| 
37760
 | 
     1  | 
(*  Title:      HOL/Library/While_Combinator.thy
  | 
| 
 | 
     2  | 
    Author:     Tobias Nipkow
  | 
| 
 | 
     3  | 
    Copyright   2000 TU Muenchen
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header {* An application of the While combinator *}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory While_Combinator_Example
  | 
| 
 | 
     9  | 
imports While_Combinator
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
text {* Computation of the @{term lfp} on finite sets via 
 | 
| 
 | 
    13  | 
  iteration. *}
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
theorem lfp_conv_while:
  | 
| 
 | 
    16  | 
  "[| mono f; finite U; f U = U |] ==>
  | 
| 
 | 
    17  | 
    lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
 | 
| 
 | 
    18  | 
apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and
  | 
| 
 | 
    19  | 
                r = "((Pow U \<times> UNIV) \<times> (Pow U \<times> UNIV)) \<inter>
  | 
| 
 | 
    20  | 
                     inv_image finite_psubset (op - U o fst)" in while_rule)
  | 
| 
 | 
    21  | 
   apply (subst lfp_unfold)
  | 
| 
 | 
    22  | 
    apply assumption
  | 
| 
 | 
    23  | 
   apply (simp add: monoD)
  | 
| 
 | 
    24  | 
  apply (subst lfp_unfold)
  | 
| 
 | 
    25  | 
   apply assumption
  | 
| 
 | 
    26  | 
  apply clarsimp
  | 
| 
 | 
    27  | 
  apply (blast dest: monoD)
  | 
| 
 | 
    28  | 
 apply (fastsimp intro!: lfp_lowerbound)
  | 
| 
 | 
    29  | 
 apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset])
  | 
| 
 | 
    30  | 
apply (clarsimp simp add: finite_psubset_def order_less_le)
  | 
| 
 | 
    31  | 
apply (blast intro!: finite_Diff dest: monoD)
  | 
| 
 | 
    32  | 
done
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
subsection {* Example *}
 | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
text{* Cannot use @{thm[source]set_eq_subset} because it leads to
 | 
| 
 | 
    38  | 
looping because the antisymmetry simproc turns the subset relationship
  | 
| 
 | 
    39  | 
back into equality. *}
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
 | 
| 
 | 
    42  | 
  P {0, 4, 2}"
 | 
| 
 | 
    43  | 
proof -
  | 
| 
 | 
    44  | 
  have seteq: "!!A B. (A = B) = ((!a : A. a:B) & (!b:B. b:A))"
  | 
| 
 | 
    45  | 
    by blast
  | 
| 
 | 
    46  | 
  have aux: "!!f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
 | 
| 
 | 
    47  | 
    apply blast
  | 
| 
 | 
    48  | 
    done
  | 
| 
 | 
    49  | 
  show ?thesis
  | 
| 
 | 
    50  | 
    apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
 | 
| 
 | 
    51  | 
       apply (rule monoI)
  | 
| 
 | 
    52  | 
      apply blast
  | 
| 
 | 
    53  | 
     apply simp
  | 
| 
 | 
    54  | 
    apply (simp add: aux set_eq_subset)
  | 
| 
 | 
    55  | 
    txt {* The fixpoint computation is performed purely by rewriting: *}
 | 
| 
 | 
    56  | 
    apply (simp add: while_unfold aux seteq del: subset_empty)
  | 
| 
 | 
    57  | 
    done
  | 
| 
 | 
    58  | 
qed
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
end  |