| author | blanchet | 
| Fri, 28 Sep 2012 09:12:50 +0200 | |
| changeset 49636 | b7256a88a84b | 
| parent 46823 | 57bf0cecb366 | 
| child 51717 | 9e7d1c139569 | 
| permissions | -rw-r--r-- | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 1 | (* Title: ZF/UNITY/Constrains.thy | 
| 11479 | 2 | Author: Sidi O Ehmety, Computer Laboratory | 
| 3 | Copyright 2001 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 15634 | 6 | header{*Weak Safety Properties*}
 | 
| 7 | ||
| 8 | theory Constrains | |
| 9 | imports UNITY | |
| 24893 | 10 | begin | 
| 15634 | 11 | |
| 11479 | 12 | consts traces :: "[i, i] => i" | 
| 13 | (* Initial states and program => (final state, reversed trace to it)... | |
| 12195 | 14 | the domain may also be state*list(state) *) | 
| 11479 | 15 | inductive | 
| 16 | domains | |
| 17 | "traces(init, acts)" <= | |
| 46823 | 18 | "(init \<union> (\<Union>act\<in>acts. field(act)))*list(\<Union>act\<in>acts. field(act))" | 
| 15634 | 19 | intros | 
| 11479 | 20 | (*Initial trace is empty*) | 
| 46823 | 21 | Init: "s: init ==> <s,[]> \<in> traces(init,acts)" | 
| 11479 | 22 | |
| 46823 | 23 | Acts: "[| act:acts; <s,evs> \<in> traces(init,acts); <s,s'>: act |] | 
| 24 | ==> <s', Cons(s,evs)> \<in> traces(init, acts)" | |
| 11479 | 25 | |
| 15634 | 26 | type_intros list.intros UnI1 UnI2 UN_I fieldI2 fieldI1 | 
| 11479 | 27 | |
| 28 | ||
| 15634 | 29 | consts reachable :: "i=>i" | 
| 11479 | 30 | inductive | 
| 31 | domains | |
| 46823 | 32 | "reachable(F)" \<subseteq> "Init(F) \<union> (\<Union>act\<in>Acts(F). field(act))" | 
| 15634 | 33 | intros | 
| 34 | Init: "s:Init(F) ==> s:reachable(F)" | |
| 11479 | 35 | |
| 15634 | 36 | Acts: "[| act: Acts(F); s:reachable(F); <s,s'>: act |] | 
| 11479 | 37 | ==> s':reachable(F)" | 
| 38 | ||
| 15634 | 39 | type_intros UnI1 UnI2 fieldI2 UN_I | 
| 11479 | 40 | |
| 41 | ||
| 24893 | 42 | definition | 
| 43 | Constrains :: "[i,i] => i" (infixl "Co" 60) where | |
| 46823 | 44 |   "A Co B == {F:program. F:(reachable(F) \<inter> A) co B}"
 | 
| 11479 | 45 | |
| 24893 | 46 | definition | 
| 47 | op_Unless :: "[i, i] => i" (infixl "Unless" 60) where | |
| 46823 | 48 | "A Unless B == (A-B) Co (A \<union> B)" | 
| 11479 | 49 | |
| 24893 | 50 | definition | 
| 51 | Stable :: "i => i" where | |
| 52 | "Stable(A) == A Co A" | |
| 11479 | 53 | |
| 24893 | 54 | definition | 
| 11479 | 55 | (*Always is the weak form of "invariant"*) | 
| 24893 | 56 | Always :: "i => i" where | 
| 46823 | 57 | "Always(A) == initially(A) \<inter> Stable(A)" | 
| 11479 | 58 | |
| 15634 | 59 | |
| 60 | (*** traces and reachable ***) | |
| 61 | ||
| 46823 | 62 | lemma reachable_type: "reachable(F) \<subseteq> state" | 
| 15634 | 63 | apply (cut_tac F = F in Init_type) | 
| 64 | apply (cut_tac F = F in Acts_type) | |
| 65 | apply (cut_tac F = F in reachable.dom_subset, blast) | |
| 66 | done | |
| 67 | ||
| 68 | lemma st_set_reachable: "st_set(reachable(F))" | |
| 69 | apply (unfold st_set_def) | |
| 70 | apply (rule reachable_type) | |
| 71 | done | |
| 72 | declare st_set_reachable [iff] | |
| 73 | ||
| 46823 | 74 | lemma reachable_Int_state: "reachable(F) \<inter> state = reachable(F)" | 
| 15634 | 75 | by (cut_tac reachable_type, auto) | 
| 76 | declare reachable_Int_state [iff] | |
| 77 | ||
| 46823 | 78 | lemma state_Int_reachable: "state \<inter> reachable(F) = reachable(F)" | 
| 15634 | 79 | by (cut_tac reachable_type, auto) | 
| 80 | declare state_Int_reachable [iff] | |
| 81 | ||
| 82 | lemma reachable_equiv_traces: | |
| 83 | "F \<in> program ==> reachable(F)={s \<in> state. \<exists>evs. <s,evs>:traces(Init(F), Acts(F))}"
 | |
| 84 | apply (rule equalityI, safe) | |
| 85 | apply (blast dest: reachable_type [THEN subsetD]) | |
| 86 | apply (erule_tac [2] traces.induct) | |
| 87 | apply (erule reachable.induct) | |
| 88 | apply (blast intro: reachable.intros traces.intros)+ | |
| 89 | done | |
| 90 | ||
| 46823 | 91 | lemma Init_into_reachable: "Init(F) \<subseteq> reachable(F)" | 
| 15634 | 92 | by (blast intro: reachable.intros) | 
| 93 | ||
| 94 | lemma stable_reachable: "[| F \<in> program; G \<in> program; | |
| 46823 | 95 | Acts(G) \<subseteq> Acts(F) |] ==> G \<in> stable(reachable(F))" | 
| 15634 | 96 | apply (blast intro: stableI constrainsI st_setI | 
| 97 | reachable_type [THEN subsetD] reachable.intros) | |
| 98 | done | |
| 99 | ||
| 100 | declare stable_reachable [intro!] | |
| 101 | declare stable_reachable [simp] | |
| 102 | ||
| 103 | (*The set of all reachable states is an invariant...*) | |
| 104 | lemma invariant_reachable: | |
| 105 | "F \<in> program ==> F \<in> invariant(reachable(F))" | |
| 106 | apply (unfold invariant_def initially_def) | |
| 107 | apply (blast intro: reachable_type [THEN subsetD] reachable.intros) | |
| 108 | done | |
| 109 | ||
| 110 | (*...in fact the strongest invariant!*) | |
| 46823 | 111 | lemma invariant_includes_reachable: "F \<in> invariant(A) ==> reachable(F) \<subseteq> A" | 
| 15634 | 112 | apply (cut_tac F = F in Acts_type) | 
| 113 | apply (cut_tac F = F in Init_type) | |
| 114 | apply (cut_tac F = F in reachable_type) | |
| 115 | apply (simp (no_asm_use) add: stable_def constrains_def invariant_def initially_def) | |
| 116 | apply (rule subsetI) | |
| 117 | apply (erule reachable.induct) | |
| 118 | apply (blast intro: reachable.intros)+ | |
| 119 | done | |
| 120 | ||
| 121 | (*** Co ***) | |
| 122 | ||
| 46823 | 123 | lemma constrains_reachable_Int: "F \<in> B co B'==>F:(reachable(F) \<inter> B) co (reachable(F) \<inter> B')" | 
| 15634 | 124 | apply (frule constrains_type [THEN subsetD]) | 
| 125 | apply (frule stable_reachable [OF _ _ subset_refl]) | |
| 126 | apply (simp_all add: stable_def constrains_Int) | |
| 127 | done | |
| 128 | ||
| 129 | (*Resembles the previous definition of Constrains*) | |
| 130 | lemma Constrains_eq_constrains: | |
| 46823 | 131 | "A Co B = {F \<in> program. F:(reachable(F) \<inter> A) co (reachable(F)  \<inter>  B)}"
 | 
| 15634 | 132 | apply (unfold Constrains_def) | 
| 133 | apply (blast dest: constrains_reachable_Int constrains_type [THEN subsetD] | |
| 134 | intro: constrains_weaken) | |
| 135 | done | |
| 136 | ||
| 137 | lemmas Constrains_def2 = Constrains_eq_constrains [THEN eq_reflection] | |
| 138 | ||
| 139 | lemma constrains_imp_Constrains: "F \<in> A co A' ==> F \<in> A Co A'" | |
| 140 | apply (unfold Constrains_def) | |
| 141 | apply (blast intro: constrains_weaken_L dest: constrainsD2) | |
| 142 | done | |
| 143 | ||
| 144 | lemma ConstrainsI: | |
| 145 | "[|!!act s s'. [| act \<in> Acts(F); <s,s'>:act; s \<in> A |] ==> s':A'; | |
| 146 | F \<in> program|] | |
| 147 | ==> F \<in> A Co A'" | |
| 148 | apply (auto simp add: Constrains_def constrains_def st_set_def) | |
| 149 | apply (blast dest: reachable_type [THEN subsetD]) | |
| 150 | done | |
| 151 | ||
| 152 | lemma Constrains_type: | |
| 46823 | 153 | "A Co B \<subseteq> program" | 
| 15634 | 154 | apply (unfold Constrains_def, blast) | 
| 155 | done | |
| 156 | ||
| 46823 | 157 | lemma Constrains_empty: "F \<in> 0 Co B \<longleftrightarrow> F \<in> program" | 
| 15634 | 158 | by (auto dest: Constrains_type [THEN subsetD] | 
| 159 | intro: constrains_imp_Constrains) | |
| 160 | declare Constrains_empty [iff] | |
| 161 | ||
| 46823 | 162 | lemma Constrains_state: "F \<in> A Co state \<longleftrightarrow> F \<in> program" | 
| 15634 | 163 | apply (unfold Constrains_def) | 
| 164 | apply (auto dest: Constrains_type [THEN subsetD] intro: constrains_imp_Constrains) | |
| 165 | done | |
| 166 | declare Constrains_state [iff] | |
| 167 | ||
| 168 | lemma Constrains_weaken_R: | |
| 169 | "[| F \<in> A Co A'; A'<=B' |] ==> F \<in> A Co B'" | |
| 170 | apply (unfold Constrains_def2) | |
| 171 | apply (blast intro: constrains_weaken_R) | |
| 172 | done | |
| 173 | ||
| 174 | lemma Constrains_weaken_L: | |
| 175 | "[| F \<in> A Co A'; B<=A |] ==> F \<in> B Co A'" | |
| 176 | apply (unfold Constrains_def2) | |
| 177 | apply (blast intro: constrains_weaken_L st_set_subset) | |
| 178 | done | |
| 179 | ||
| 180 | lemma Constrains_weaken: | |
| 181 | "[| F \<in> A Co A'; B<=A; A'<=B' |] ==> F \<in> B Co B'" | |
| 182 | apply (unfold Constrains_def2) | |
| 183 | apply (blast intro: constrains_weaken st_set_subset) | |
| 184 | done | |
| 185 | ||
| 186 | (** Union **) | |
| 187 | lemma Constrains_Un: | |
| 46823 | 188 | "[| F \<in> A Co A'; F \<in> B Co B' |] ==> F \<in> (A \<union> B) Co (A' \<union> B')" | 
| 15634 | 189 | apply (unfold Constrains_def2, auto) | 
| 190 | apply (simp add: Int_Un_distrib) | |
| 191 | apply (blast intro: constrains_Un) | |
| 192 | done | |
| 193 | ||
| 194 | lemma Constrains_UN: | |
| 195 | "[|(!!i. i \<in> I==>F \<in> A(i) Co A'(i)); F \<in> program|] | |
| 196 | ==> F:(\<Union>i \<in> I. A(i)) Co (\<Union>i \<in> I. A'(i))" | |
| 197 | by (auto intro: constrains_UN simp del: UN_simps | |
| 198 | simp add: Constrains_def2 Int_UN_distrib) | |
| 199 | ||
| 200 | ||
| 201 | (** Intersection **) | |
| 202 | ||
| 203 | lemma Constrains_Int: | |
| 46823 | 204 | "[| F \<in> A Co A'; F \<in> B Co B'|]==> F:(A \<inter> B) Co (A' \<inter> B')" | 
| 15634 | 205 | apply (unfold Constrains_def) | 
| 46823 | 206 | apply (subgoal_tac "reachable (F) \<inter> (A \<inter> B) = (reachable (F) \<inter> A) \<inter> (reachable (F) \<inter> B) ") | 
| 15634 | 207 | apply (auto intro: constrains_Int) | 
| 208 | done | |
| 209 | ||
| 210 | lemma Constrains_INT: | |
| 211 | "[| (!!i. i \<in> I ==>F \<in> A(i) Co A'(i)); F \<in> program |] | |
| 212 | ==> F:(\<Inter>i \<in> I. A(i)) Co (\<Inter>i \<in> I. A'(i))" | |
| 213 | apply (simp (no_asm_simp) del: INT_simps add: Constrains_def INT_extend_simps) | |
| 214 | apply (rule constrains_INT) | |
| 215 | apply (auto simp add: Constrains_def) | |
| 216 | done | |
| 217 | ||
| 46823 | 218 | lemma Constrains_imp_subset: "F \<in> A Co A' ==> reachable(F) \<inter> A \<subseteq> A'" | 
| 15634 | 219 | apply (unfold Constrains_def) | 
| 220 | apply (blast dest: constrains_imp_subset) | |
| 221 | done | |
| 222 | ||
| 223 | lemma Constrains_trans: | |
| 224 | "[| F \<in> A Co B; F \<in> B Co C |] ==> F \<in> A Co C" | |
| 225 | apply (unfold Constrains_def2) | |
| 226 | apply (blast intro: constrains_trans constrains_weaken) | |
| 227 | done | |
| 228 | ||
| 229 | lemma Constrains_cancel: | |
| 46823 | 230 | "[| F \<in> A Co (A' \<union> B); F \<in> B Co B' |] ==> F \<in> A Co (A' \<union> B')" | 
| 15634 | 231 | apply (unfold Constrains_def2) | 
| 232 | apply (simp (no_asm_use) add: Int_Un_distrib) | |
| 233 | apply (blast intro: constrains_cancel) | |
| 234 | done | |
| 235 | ||
| 236 | (*** Stable ***) | |
| 237 | (* Useful because there's no Stable_weaken. [Tanja Vos] *) | |
| 238 | ||
| 239 | lemma stable_imp_Stable: | |
| 240 | "F \<in> stable(A) ==> F \<in> Stable(A)" | |
| 241 | ||
| 242 | apply (unfold stable_def Stable_def) | |
| 243 | apply (erule constrains_imp_Constrains) | |
| 244 | done | |
| 245 | ||
| 246 | lemma Stable_eq: "[| F \<in> Stable(A); A = B |] ==> F \<in> Stable(B)" | |
| 247 | by blast | |
| 248 | ||
| 249 | lemma Stable_eq_stable: | |
| 46823 | 250 | "F \<in> Stable(A) \<longleftrightarrow> (F \<in> stable(reachable(F) \<inter> A))" | 
| 15634 | 251 | apply (auto dest: constrainsD2 simp add: Stable_def stable_def Constrains_def2) | 
| 252 | done | |
| 253 | ||
| 254 | lemma StableI: "F \<in> A Co A ==> F \<in> Stable(A)" | |
| 255 | by (unfold Stable_def, assumption) | |
| 256 | ||
| 257 | lemma StableD: "F \<in> Stable(A) ==> F \<in> A Co A" | |
| 258 | by (unfold Stable_def, assumption) | |
| 259 | ||
| 260 | lemma Stable_Un: | |
| 46823 | 261 | "[| F \<in> Stable(A); F \<in> Stable(A') |] ==> F \<in> Stable(A \<union> A')" | 
| 15634 | 262 | apply (unfold Stable_def) | 
| 263 | apply (blast intro: Constrains_Un) | |
| 264 | done | |
| 265 | ||
| 266 | lemma Stable_Int: | |
| 46823 | 267 | "[| F \<in> Stable(A); F \<in> Stable(A') |] ==> F \<in> Stable (A \<inter> A')" | 
| 15634 | 268 | apply (unfold Stable_def) | 
| 269 | apply (blast intro: Constrains_Int) | |
| 270 | done | |
| 271 | ||
| 272 | lemma Stable_Constrains_Un: | |
| 46823 | 273 | "[| F \<in> Stable(C); F \<in> A Co (C \<union> A') |] | 
| 274 | ==> F \<in> (C \<union> A) Co (C \<union> A')" | |
| 15634 | 275 | apply (unfold Stable_def) | 
| 276 | apply (blast intro: Constrains_Un [THEN Constrains_weaken_R]) | |
| 277 | done | |
| 278 | ||
| 279 | lemma Stable_Constrains_Int: | |
| 46823 | 280 | "[| F \<in> Stable(C); F \<in> (C \<inter> A) Co A' |] | 
| 281 | ==> F \<in> (C \<inter> A) Co (C \<inter> A')" | |
| 15634 | 282 | apply (unfold Stable_def) | 
| 283 | apply (blast intro: Constrains_Int [THEN Constrains_weaken]) | |
| 284 | done | |
| 285 | ||
| 286 | lemma Stable_UN: | |
| 287 | "[| (!!i. i \<in> I ==> F \<in> Stable(A(i))); F \<in> program |] | |
| 288 | ==> F \<in> Stable (\<Union>i \<in> I. A(i))" | |
| 289 | apply (simp add: Stable_def) | |
| 290 | apply (blast intro: Constrains_UN) | |
| 291 | done | |
| 292 | ||
| 293 | lemma Stable_INT: | |
| 294 | "[|(!!i. i \<in> I ==> F \<in> Stable(A(i))); F \<in> program |] | |
| 295 | ==> F \<in> Stable (\<Inter>i \<in> I. A(i))" | |
| 296 | apply (simp add: Stable_def) | |
| 297 | apply (blast intro: Constrains_INT) | |
| 298 | done | |
| 299 | ||
| 300 | lemma Stable_reachable: "F \<in> program ==>F \<in> Stable (reachable(F))" | |
| 301 | apply (simp (no_asm_simp) add: Stable_eq_stable Int_absorb) | |
| 302 | done | |
| 303 | ||
| 46823 | 304 | lemma Stable_type: "Stable(A) \<subseteq> program" | 
| 15634 | 305 | apply (unfold Stable_def) | 
| 306 | apply (rule Constrains_type) | |
| 307 | done | |
| 308 | ||
| 309 | (*** The Elimination Theorem. The "free" m has become universally quantified! | |
| 310 | Should the premise be !!m instead of \<forall>m ? Would make it harder to use | |
| 311 | in forward proof. ***) | |
| 312 | ||
| 313 | lemma Elimination: | |
| 314 |     "[| \<forall>m \<in> M. F \<in> ({s \<in> A. x(s) = m}) Co (B(m)); F \<in> program |]  
 | |
| 315 |      ==> F \<in> ({s \<in> A. x(s):M}) Co (\<Union>m \<in> M. B(m))"
 | |
| 316 | apply (unfold Constrains_def, auto) | |
| 46823 | 317 | apply (rule_tac A1 = "reachable (F) \<inter> A" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 318 | in UNITY.elimination [THEN constrains_weaken_L]) | 
| 15634 | 319 | apply (auto intro: constrains_weaken_L) | 
| 320 | done | |
| 321 | ||
| 322 | (* As above, but for the special case of A=state *) | |
| 323 | lemma Elimination2: | |
| 324 |  "[| \<forall>m \<in> M. F \<in> {s \<in> state. x(s) = m} Co B(m); F \<in> program |]  
 | |
| 325 |      ==> F \<in> {s \<in> state. x(s):M} Co (\<Union>m \<in> M. B(m))"
 | |
| 326 | apply (blast intro: Elimination) | |
| 327 | done | |
| 328 | ||
| 329 | (** Unless **) | |
| 330 | ||
| 331 | lemma Unless_type: "A Unless B <=program" | |
| 24893 | 332 | apply (unfold op_Unless_def) | 
| 15634 | 333 | apply (rule Constrains_type) | 
| 334 | done | |
| 335 | ||
| 336 | (*** Specialized laws for handling Always ***) | |
| 337 | ||
| 338 | (** Natural deduction rules for "Always A" **) | |
| 339 | ||
| 340 | lemma AlwaysI: | |
| 341 | "[| Init(F)<=A; F \<in> Stable(A) |] ==> F \<in> Always(A)" | |
| 342 | ||
| 343 | apply (unfold Always_def initially_def) | |
| 344 | apply (frule Stable_type [THEN subsetD], auto) | |
| 345 | done | |
| 346 | ||
| 347 | lemma AlwaysD: "F \<in> Always(A) ==> Init(F)<=A & F \<in> Stable(A)" | |
| 348 | by (simp add: Always_def initially_def) | |
| 349 | ||
| 45602 | 350 | lemmas AlwaysE = AlwaysD [THEN conjE] | 
| 351 | lemmas Always_imp_Stable = AlwaysD [THEN conjunct2] | |
| 15634 | 352 | |
| 353 | (*The set of all reachable states is Always*) | |
| 46823 | 354 | lemma Always_includes_reachable: "F \<in> Always(A) ==> reachable(F) \<subseteq> A" | 
| 15634 | 355 | apply (simp (no_asm_use) add: Stable_def Constrains_def constrains_def Always_def initially_def) | 
| 356 | apply (rule subsetI) | |
| 357 | apply (erule reachable.induct) | |
| 358 | apply (blast intro: reachable.intros)+ | |
| 359 | done | |
| 360 | ||
| 361 | lemma invariant_imp_Always: | |
| 362 | "F \<in> invariant(A) ==> F \<in> Always(A)" | |
| 363 | apply (unfold Always_def invariant_def Stable_def stable_def) | |
| 364 | apply (blast intro: constrains_imp_Constrains) | |
| 365 | done | |
| 366 | ||
| 45602 | 367 | lemmas Always_reachable = invariant_reachable [THEN invariant_imp_Always] | 
| 15634 | 368 | |
| 46823 | 369 | lemma Always_eq_invariant_reachable: "Always(A) = {F \<in> program. F \<in> invariant(reachable(F) \<inter> A)}"
 | 
| 15634 | 370 | apply (simp (no_asm) add: Always_def invariant_def Stable_def Constrains_def2 stable_def initially_def) | 
| 371 | apply (rule equalityI, auto) | |
| 372 | apply (blast intro: reachable.intros reachable_type) | |
| 373 | done | |
| 374 | ||
| 375 | (*the RHS is the traditional definition of the "always" operator*) | |
| 46823 | 376 | lemma Always_eq_includes_reachable: "Always(A) = {F \<in> program. reachable(F) \<subseteq> A}"
 | 
| 15634 | 377 | apply (rule equalityI, safe) | 
| 378 | apply (auto dest: invariant_includes_reachable | |
| 379 | simp add: subset_Int_iff invariant_reachable Always_eq_invariant_reachable) | |
| 380 | done | |
| 381 | ||
| 46823 | 382 | lemma Always_type: "Always(A) \<subseteq> program" | 
| 15634 | 383 | by (unfold Always_def initially_def, auto) | 
| 384 | ||
| 385 | lemma Always_state_eq: "Always(state) = program" | |
| 386 | apply (rule equalityI) | |
| 387 | apply (auto dest: Always_type [THEN subsetD] reachable_type [THEN subsetD] | |
| 388 | simp add: Always_eq_includes_reachable) | |
| 389 | done | |
| 390 | declare Always_state_eq [simp] | |
| 391 | ||
| 392 | lemma state_AlwaysI: "F \<in> program ==> F \<in> Always(state)" | |
| 393 | by (auto dest: reachable_type [THEN subsetD] | |
| 394 | simp add: Always_eq_includes_reachable) | |
| 395 | ||
| 396 | lemma Always_eq_UN_invariant: "st_set(A) ==> Always(A) = (\<Union>I \<in> Pow(A). invariant(I))" | |
| 397 | apply (simp (no_asm) add: Always_eq_includes_reachable) | |
| 398 | apply (rule equalityI, auto) | |
| 399 | apply (blast intro: invariantI rev_subsetD [OF _ Init_into_reachable] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 400 | rev_subsetD [OF _ invariant_includes_reachable] | 
| 15634 | 401 | dest: invariant_type [THEN subsetD])+ | 
| 402 | done | |
| 403 | ||
| 46823 | 404 | lemma Always_weaken: "[| F \<in> Always(A); A \<subseteq> B |] ==> F \<in> Always(B)" | 
| 15634 | 405 | by (auto simp add: Always_eq_includes_reachable) | 
| 406 | ||
| 407 | ||
| 408 | (*** "Co" rules involving Always ***) | |
| 409 | lemmas Int_absorb2 = subset_Int_iff [unfolded iff_def, THEN conjunct1, THEN mp] | |
| 410 | ||
| 46823 | 411 | lemma Always_Constrains_pre: "F \<in> Always(I) ==> (F:(I \<inter> A) Co A') \<longleftrightarrow> (F \<in> A Co A')" | 
| 15634 | 412 | apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_def Int_assoc [symmetric]) | 
| 413 | done | |
| 414 | ||
| 46823 | 415 | lemma Always_Constrains_post: "F \<in> Always(I) ==> (F \<in> A Co (I \<inter> A')) \<longleftrightarrow>(F \<in> A Co A')" | 
| 15634 | 416 | apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_eq_constrains Int_assoc [symmetric]) | 
| 417 | done | |
| 418 | ||
| 46823 | 419 | lemma Always_ConstrainsI: "[| F \<in> Always(I); F \<in> (I \<inter> A) Co A' |] ==> F \<in> A Co A'" | 
| 15634 | 420 | by (blast intro: Always_Constrains_pre [THEN iffD1]) | 
| 421 | ||
| 46823 | 422 | (* [| F \<in> Always(I); F \<in> A Co A' |] ==> F \<in> A Co (I \<inter> A') *) | 
| 45602 | 423 | lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2] | 
| 15634 | 424 | |
| 425 | (*The analogous proof of Always_LeadsTo_weaken doesn't terminate*) | |
| 426 | lemma Always_Constrains_weaken: | |
| 46823 | 427 | "[|F \<in> Always(C); F \<in> A Co A'; C \<inter> B<=A; C \<inter> A'<=B'|]==>F \<in> B Co B'" | 
| 15634 | 428 | apply (rule Always_ConstrainsI) | 
| 429 | apply (drule_tac [2] Always_ConstrainsD, simp_all) | |
| 430 | apply (blast intro: Constrains_weaken) | |
| 431 | done | |
| 432 | ||
| 433 | (** Conjoining Always properties **) | |
| 46823 | 434 | lemma Always_Int_distrib: "Always(A \<inter> B) = Always(A) \<inter> Always(B)" | 
| 15634 | 435 | by (auto simp add: Always_eq_includes_reachable) | 
| 436 | ||
| 437 | (* the premise i \<in> I is need since \<Inter>is formally not defined for I=0 *) | |
| 438 | lemma Always_INT_distrib: "i \<in> I==>Always(\<Inter>i \<in> I. A(i)) = (\<Inter>i \<in> I. Always(A(i)))" | |
| 439 | apply (rule equalityI) | |
| 440 | apply (auto simp add: Inter_iff Always_eq_includes_reachable) | |
| 441 | done | |
| 442 | ||
| 443 | ||
| 46823 | 444 | lemma Always_Int_I: "[| F \<in> Always(A); F \<in> Always(B) |] ==> F \<in> Always(A \<inter> B)" | 
| 15634 | 445 | apply (simp (no_asm_simp) add: Always_Int_distrib) | 
| 446 | done | |
| 447 | ||
| 448 | (*Allows a kind of "implication introduction"*) | |
| 46823 | 449 | lemma Always_Diff_Un_eq: "[| F \<in> Always(A) |] ==> (F \<in> Always(C-A \<union> B)) \<longleftrightarrow> (F \<in> Always(B))" | 
| 15634 | 450 | by (auto simp add: Always_eq_includes_reachable) | 
| 451 | ||
| 452 | (*Delete the nearest invariance assumption (which will be the second one | |
| 453 | used by Always_Int_I) *) | |
| 45602 | 454 | lemmas Always_thin = thin_rl [of "F \<in> Always(A)"] | 
| 15634 | 455 | |
| 456 | ML | |
| 457 | {*
 | |
| 458 | (*Combines two invariance ASSUMPTIONS into one. USEFUL??*) | |
| 24893 | 459 | val Always_Int_tac = dtac @{thm Always_Int_I} THEN' assume_tac THEN' etac @{thm Always_thin};
 | 
| 15634 | 460 | |
| 461 | (*Combines a list of invariance THEOREMS into one.*) | |
| 24893 | 462 | val Always_Int_rule = foldr1 (fn (th1,th2) => [th1,th2] MRS @{thm Always_Int_I});
 | 
| 15634 | 463 | |
| 464 | (*To allow expansion of the program's definition when appropriate*) | |
| 31902 | 465 | structure Program_Defs = Named_Thms | 
| 466 | ( | |
| 45294 | 467 |   val name = @{binding program}
 | 
| 31902 | 468 | val description = "program definitions" | 
| 469 | ); | |
| 15634 | 470 | |
| 471 | (*proves "co" properties when the program is specified*) | |
| 472 | ||
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23543diff
changeset | 473 | fun constrains_tac ctxt = | 
| 42793 | 474 | let val ss = simpset_of ctxt in | 
| 15634 | 475 | SELECT_GOAL | 
| 476 | (EVERY [REPEAT (Always_Int_tac 1), | |
| 24893 | 477 |               REPEAT (etac @{thm Always_ConstrainsI} 1
 | 
| 15634 | 478 | ORELSE | 
| 24893 | 479 |                       resolve_tac [@{thm StableI}, @{thm stableI},
 | 
| 480 |                                    @{thm constrains_imp_Constrains}] 1),
 | |
| 481 |               rtac @{thm constrainsI} 1,
 | |
| 15634 | 482 | (* Three subgoals *) | 
| 24893 | 483 |               rewrite_goal_tac [@{thm st_set_def}] 3,
 | 
| 42793 | 484 | REPEAT (force_tac ctxt 2), | 
| 31902 | 485 | full_simp_tac (ss addsimps (Program_Defs.get ctxt)) 1, | 
| 42793 | 486 | ALLGOALS (clarify_tac ctxt), | 
| 35409 | 487 |               REPEAT (FIRSTGOAL (etac @{thm disjE})),
 | 
| 42793 | 488 | ALLGOALS (clarify_tac ctxt), | 
| 35409 | 489 |               REPEAT (FIRSTGOAL (etac @{thm disjE})),
 | 
| 42793 | 490 | ALLGOALS (clarify_tac ctxt), | 
| 15634 | 491 | ALLGOALS (asm_full_simp_tac ss), | 
| 42793 | 492 | ALLGOALS (clarify_tac ctxt)]) | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23543diff
changeset | 493 | end; | 
| 15634 | 494 | |
| 495 | (*For proving invariants*) | |
| 42793 | 496 | fun always_tac ctxt i = | 
| 497 |     rtac @{thm AlwaysI} i THEN force_tac ctxt i THEN constrains_tac ctxt i;
 | |
| 15634 | 498 | *} | 
| 499 | ||
| 31902 | 500 | setup Program_Defs.setup | 
| 24051 
896fb015079c
replaced program_defs_ref by proper context data (via attribute "program");
 wenzelm parents: 
23894diff
changeset | 501 | |
| 16183 
052d9aba392d
renamed "constrains" to "safety" to avoid keyword clash
 paulson parents: 
15634diff
changeset | 502 | method_setup safety = {*
 | 
| 30549 | 503 | Scan.succeed (SIMPLE_METHOD' o constrains_tac) *} | 
| 21588 | 504 | "for proving safety properties" | 
| 15634 | 505 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23543diff
changeset | 506 | method_setup always = {*
 | 
| 30549 | 507 | Scan.succeed (SIMPLE_METHOD' o always_tac) *} | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23543diff
changeset | 508 | "for proving invariants" | 
| 15634 | 509 | |
| 11479 | 510 | end |