| author | immler | 
| Tue, 04 Jul 2017 09:36:25 +0100 | |
| changeset 66252 | b73f94b366b7 | 
| parent 65273 | 917ae0ba03a2 | 
| child 67091 | 1393c2340eec | 
| permissions | -rw-r--r-- | 
| 63569 | 1 | (* Title: HOL/MacLaurin.thy | 
| 2 | Author: Jacques D. Fleuriot, 2001 University of Edinburgh | |
| 3 | Author: Lawrence C Paulson, 2004 | |
| 4 | Author: Lukas Bulwahn and Bernhard Häupler, 2005 | |
| 12224 | 5 | *) | 
| 6 | ||
| 63570 | 7 | section \<open>MacLaurin and Taylor Series\<close> | 
| 15944 | 8 | |
| 15131 | 9 | theory MacLaurin | 
| 29811 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29803diff
changeset | 10 | imports Transcendental | 
| 15131 | 11 | begin | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 12 | |
| 63569 | 13 | subsection \<open>Maclaurin's Theorem with Lagrange Form of Remainder\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 14 | |
| 63569 | 15 | text \<open>This is a very long, messy proof even now that it's been broken down | 
| 16 | into lemmas.\<close> | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 17 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 18 | lemma Maclaurin_lemma: | 
| 63569 | 19 | "0 < h \<Longrightarrow> | 
| 20 | \<exists>B::real. f h = (\<Sum>m<n. (j m / (fact m)) * (h^m)) + (B * ((h^n) /(fact n)))" | |
| 21 | by (rule exI[where x = "(f h - (\<Sum>m<n. (j m / (fact m)) * h^m)) * (fact n) / (h^n)"]) simp | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 22 | |
| 63569 | 23 | lemma eq_diff_eq': "x = y - z \<longleftrightarrow> y = x + z" | 
| 24 | for x y z :: real | |
| 25 | by arith | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 26 | |
| 63569 | 27 | lemma fact_diff_Suc: "n < Suc m \<Longrightarrow> fact (Suc m - n) = (Suc m - n) * fact (m - n)" | 
| 28 | by (subst fact_reduce) auto | |
| 32038 | 29 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 30 | lemma Maclaurin_lemma2: | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 31 | fixes B | 
| 63569 | 32 | assumes DERIV: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 33 | and INIT: "n = Suc k" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 34 | defines "difg \<equiv> | 
| 63569 | 35 | (\<lambda>m t::real. diff m t - | 
| 36 | ((\<Sum>p<n - m. diff (m + p) 0 / fact p * t ^ p) + B * (t ^ (n - m) / fact (n - m))))" | |
| 37 | (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)") | |
| 38 | shows "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 39 | proof (rule allI impI)+ | 
| 63569 | 40 | fix m t | 
| 41 | assume INIT2: "m < n \<and> 0 \<le> t \<and> t \<le> h" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 42 | have "DERIV (difg m) t :> diff (Suc m) t - | 
| 63569 | 43 | ((\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) + | 
| 44 | real (n - m) * t ^ (n - Suc m) * B / fact (n - m))" | |
| 45 | by (auto simp: difg_def intro!: derivative_eq_intros DERIV[rule_format, OF INIT2]) | |
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
56181diff
changeset | 46 | moreover | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 47 |   from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
 | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 48 | unfolding atLeast0LessThan[symmetric] by auto | 
| 63569 | 49 | have "(\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) = | 
| 50 | (\<Sum>x<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x))" | |
| 64267 | 51 | unfolding intvl by (subst sum.insert) (auto simp add: sum.reindex) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 52 | moreover | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 53 | have fact_neq_0: "\<And>x. (fact x) + real x * (fact x) \<noteq> 0" | 
| 63569 | 54 | by (metis add_pos_pos fact_gt_zero less_add_same_cancel1 less_add_same_cancel2 | 
| 55 | less_numeral_extra(3) mult_less_0_iff of_nat_less_0_iff) | |
| 56 | have "\<And>x. (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x) = diff (Suc m + x) 0 * t^x / fact x" | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 57 | by (rule nonzero_divide_eq_eq[THEN iffD2]) auto | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 58 | moreover | 
| 63569 | 59 | have "(n - m) * t ^ (n - Suc m) * B / fact (n - m) = B * (t ^ (n - Suc m) / fact (n - Suc m))" | 
| 60 | using \<open>0 < n - m\<close> by (simp add: divide_simps fact_reduce) | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 61 | ultimately show "DERIV (difg m) t :> difg (Suc m) t" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 62 | unfolding difg_def by (simp add: mult.commute) | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 63 | qed | 
| 32038 | 64 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 65 | lemma Maclaurin: | 
| 29187 | 66 | assumes h: "0 < h" | 
| 63569 | 67 | and n: "0 < n" | 
| 68 | and diff_0: "diff 0 = f" | |
| 69 | and diff_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 29187 | 70 | shows | 
| 63569 | 71 | "\<exists>t::real. 0 < t \<and> t < h \<and> | 
| 64267 | 72 |       f h = sum (\<lambda>m. (diff m 0 / fact m) * h ^ m) {..<n} + (diff n t / fact n) * h ^ n"
 | 
| 29187 | 73 | proof - | 
| 74 | from n obtain m where m: "n = Suc m" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 75 | by (cases n) (simp add: n) | 
| 63569 | 76 | from m have "m < n" by simp | 
| 29187 | 77 | |
| 63569 | 78 | obtain B where f_h: "f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + B * (h ^ n / fact n)" | 
| 29187 | 79 | using Maclaurin_lemma [OF h] .. | 
| 80 | ||
| 63040 | 81 | define g where [abs_def]: "g t = | 
| 64267 | 82 |     f t - (sum (\<lambda>m. (diff m 0 / fact m) * t^m) {..<n} + B * (t^n / fact n))" for t
 | 
| 63569 | 83 | have g2: "g 0 = 0" "g h = 0" | 
| 64267 | 84 | by (simp_all add: m f_h g_def lessThan_Suc_eq_insert_0 image_iff diff_0 sum.reindex) | 
| 29187 | 85 | |
| 63040 | 86 | define difg where [abs_def]: "difg m t = | 
| 64267 | 87 |     diff m t - (sum (\<lambda>p. (diff (m + p) 0 / fact p) * (t ^ p)) {..<n-m} +
 | 
| 63569 | 88 | B * ((t ^ (n - m)) / fact (n - m)))" for m t | 
| 29187 | 89 | have difg_0: "difg 0 = g" | 
| 63569 | 90 | by (simp add: difg_def g_def diff_0) | 
| 91 | have difg_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 63040 | 92 | using diff_Suc m unfolding difg_def [abs_def] by (rule Maclaurin_lemma2) | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
56181diff
changeset | 93 | have difg_eq_0: "\<forall>m<n. difg m 0 = 0" | 
| 64267 | 94 | by (auto simp: difg_def m Suc_diff_le lessThan_Suc_eq_insert_0 image_iff sum.reindex) | 
| 63569 | 95 | have isCont_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> isCont (difg m) x" | 
| 29187 | 96 | by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp | 
| 63569 | 97 | have differentiable_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> difg m differentiable (at x)" | 
| 29187 | 98 | by (rule differentiableI [OF difg_Suc [rule_format]]) simp | 
| 63569 | 99 | have difg_Suc_eq_0: | 
| 100 | "\<And>m t. m < n \<Longrightarrow> 0 \<le> t \<Longrightarrow> t \<le> h \<Longrightarrow> DERIV (difg m) t :> 0 \<Longrightarrow> difg (Suc m) t = 0" | |
| 29187 | 101 | by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp | 
| 102 | ||
| 103 | have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0" | |
| 60758 | 104 | using \<open>m < n\<close> | 
| 29187 | 105 | proof (induct m) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 106 | case 0 | 
| 29187 | 107 | show ?case | 
| 108 | proof (rule Rolle) | |
| 109 | show "0 < h" by fact | |
| 63569 | 110 | show "difg 0 0 = difg 0 h" | 
| 111 | by (simp add: difg_0 g2) | |
| 61076 | 112 | show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0::nat)) x" | 
| 29187 | 113 | by (simp add: isCont_difg n) | 
| 61076 | 114 | show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0::nat) differentiable (at x)" | 
| 29187 | 115 | by (simp add: differentiable_difg n) | 
| 116 | qed | |
| 117 | next | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 118 | case (Suc m') | 
| 63569 | 119 | then have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" | 
| 120 | by simp | |
| 121 | then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" | |
| 122 | by fast | |
| 29187 | 123 | have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0" | 
| 124 | proof (rule Rolle) | |
| 125 | show "0 < t" by fact | |
| 126 | show "difg (Suc m') 0 = difg (Suc m') t" | |
| 60758 | 127 | using t \<open>Suc m' < n\<close> by (simp add: difg_Suc_eq_0 difg_eq_0) | 
| 29187 | 128 | show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x" | 
| 60758 | 129 | using \<open>t < h\<close> \<open>Suc m' < n\<close> by (simp add: isCont_difg) | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
51489diff
changeset | 130 | show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable (at x)" | 
| 60758 | 131 | using \<open>t < h\<close> \<open>Suc m' < n\<close> by (simp add: differentiable_difg) | 
| 29187 | 132 | qed | 
| 63569 | 133 | with \<open>t < h\<close> show ?case | 
| 134 | by auto | |
| 29187 | 135 | qed | 
| 63569 | 136 | then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" | 
| 137 | by fast | |
| 138 | with \<open>m < n\<close> have "difg (Suc m) t = 0" | |
| 139 | by (simp add: difg_Suc_eq_0) | |
| 29187 | 140 | show ?thesis | 
| 141 | proof (intro exI conjI) | |
| 142 | show "0 < t" by fact | |
| 143 | show "t < h" by fact | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 144 | show "f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n" | 
| 63569 | 145 | using \<open>difg (Suc m) t = 0\<close> by (simp add: m f_h difg_def) | 
| 29187 | 146 | qed | 
| 147 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 148 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 149 | lemma Maclaurin_objl: | 
| 63569 | 150 | "0 < h \<and> n > 0 \<and> diff 0 = f \<and> | 
| 151 | (\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t) \<longrightarrow> | |
| 152 | (\<exists>t. 0 < t \<and> t < h \<and> f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / fact n * h ^ n)" | |
| 153 | for n :: nat and h :: real | |
| 154 | by (blast intro: Maclaurin) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 155 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 156 | lemma Maclaurin2: | 
| 63569 | 157 | fixes n :: nat | 
| 158 | and h :: real | |
| 159 | assumes INIT1: "0 < h" | |
| 160 | and INIT2: "diff 0 = f" | |
| 161 | and DERIV: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 162 | shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / fact n * h ^ n" | |
| 163 | proof (cases n) | |
| 164 | case 0 | |
| 165 | with INIT1 INIT2 show ?thesis by fastforce | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 166 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 167 | case Suc | 
| 63569 | 168 | then have "n > 0" by simp | 
| 169 | from INIT1 this INIT2 DERIV | |
| 170 | have "\<exists>t>0. t < h \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 171 | by (rule Maclaurin) | 
| 63569 | 172 | then show ?thesis by fastforce | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 173 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 174 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 175 | lemma Maclaurin2_objl: | 
| 63569 | 176 | "0 < h \<and> diff 0 = f \<and> | 
| 177 | (\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t) \<longrightarrow> | |
| 178 | (\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n)" | |
| 179 | for n :: nat and h :: real | |
| 180 | by (blast intro: Maclaurin2) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 181 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 182 | lemma Maclaurin_minus: | 
| 63569 | 183 | fixes n :: nat and h :: real | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 184 | assumes "h < 0" "0 < n" "diff 0 = f" | 
| 63569 | 185 | and DERIV: "\<forall>m t. m < n \<and> h \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 186 | shows "\<exists>t. h < t \<and> t < 0 \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 187 | proof - | 
| 63569 | 188 | txt \<open>Transform \<open>ABL'\<close> into \<open>derivative_intros\<close> format.\<close> | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 189 | note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong] | 
| 63569 | 190 | let ?sum = "\<lambda>t. | 
| 191 | (\<Sum>m<n. (- 1) ^ m * diff m (- 0) / (fact m) * (- h) ^ m) + | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 192 | (- 1) ^ n * diff n (- t) / (fact n) * (- h) ^ n" | 
| 63569 | 193 | from assms have "\<exists>t>0. t < - h \<and> f (- (- h)) = ?sum t" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56238diff
changeset | 194 | by (intro Maclaurin) (auto intro!: derivative_eq_intros DERIV') | 
| 63569 | 195 | then obtain t where "0 < t" "t < - h" "f (- (- h)) = ?sum t" | 
| 196 | by blast | |
| 197 | moreover have "(- 1) ^ n * diff n (- t) * (- h) ^ n / fact n = diff n (- t) * h ^ n / fact n" | |
| 198 | by (auto simp: power_mult_distrib[symmetric]) | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 199 | moreover | 
| 63569 | 200 | have "(\<Sum>m<n. (- 1) ^ m * diff m 0 * (- h) ^ m / fact m) = (\<Sum>m<n. diff m 0 * h ^ m / fact m)" | 
| 64267 | 201 | by (auto intro: sum.cong simp add: power_mult_distrib[symmetric]) | 
| 63569 | 202 | ultimately have "h < - t \<and> - t < 0 \<and> | 
| 203 | f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n (- t) / (fact n) * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 204 | by auto | 
| 63569 | 205 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 206 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 207 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 208 | lemma Maclaurin_minus_objl: | 
| 63569 | 209 | fixes n :: nat and h :: real | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 210 | shows | 
| 63569 | 211 | "h < 0 \<and> n > 0 \<and> diff 0 = f \<and> | 
| 212 | (\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t) \<longrightarrow> | |
| 213 | (\<exists>t. h < t \<and> t < 0 \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n)" | |
| 214 | by (blast intro: Maclaurin_minus) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 215 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 216 | |
| 63569 | 217 | subsection \<open>More Convenient "Bidirectional" Version.\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 218 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 219 | (* not good for PVS sin_approx, cos_approx *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 220 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 221 | lemma Maclaurin_bi_le_lemma: | 
| 63569 | 222 | "n > 0 \<Longrightarrow> | 
| 223 | diff 0 0 = (\<Sum>m<n. diff m 0 * 0 ^ m / (fact m)) + diff n 0 * 0 ^ n / (fact n :: real)" | |
| 224 | by (induct n) auto | |
| 14738 | 225 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 226 | lemma Maclaurin_bi_le: | 
| 63569 | 227 | fixes n :: nat and x :: real | 
| 228 | assumes "diff 0 = f" | |
| 229 | and DERIV : "\<forall>m t. m < n \<and> \<bar>t\<bar> \<le> \<bar>x\<bar> \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 230 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. diff m 0 / (fact m) * x ^ m) + diff n t / (fact n) * x ^ n" | |
| 231 | (is "\<exists>t. _ \<and> f x = ?f x t") | |
| 232 | proof (cases "n = 0") | |
| 233 | case True | |
| 234 | with \<open>diff 0 = f\<close> show ?thesis by force | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 235 | next | 
| 63569 | 236 | case False | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 237 | show ?thesis | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 238 | proof (cases rule: linorder_cases) | 
| 63569 | 239 | assume "x = 0" | 
| 240 | with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" | |
| 241 | by (auto simp add: Maclaurin_bi_le_lemma) | |
| 242 | then show ?thesis .. | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 243 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 244 | assume "x < 0" | 
| 63569 | 245 | with \<open>n \<noteq> 0\<close> DERIV have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t" | 
| 246 | by (intro Maclaurin_minus) auto | |
| 247 | then obtain t where "x < t" "t < 0" | |
| 248 | "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n" | |
| 249 | by blast | |
| 250 | with \<open>x < 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" | |
| 251 | by simp | |
| 252 | then show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 253 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 254 | assume "x > 0" | 
| 63569 | 255 | with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t" | 
| 256 | by (intro Maclaurin) auto | |
| 257 | then obtain t where "0 < t" "t < x" | |
| 258 | "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n" | |
| 259 | by blast | |
| 60758 | 260 | with \<open>x > 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 63569 | 261 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 262 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 263 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 264 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 265 | lemma Maclaurin_all_lt: | 
| 63569 | 266 | fixes x :: real | 
| 267 | assumes INIT1: "diff 0 = f" | |
| 268 | and INIT2: "0 < n" | |
| 269 | and INIT3: "x \<noteq> 0" | |
| 270 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x" | |
| 271 | shows "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = | |
| 272 | (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n" | |
| 273 | (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t") | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 274 | proof (cases rule: linorder_cases) | 
| 63569 | 275 | assume "x = 0" | 
| 276 | with INIT3 show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 277 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 278 | assume "x < 0" | 
| 63569 | 279 | with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t" | 
| 280 | by (intro Maclaurin_minus) auto | |
| 281 | then obtain t where "t > x" "t < 0" "f x = ?f x t" | |
| 282 | by blast | |
| 283 | with \<open>x < 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" | |
| 284 | by simp | |
| 285 | then show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 286 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 287 | assume "x > 0" | 
| 63569 | 288 | with assms have "\<exists>t>0. t < x \<and> f x = ?f x t" | 
| 289 | by (intro Maclaurin) auto | |
| 290 | then obtain t where "t > 0" "t < x" "f x = ?f x t" | |
| 291 | by blast | |
| 292 | with \<open>x > 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" | |
| 293 | by simp | |
| 294 | then show ?thesis .. | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 295 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 296 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 297 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 298 | lemma Maclaurin_all_lt_objl: | 
| 63569 | 299 | fixes x :: real | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 300 | shows | 
| 63569 | 301 | "diff 0 = f \<and> (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) \<and> x \<noteq> 0 \<and> n > 0 \<longrightarrow> | 
| 302 | (\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> | |
| 303 | f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n)" | |
| 304 | by (blast intro: Maclaurin_all_lt) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 305 | |
| 63569 | 306 | lemma Maclaurin_zero: "x = 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) = diff 0 0" | 
| 307 | for x :: real and n :: nat | |
| 308 | by (induct n) auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 309 | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 310 | |
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 311 | lemma Maclaurin_all_le: | 
| 63569 | 312 | fixes x :: real and n :: nat | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 313 | assumes INIT: "diff 0 = f" | 
| 63569 | 314 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x" | 
| 315 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n" | |
| 316 | (is "\<exists>t. _ \<and> f x = ?f x t") | |
| 317 | proof (cases "n = 0") | |
| 318 | case True | |
| 319 | with INIT show ?thesis by force | |
| 320 | next | |
| 321 | case False | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 322 | show ?thesis | 
| 63569 | 323 | proof (cases "x = 0") | 
| 324 | case True | |
| 60758 | 325 | with \<open>n \<noteq> 0\<close> have "(\<Sum>m<n. diff m 0 / (fact m) * x ^ m) = diff 0 0" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 326 | by (intro Maclaurin_zero) auto | 
| 63569 | 327 | with INIT \<open>x = 0\<close> \<open>n \<noteq> 0\<close> have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" | 
| 328 | by force | |
| 329 | then show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 330 | next | 
| 63569 | 331 | case False | 
| 60758 | 332 | with INIT \<open>n \<noteq> 0\<close> DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 333 | by (intro Maclaurin_all_lt) auto | 
| 63569 | 334 | then obtain t where "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" .. | 
| 335 | then have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" | |
| 336 | by simp | |
| 337 | then show ?thesis .. | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 338 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 339 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 340 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 341 | lemma Maclaurin_all_le_objl: | 
| 63569 | 342 | "diff 0 = f \<and> (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) \<longrightarrow> | 
| 343 | (\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n)" | |
| 344 | for x :: real and n :: nat | |
| 345 | by (blast intro: Maclaurin_all_le) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 346 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 347 | |
| 63569 | 348 | subsection \<open>Version for Exponential Function\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 349 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 350 | lemma Maclaurin_exp_lt: | 
| 63569 | 351 | fixes x :: real and n :: nat | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 352 | shows | 
| 63569 | 353 | "x \<noteq> 0 \<Longrightarrow> n > 0 \<Longrightarrow> | 
| 354 | (\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n)" | |
| 355 | using Maclaurin_all_lt_objl [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 356 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 357 | lemma Maclaurin_exp_le: | 
| 63569 | 358 | fixes x :: real and n :: nat | 
| 359 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n" | |
| 360 | using Maclaurin_all_le_objl [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto | |
| 361 | ||
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 362 | corollary exp_lower_taylor_quadratic: "0 \<le> x \<Longrightarrow> 1 + x + x\<^sup>2 / 2 \<le> exp x" | 
| 63569 | 363 | for x :: real | 
| 364 | using Maclaurin_exp_le [of x 3] by (auto simp: numeral_3_eq_3 power2_eq_square) | |
| 365 | ||
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 366 | corollary ln_2_less_1: "ln 2 < (1::real)" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 367 | proof - | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 368 | have "2 < 5/(2::real)" by simp | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 369 | also have "5/2 \<le> exp (1::real)" using exp_lower_taylor_quadratic[of 1, simplified] by simp | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 370 | finally have "exp (ln 2) < exp (1::real)" by simp | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 371 | thus "ln 2 < (1::real)" by (subst (asm) exp_less_cancel_iff) simp | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 372 | qed | 
| 63569 | 373 | |
| 374 | subsection \<open>Version for Sine Function\<close> | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 375 | |
| 63569 | 376 | lemma mod_exhaust_less_4: "m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = 3" | 
| 377 | for m :: nat | |
| 378 | by auto | |
| 379 | ||
| 380 | lemma Suc_Suc_mult_two_diff_two [simp]: "n \<noteq> 0 \<Longrightarrow> Suc (Suc (2 * n - 2)) = 2 * n" | |
| 381 | by (induct n) auto | |
| 382 | ||
| 383 | lemma lemma_Suc_Suc_4n_diff_2 [simp]: "n \<noteq> 0 \<Longrightarrow> Suc (Suc (4 * n - 2)) = 4 * n" | |
| 384 | by (induct n) auto | |
| 385 | ||
| 386 | lemma Suc_mult_two_diff_one [simp]: "n \<noteq> 0 \<Longrightarrow> Suc (2 * n - 1) = 2 * n" | |
| 387 | by (induct n) auto | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 388 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 389 | |
| 63569 | 390 | text \<open>It is unclear why so many variant results are needed.\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 391 | |
| 63569 | 392 | lemma sin_expansion_lemma: "sin (x + real (Suc m) * pi / 2) = cos (x + real m * pi / 2)" | 
| 393 | by (auto simp: cos_add sin_add add_divide_distrib distrib_right) | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 394 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 395 | lemma Maclaurin_sin_expansion2: | 
| 63569 | 396 | "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> | 
| 397 | sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 398 | using Maclaurin_all_lt_objl | |
| 399 | [where f = sin and n = n and x = x and diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"] | |
| 400 | apply safe | |
| 401 | apply simp | |
| 402 | apply (simp add: sin_expansion_lemma del: of_nat_Suc) | |
| 403 | apply (force intro!: derivative_eq_intros) | |
| 64267 | 404 | apply (subst (asm) sum.neutral; auto) | 
| 63569 | 405 | apply (rule ccontr) | 
| 406 | apply simp | |
| 407 | apply (drule_tac x = x in spec) | |
| 408 | apply simp | |
| 409 | apply (erule ssubst) | |
| 410 | apply (rule_tac x = t in exI) | |
| 411 | apply simp | |
| 64267 | 412 | apply (rule sum.cong[OF refl]) | 
| 63569 | 413 | apply (auto simp add: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 414 | done | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 415 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 416 | lemma Maclaurin_sin_expansion: | 
| 63569 | 417 | "\<exists>t. sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | 
| 418 | using Maclaurin_sin_expansion2 [of x n] by blast | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 419 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 420 | lemma Maclaurin_sin_expansion3: | 
| 63569 | 421 | "n > 0 \<Longrightarrow> 0 < x \<Longrightarrow> | 
| 422 | \<exists>t. 0 < t \<and> t < x \<and> | |
| 423 | sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 424 | using Maclaurin_objl | |
| 425 | [where f = sin and n = n and h = x and diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"] | |
| 426 | apply safe | |
| 427 | apply simp | |
| 428 | apply (simp (no_asm) add: sin_expansion_lemma del: of_nat_Suc) | |
| 429 | apply (force intro!: derivative_eq_intros) | |
| 430 | apply (erule ssubst) | |
| 431 | apply (rule_tac x = t in exI) | |
| 432 | apply simp | |
| 64267 | 433 | apply (rule sum.cong[OF refl]) | 
| 63569 | 434 | apply (auto simp add: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 435 | done | |
| 436 | ||
| 437 | lemma Maclaurin_sin_expansion4: | |
| 438 | "0 < x \<Longrightarrow> | |
| 439 | \<exists>t. 0 < t \<and> t \<le> x \<and> | |
| 440 | sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 441 | using Maclaurin2_objl | |
| 442 | [where f = sin and n = n and h = x and diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"] | |
| 443 | apply safe | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 444 | apply simp | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 445 | apply (simp (no_asm) add: sin_expansion_lemma del: of_nat_Suc) | 
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 446 | apply (force intro!: derivative_eq_intros) | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 447 | apply (erule ssubst) | 
| 63569 | 448 | apply (rule_tac x = t in exI) | 
| 449 | apply simp | |
| 64267 | 450 | apply (rule sum.cong[OF refl]) | 
| 63569 | 451 | apply (auto simp add: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 452 | done | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 453 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 454 | |
| 63569 | 455 | subsection \<open>Maclaurin Expansion for Cosine Function\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 456 | |
| 63569 | 457 | lemma sumr_cos_zero_one [simp]: "(\<Sum>m<Suc n. cos_coeff m * 0 ^ m) = 1" | 
| 458 | by (induct n) auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 459 | |
| 63569 | 460 | lemma cos_expansion_lemma: "cos (x + real (Suc m) * pi / 2) = - sin (x + real m * pi / 2)" | 
| 461 | by (auto simp: cos_add sin_add distrib_right add_divide_distrib) | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 462 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 463 | lemma Maclaurin_cos_expansion: | 
| 63569 | 464 | "\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> | 
| 465 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos(t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 466 | using Maclaurin_all_lt_objl | |
| 467 | [where f = cos and n = n and x = x and diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)"] | |
| 468 | apply safe | |
| 469 | apply simp | |
| 470 | apply (simp add: cos_expansion_lemma del: of_nat_Suc) | |
| 471 | apply (cases n) | |
| 472 | apply simp | |
| 64267 | 473 | apply (simp del: sum_lessThan_Suc) | 
| 63569 | 474 | apply (rule ccontr) | 
| 475 | apply simp | |
| 476 | apply (drule_tac x = x in spec) | |
| 477 | apply simp | |
| 478 | apply (erule ssubst) | |
| 479 | apply (rule_tac x = t in exI) | |
| 480 | apply simp | |
| 64267 | 481 | apply (rule sum.cong[OF refl]) | 
| 63569 | 482 | apply (auto simp add: cos_coeff_def cos_zero_iff elim: evenE) | 
| 483 | done | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 484 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 485 | lemma Maclaurin_cos_expansion2: | 
| 63569 | 486 | "0 < x \<Longrightarrow> n > 0 \<Longrightarrow> | 
| 487 | \<exists>t. 0 < t \<and> t < x \<and> | |
| 488 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 489 | using Maclaurin_objl | |
| 490 | [where f = cos and n = n and h = x and diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)"] | |
| 491 | apply safe | |
| 492 | apply simp | |
| 493 | apply (simp add: cos_expansion_lemma del: of_nat_Suc) | |
| 494 | apply (erule ssubst) | |
| 495 | apply (rule_tac x = t in exI) | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 496 | apply simp | 
| 64267 | 497 | apply (rule sum.cong[OF refl]) | 
| 63569 | 498 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE) | 
| 499 | done | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 500 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 501 | lemma Maclaurin_minus_cos_expansion: | 
| 63569 | 502 | "x < 0 \<Longrightarrow> n > 0 \<Longrightarrow> | 
| 503 | \<exists>t. x < t \<and> t < 0 \<and> | |
| 504 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + ((cos (t + 1/2 * real n * pi) / fact n) * x ^ n)" | |
| 505 | using Maclaurin_minus_objl | |
| 506 | [where f = cos and n = n and h = x and diff = "\<lambda>n x. cos (x + 1/2 * real n *pi)"] | |
| 507 | apply safe | |
| 508 | apply simp | |
| 509 | apply (simp add: cos_expansion_lemma del: of_nat_Suc) | |
| 510 | apply (erule ssubst) | |
| 511 | apply (rule_tac x = t in exI) | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 512 | apply simp | 
| 64267 | 513 | apply (rule sum.cong[OF refl]) | 
| 63569 | 514 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE) | 
| 515 | done | |
| 516 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 517 | |
| 63569 | 518 | (* Version for ln(1 +/- x). Where is it?? *) | 
| 519 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 520 | |
| 63569 | 521 | lemma sin_bound_lemma: "x = y \<Longrightarrow> \<bar>u\<bar> \<le> v \<Longrightarrow> \<bar>(x + u) - y\<bar> \<le> v" | 
| 522 | for x y u v :: real | |
| 523 | by auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 524 | |
| 63569 | 525 | lemma Maclaurin_sin_bound: "\<bar>sin x - (\<Sum>m<n. sin_coeff m * x ^ m)\<bar> \<le> inverse (fact n) * \<bar>x\<bar> ^ n" | 
| 14738 | 526 | proof - | 
| 63569 | 527 | have est: "x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" for x y :: real | 
| 528 | by (rule mult_right_mono) simp_all | |
| 529 | let ?diff = "\<lambda>(n::nat) x. | |
| 530 | if n mod 4 = 0 then sin x | |
| 531 | else if n mod 4 = 1 then cos x | |
| 532 | else if n mod 4 = 2 then - sin x | |
| 533 | else - cos x" | |
| 22985 | 534 | have diff_0: "?diff 0 = sin" by simp | 
| 535 | have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x" | |
| 63569 | 536 | apply clarify | 
| 22985 | 537 | apply (subst (1 2 3) mod_Suc_eq_Suc_mod) | 
| 538 | apply (cut_tac m=m in mod_exhaust_less_4) | |
| 63569 | 539 | apply safe | 
| 540 | apply (auto intro!: derivative_eq_intros) | |
| 22985 | 541 | done | 
| 542 | from Maclaurin_all_le [OF diff_0 DERIV_diff] | |
| 63569 | 543 | obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" | 
| 544 | and t2: "sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / (fact n) * x ^ n" | |
| 545 | by fast | |
| 546 | have diff_m_0: "\<And>m. ?diff m 0 = (if even m then 0 else (- 1) ^ ((m - Suc 0) div 2))" | |
| 22985 | 547 | apply (subst even_even_mod_4_iff) | 
| 548 | apply (cut_tac m=m in mod_exhaust_less_4) | |
| 63569 | 549 | apply (elim disjE) | 
| 550 | apply simp_all | |
| 551 | apply (safe dest!: mod_eqD) | |
| 552 | apply simp_all | |
| 22985 | 553 | done | 
| 14738 | 554 | show ?thesis | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 555 | unfolding sin_coeff_def | 
| 22985 | 556 | apply (subst t2) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 557 | apply (rule sin_bound_lemma) | 
| 64267 | 558 | apply (rule sum.cong[OF refl]) | 
| 63569 | 559 | apply (subst diff_m_0, simp) | 
| 560 | using est | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 561 | apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono | 
| 63569 | 562 | simp: ac_simps divide_inverse power_abs [symmetric] abs_mult) | 
| 14738 | 563 | done | 
| 564 | qed | |
| 565 | ||
| 63570 | 566 | |
| 567 | section \<open>Taylor series\<close> | |
| 568 | ||
| 569 | text \<open> | |
| 570 | We use MacLaurin and the translation of the expansion point \<open>c\<close> to \<open>0\<close> | |
| 571 | to prove Taylor's theorem. | |
| 572 | \<close> | |
| 573 | ||
| 574 | lemma taylor_up: | |
| 575 | assumes INIT: "n > 0" "diff 0 = f" | |
| 576 | and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t)" | |
| 577 | and INTERV: "a \<le> c" "c < b" | |
| 578 | shows "\<exists>t::real. c < t \<and> t < b \<and> | |
| 579 | f b = (\<Sum>m<n. (diff m c / fact m) * (b - c)^m) + (diff n t / fact n) * (b - c)^n" | |
| 580 | proof - | |
| 581 | from INTERV have "0 < b - c" by arith | |
| 582 | moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))" | |
| 583 | by auto | |
| 584 | moreover | |
| 585 | have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> b - c \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 586 | proof (intro strip) | |
| 587 | fix m t | |
| 588 | assume "m < n \<and> 0 \<le> t \<and> t \<le> b - c" | |
| 589 | with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)" | |
| 590 | by auto | |
| 591 | moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0" | |
| 592 | by (rule DERIV_add) | |
| 593 | ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)" | |
| 594 | by (rule DERIV_chain2) | |
| 595 | then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 596 | by simp | |
| 597 | qed | |
| 598 | ultimately obtain x where | |
| 599 | "0 < x \<and> x < b - c \<and> | |
| 600 | f (b - c + c) = | |
| 601 | (\<Sum>m<n. diff m (0 + c) / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n" | |
| 602 | by (rule Maclaurin [THEN exE]) | |
| 603 | then have "c < x + c \<and> x + c < b \<and> f b = | |
| 604 | (\<Sum>m<n. diff m c / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n" | |
| 605 | by fastforce | |
| 606 | then show ?thesis by fastforce | |
| 607 | qed | |
| 608 | ||
| 609 | lemma taylor_down: | |
| 610 | fixes a :: real and n :: nat | |
| 611 | assumes INIT: "n > 0" "diff 0 = f" | |
| 612 | and DERIV: "(\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t)" | |
| 613 | and INTERV: "a < c" "c \<le> b" | |
| 614 | shows "\<exists>t. a < t \<and> t < c \<and> | |
| 615 | f a = (\<Sum>m<n. (diff m c / fact m) * (a - c)^m) + (diff n t / fact n) * (a - c)^n" | |
| 616 | proof - | |
| 617 | from INTERV have "a-c < 0" by arith | |
| 618 | moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))" | |
| 619 | by auto | |
| 620 | moreover | |
| 621 | have "\<forall>m t. m < n \<and> a - c \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 622 | proof (rule allI impI)+ | |
| 623 | fix m t | |
| 624 | assume "m < n \<and> a - c \<le> t \<and> t \<le> 0" | |
| 625 | with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)" | |
| 626 | by auto | |
| 627 | moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0" | |
| 628 | by (rule DERIV_add) | |
| 629 | ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)" | |
| 630 | by (rule DERIV_chain2) | |
| 631 | then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 632 | by simp | |
| 633 | qed | |
| 634 | ultimately obtain x where | |
| 635 | "a - c < x \<and> x < 0 \<and> | |
| 636 | f (a - c + c) = | |
| 637 | (\<Sum>m<n. diff m (0 + c) / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n" | |
| 638 | by (rule Maclaurin_minus [THEN exE]) | |
| 639 | then have "a < x + c \<and> x + c < c \<and> | |
| 640 | f a = (\<Sum>m<n. diff m c / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n" | |
| 641 | by fastforce | |
| 642 | then show ?thesis by fastforce | |
| 643 | qed | |
| 644 | ||
| 645 | theorem taylor: | |
| 646 | fixes a :: real and n :: nat | |
| 647 | assumes INIT: "n > 0" "diff 0 = f" | |
| 648 | and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 649 | and INTERV: "a \<le> c " "c \<le> b" "a \<le> x" "x \<le> b" "x \<noteq> c" | |
| 650 | shows "\<exists>t. | |
| 651 | (if x < c then x < t \<and> t < c else c < t \<and> t < x) \<and> | |
| 652 | f x = (\<Sum>m<n. (diff m c / fact m) * (x - c)^m) + (diff n t / fact n) * (x - c)^n" | |
| 653 | proof (cases "x < c") | |
| 654 | case True | |
| 655 | note INIT | |
| 656 | moreover have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 657 | using DERIV and INTERV by fastforce | |
| 658 | moreover note True | |
| 659 | moreover from INTERV have "c \<le> b" | |
| 660 | by simp | |
| 661 | ultimately have "\<exists>t>x. t < c \<and> f x = | |
| 662 | (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n" | |
| 663 | by (rule taylor_down) | |
| 664 | with True show ?thesis by simp | |
| 665 | next | |
| 666 | case False | |
| 667 | note INIT | |
| 668 | moreover have "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 669 | using DERIV and INTERV by fastforce | |
| 670 | moreover from INTERV have "a \<le> c" | |
| 671 | by arith | |
| 672 | moreover from False and INTERV have "c < x" | |
| 673 | by arith | |
| 674 | ultimately have "\<exists>t>c. t < x \<and> f x = | |
| 675 | (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n" | |
| 676 | by (rule taylor_up) | |
| 677 | with False show ?thesis by simp | |
| 678 | qed | |
| 679 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 680 | end |