| 
 | 
    20  | 
    map rename_numerals
  | 
| 
 | 
    21  | 
        [hypreal_add_zero_left, hypreal_add_zero_right,
  | 
| 
 | 
    22  | 
         hypreal_add_minus, hypreal_add_minus_left,
  | 
| 
 | 
    23  | 
         hypreal_mult_0, hypreal_mult_0_right,
  | 
| 
 | 
    24  | 
         hypreal_mult_1, hypreal_mult_1_right,
  | 
| 
 | 
    25  | 
         hypreal_mult_minus_1, hypreal_mult_minus_1_right];
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
val simprocs = [Hyperreal_Times_Assoc.conv, 
  | 
| 
 | 
    28  | 
                Hyperreal_Numeral_Simprocs.combine_numerals]@
  | 
| 
 | 
    29  | 
               Hyperreal_Numeral_Simprocs.cancel_numerals;
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
val mono_ss = simpset() addsimps
  | 
| 
 | 
    32  | 
                [hypreal_add_le_mono,hypreal_add_less_mono,
  | 
| 
 | 
    33  | 
                 hypreal_add_less_le_mono,hypreal_add_le_less_mono];
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
val add_mono_thms_hypreal =
  | 
| 
 | 
    36  | 
  map (fn s => prove_goal (the_context ()) s
  | 
| 
 | 
    37  | 
                 (fn prems => [cut_facts_tac prems 1, asm_simp_tac mono_ss 1]))
  | 
| 
 | 
    38  | 
    ["(i <= j) & (k <= l) ==> i + k <= j + (l::hypreal)",
  | 
| 
 | 
    39  | 
     "(i  = j) & (k <= l) ==> i + k <= j + (l::hypreal)",
  | 
| 
 | 
    40  | 
     "(i <= j) & (k  = l) ==> i + k <= j + (l::hypreal)",
  | 
| 
 | 
    41  | 
     "(i  = j) & (k  = l) ==> i + k  = j + (l::hypreal)",
  | 
| 
 | 
    42  | 
     "(i < j) & (k = l)   ==> i + k < j + (l::hypreal)",
  | 
| 
 | 
    43  | 
     "(i = j) & (k < l)   ==> i + k < j + (l::hypreal)",
  | 
| 
 | 
    44  | 
     "(i < j) & (k <= l)  ==> i + k < j + (l::hypreal)",
  | 
| 
 | 
    45  | 
     "(i <= j) & (k < l)  ==> i + k < j + (l::hypreal)",
  | 
| 
 | 
    46  | 
     "(i < j) & (k < l)   ==> i + k < j + (l::hypreal)"];
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
val hypreal_arith_simproc_pats =
  | 
| 
 | 
    49  | 
  map (fn s => Thm.read_cterm (Theory.sign_of (the_context ()))
  | 
| 
 | 
    50  | 
       (s, HOLogic.boolT))
  | 
| 
 | 
    51  | 
      ["(m::hypreal) < n", "(m::hypreal) <= n", "(m::hypreal) = n"];
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
fun cvar(th,_ $ (_ $ _ $ var)) = cterm_of (#sign(rep_thm th)) var;
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
val hypreal_mult_mono_thms =
  | 
| 
 | 
    56  | 
 [(rotate_prems 1 hypreal_mult_less_mono2,
  | 
| 
 | 
    57  | 
   cvar(hypreal_mult_less_mono2, hd(prems_of hypreal_mult_less_mono2))),
  | 
| 
 | 
    58  | 
  (hypreal_mult_le_mono2,
  | 
| 
 | 
    59  | 
   cvar(hypreal_mult_le_mono2, hd(tl(prems_of hypreal_mult_le_mono2))))]
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
in
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
val fast_hypreal_arith_simproc = mk_simproc
  | 
| 
 | 
    64  | 
  "fast_hypreal_arith" hypreal_arith_simproc_pats Fast_Arith.lin_arith_prover;
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
val hypreal_arith_setup =
  | 
| 
 | 
    67  | 
 [Fast_Arith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, simpset} =>
 | 
| 
 | 
    68  | 
   {add_mono_thms = add_mono_thms @ add_mono_thms_hypreal,
 | 
| 
 | 
    69  | 
    mult_mono_thms = mult_mono_thms @ hypreal_mult_mono_thms,
  | 
| 
 | 
    70  | 
    inj_thms = inj_thms, (*FIXME: add hypreal*)
  | 
| 
 | 
    71  | 
    lessD = lessD,  (*We don't change LA_Data_Ref.lessD because the hypreal ordering is dense!*)
  | 
| 
 | 
    72  | 
    simpset = simpset addsimps (add_rules @ simps)
  | 
| 
 | 
    73  | 
                      addsimprocs simprocs}),
  | 
| 
 | 
    74  | 
  arith_discrete ("HyperDef.hypreal",false),
 | 
| 
 | 
    75  | 
  Simplifier.change_simpset_of (op addsimprocs) [fast_hypreal_arith_simproc]];
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
end;
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
(* Some test data [omitting examples that assume the ordering to be discrete!]
  | 
| 
 | 
    81  | 
Goal "!!a::hypreal. [| a <= b; c <= d; x+y<z |] ==> a+c <= b+d";
  | 
| 
 | 
    82  | 
by (fast_arith_tac 1);
  | 
| 
 | 
    83  | 
qed "";
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
Goal "!!a::hypreal. [| a <= b; b+b <= c |] ==> a+a <= c";
  | 
| 
 | 
    86  | 
by (fast_arith_tac 1);
  | 
| 
 | 
    87  | 
qed "";
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
Goal "!!a::hypreal. [| a+b <= i+j; a<=b; i<=j |] ==> a+a <= j+j";
  | 
| 
 | 
    90  | 
by (fast_arith_tac 1);
  | 
| 
 | 
    91  | 
qed "";
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
Goal "!!a::hypreal. a+b+c <= i+j+k & a<=b & b<=c & i<=j & j<=k --> a+a+a <= k+k+k";
  | 
| 
 | 
    94  | 
by (arith_tac 1);
  | 
| 
 | 
    95  | 
qed "";
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
Goal "!!a::hypreal. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
  | 
| 
 | 
    98  | 
\     ==> a <= l";
  | 
| 
 | 
    99  | 
by (fast_arith_tac 1);
  | 
| 
 | 
   100  | 
qed "";
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
Goal "!!a::hypreal. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
  | 
| 
 | 
   103  | 
\     ==> a+a+a+a <= l+l+l+l";
  | 
| 
 | 
   104  | 
by (fast_arith_tac 1);
  | 
| 
 | 
   105  | 
qed "";
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
Goal "!!a::hypreal. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
  | 
| 
 | 
   108  | 
\     ==> a+a+a+a+a <= l+l+l+l+i";
  | 
| 
 | 
   109  | 
by (fast_arith_tac 1);
  | 
| 
 | 
   110  | 
qed "";
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
Goal "!!a::hypreal. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
  | 
| 
 | 
   113  | 
\     ==> a+a+a+a+a+a <= l+l+l+l+i+l";
  | 
| 
 | 
   114  | 
by (fast_arith_tac 1);
  | 
| 
 | 
   115  | 
qed "";
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
Goal "!!a::hypreal. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
  | 
| 
 | 
   118  | 
\     ==> #6*a <= #5*l+i";
  | 
| 
 | 
   119  | 
by (fast_arith_tac 1);
  | 
| 
 | 
   120  | 
qed "";
  | 
| 
 | 
   121  | 
*)
  |