| author | wenzelm | 
| Sun, 13 Apr 2025 12:23:48 +0200 | |
| changeset 82497 | b7554954d697 | 
| parent 70628 | 40b63f2655e8 | 
| permissions | -rw-r--r-- | 
| 61640 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
| 62130 | 3  | 
section \<open>2-3-4 Tree Implementation of Sets\<close>  | 
| 61640 | 4  | 
|
5  | 
theory Tree234_Set  | 
|
6  | 
imports  | 
|
7  | 
Tree234  | 
|
8  | 
Cmp  | 
|
| 67965 | 9  | 
Set_Specs  | 
| 61640 | 10  | 
begin  | 
11  | 
||
| 68109 | 12  | 
declare sorted_wrt.simps(2)[simp del]  | 
13  | 
||
| 61640 | 14  | 
subsection \<open>Set operations on 2-3-4 trees\<close>  | 
15  | 
||
| 68431 | 16  | 
definition empty :: "'a tree234" where  | 
17  | 
"empty = Leaf"  | 
|
18  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
19  | 
fun isin :: "'a::linorder tree234 \<Rightarrow> 'a \<Rightarrow> bool" where  | 
| 61640 | 20  | 
"isin Leaf x = False" |  | 
21  | 
"isin (Node2 l a r) x =  | 
|
22  | 
(case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x)" |  | 
|
23  | 
"isin (Node3 l a m b r) x =  | 
|
24  | 
(case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> (case cmp x b of  | 
|
25  | 
LT \<Rightarrow> isin m x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x))" |  | 
|
| 61703 | 26  | 
"isin (Node4 t1 a t2 b t3 c t4) x =  | 
27  | 
(case cmp x b of  | 
|
28  | 
LT \<Rightarrow>  | 
|
29  | 
(case cmp x a of  | 
|
| 61640 | 30  | 
LT \<Rightarrow> isin t1 x |  | 
31  | 
EQ \<Rightarrow> True |  | 
|
32  | 
GT \<Rightarrow> isin t2 x) |  | 
|
| 61703 | 33  | 
EQ \<Rightarrow> True |  | 
34  | 
GT \<Rightarrow>  | 
|
35  | 
(case cmp x c of  | 
|
| 61640 | 36  | 
LT \<Rightarrow> isin t3 x |  | 
37  | 
EQ \<Rightarrow> True |  | 
|
38  | 
GT \<Rightarrow> isin t4 x))"  | 
|
39  | 
||
40  | 
datatype 'a up\<^sub>i = T\<^sub>i "'a tree234" | Up\<^sub>i "'a tree234" 'a "'a tree234"  | 
|
41  | 
||
42  | 
fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree234" where  | 
|
43  | 
"tree\<^sub>i (T\<^sub>i t) = t" |  | 
|
| 61709 | 44  | 
"tree\<^sub>i (Up\<^sub>i l a r) = Node2 l a r"  | 
| 61640 | 45  | 
|
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
46  | 
fun ins :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>i" where  | 
| 61640 | 47  | 
"ins x Leaf = Up\<^sub>i Leaf x Leaf" |  | 
48  | 
"ins x (Node2 l a r) =  | 
|
49  | 
(case cmp x a of  | 
|
50  | 
LT \<Rightarrow> (case ins x l of  | 
|
51  | 
T\<^sub>i l' => T\<^sub>i (Node2 l' a r)  | 
|
52  | 
| Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r)) |  | 
|
53  | 
EQ \<Rightarrow> T\<^sub>i (Node2 l x r) |  | 
|
54  | 
GT \<Rightarrow> (case ins x r of  | 
|
55  | 
T\<^sub>i r' => T\<^sub>i (Node2 l a r')  | 
|
56  | 
| Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2)))" |  | 
|
57  | 
"ins x (Node3 l a m b r) =  | 
|
58  | 
(case cmp x a of  | 
|
59  | 
LT \<Rightarrow> (case ins x l of  | 
|
60  | 
T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r)  | 
|
61  | 
| Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r)) |  | 
|
62  | 
EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |  | 
|
63  | 
GT \<Rightarrow> (case cmp x b of  | 
|
64  | 
GT \<Rightarrow> (case ins x r of  | 
|
65  | 
T\<^sub>i r' => T\<^sub>i (Node3 l a m b r')  | 
|
66  | 
| Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2)) |  | 
|
67  | 
EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |  | 
|
68  | 
LT \<Rightarrow> (case ins x m of  | 
|
69  | 
T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r)  | 
|
70  | 
| Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))))" |  | 
|
| 61703 | 71  | 
"ins x (Node4 t1 a t2 b t3 c t4) =  | 
72  | 
(case cmp x b of  | 
|
73  | 
LT \<Rightarrow>  | 
|
74  | 
(case cmp x a of  | 
|
75  | 
LT \<Rightarrow>  | 
|
76  | 
(case ins x t1 of  | 
|
77  | 
T\<^sub>i t => T\<^sub>i (Node4 t a t2 b t3 c t4) |  | 
|
78  | 
Up\<^sub>i l y r => Up\<^sub>i (Node2 l y r) a (Node3 t2 b t3 c t4)) |  | 
|
79  | 
EQ \<Rightarrow> T\<^sub>i (Node4 t1 a t2 b t3 c t4) |  | 
|
80  | 
GT \<Rightarrow>  | 
|
81  | 
(case ins x t2 of  | 
|
82  | 
T\<^sub>i t => T\<^sub>i (Node4 t1 a t b t3 c t4) |  | 
|
83  | 
Up\<^sub>i l y r => Up\<^sub>i (Node2 t1 a l) y (Node3 r b t3 c t4))) |  | 
|
84  | 
EQ \<Rightarrow> T\<^sub>i (Node4 t1 a t2 b t3 c t4) |  | 
|
85  | 
GT \<Rightarrow>  | 
|
86  | 
(case cmp x c of  | 
|
87  | 
LT \<Rightarrow>  | 
|
88  | 
(case ins x t3 of  | 
|
89  | 
T\<^sub>i t => T\<^sub>i (Node4 t1 a t2 b t c t4) |  | 
|
90  | 
Up\<^sub>i l y r => Up\<^sub>i (Node2 t1 a t2) b (Node3 l y r c t4)) |  | 
|
91  | 
EQ \<Rightarrow> T\<^sub>i (Node4 t1 a t2 b t3 c t4) |  | 
|
92  | 
GT \<Rightarrow>  | 
|
93  | 
(case ins x t4 of  | 
|
94  | 
T\<^sub>i t => T\<^sub>i (Node4 t1 a t2 b t3 c t) |  | 
|
95  | 
Up\<^sub>i l y r => Up\<^sub>i (Node2 t1 a t2) b (Node3 t3 c l y r))))"  | 
|
| 61640 | 96  | 
|
97  | 
hide_const insert  | 
|
98  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
99  | 
definition insert :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a tree234" where  | 
| 61640 | 100  | 
"insert x t = tree\<^sub>i(ins x t)"  | 
101  | 
||
102  | 
datatype 'a up\<^sub>d = T\<^sub>d "'a tree234" | Up\<^sub>d "'a tree234"  | 
|
103  | 
||
104  | 
fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree234" where  | 
|
| 61709 | 105  | 
"tree\<^sub>d (T\<^sub>d t) = t" |  | 
106  | 
"tree\<^sub>d (Up\<^sub>d t) = t"  | 
|
| 61640 | 107  | 
|
108  | 
fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where  | 
|
109  | 
"node21 (T\<^sub>d l) a r = T\<^sub>d(Node2 l a r)" |  | 
|
110  | 
"node21 (Up\<^sub>d l) a (Node2 lr b rr) = Up\<^sub>d(Node3 l a lr b rr)" |  | 
|
111  | 
"node21 (Up\<^sub>d l) a (Node3 lr b mr c rr) = T\<^sub>d(Node2 (Node2 l a lr) b (Node2 mr c rr))" |  | 
|
112  | 
"node21 (Up\<^sub>d t1) a (Node4 t2 b t3 c t4 d t5) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node3 t3 c t4 d t5))"  | 
|
113  | 
||
114  | 
fun node22 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where  | 
|
115  | 
"node22 l a (T\<^sub>d r) = T\<^sub>d(Node2 l a r)" |  | 
|
116  | 
"node22 (Node2 ll b rl) a (Up\<^sub>d r) = Up\<^sub>d(Node3 ll b rl a r)" |  | 
|
117  | 
"node22 (Node3 ll b ml c rl) a (Up\<^sub>d r) = T\<^sub>d(Node2 (Node2 ll b ml) c (Node2 rl a r))" |  | 
|
118  | 
"node22 (Node4 t1 a t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node3 t3 c t4 d t5))"  | 
|
119  | 
||
120  | 
fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where  | 
|
121  | 
"node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |  | 
|
122  | 
"node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" |  | 
|
123  | 
"node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)" |  | 
|
124  | 
"node31 (Up\<^sub>d t1) a (Node4 t2 b t3 c t4 d t5) e t6 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node3 t3 c t4 d t5) e t6)"  | 
|
125  | 
||
126  | 
fun node32 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where  | 
|
127  | 
"node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |  | 
|
128  | 
"node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |  | 
|
129  | 
"node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))" |  | 
|
130  | 
"node32 t1 a (Up\<^sub>d t2) b (Node4 t3 c t4 d t5 e t6) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node3 t4 d t5 e t6))"  | 
|
131  | 
||
132  | 
fun node33 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where  | 
|
133  | 
"node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" |  | 
|
134  | 
"node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |  | 
|
135  | 
"node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))" |  | 
|
136  | 
"node33 t1 a (Node4 t2 b t3 c t4 d t5) e (Up\<^sub>d t6) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node3 t4 d t5 e t6))"  | 
|
137  | 
||
138  | 
fun node41 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where  | 
|
139  | 
"node41 (T\<^sub>d t1) a t2 b t3 c t4 = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" |  | 
|
140  | 
"node41 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 d t5 = T\<^sub>d(Node3 (Node3 t1 a t2 b t3) c t4 d t5)" |  | 
|
141  | 
"node41 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 e t6 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node2 t3 c t4) d t5 e t6)" |  | 
|
142  | 
"node41 (Up\<^sub>d t1) a (Node4 t2 b t3 c t4 d t5) e t6 f t7 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node3 t3 c t4 d t5) e t6 f t7)"  | 
|
143  | 
||
144  | 
fun node42 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where  | 
|
145  | 
"node42 t1 a (T\<^sub>d t2) b t3 c t4 = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" |  | 
|
146  | 
"node42 (Node2 t1 a t2) b (Up\<^sub>d t3) c t4 d t5 = T\<^sub>d(Node3 (Node3 t1 a t2 b t3) c t4 d t5)" |  | 
|
147  | 
"node42 (Node3 t1 a t2 b t3) c (Up\<^sub>d t4) d t5 e t6 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node2 t3 c t4) d t5 e t6)" |  | 
|
148  | 
"node42 (Node4 t1 a t2 b t3 c t4) d (Up\<^sub>d t5) e t6 f t7 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node3 t3 c t4 d t5) e t6 f t7)"  | 
|
149  | 
||
150  | 
fun node43 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where  | 
|
151  | 
"node43 t1 a t2 b (T\<^sub>d t3) c t4 = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" |  | 
|
152  | 
"node43 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) d t5 = T\<^sub>d(Node3 t1 a (Node3 t2 b t3 c t4) d t5)" |  | 
|
153  | 
"node43 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) e t6 = T\<^sub>d(Node4 t1 a (Node2 t2 b t3) c (Node2 t4 d t5) e t6)" |  | 
|
154  | 
"node43 t1 a (Node4 t2 b t3 c t4 d t5) e (Up\<^sub>d t6) f t7 = T\<^sub>d(Node4 t1 a (Node2 t2 b t3) c (Node3 t4 d t5 e t6) f t7)"  | 
|
155  | 
||
156  | 
fun node44 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where  | 
|
157  | 
"node44 t1 a t2 b t3 c (T\<^sub>d t4) = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" |  | 
|
158  | 
"node44 t1 a t2 b (Node2 t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a t2 b (Node3 t3 c t4 d t5))" |  | 
|
159  | 
"node44 t1 a t2 b (Node3 t3 c t4 d t5) e (Up\<^sub>d t6) = T\<^sub>d(Node4 t1 a t2 b (Node2 t3 c t4) d (Node2 t5 e t6))" |  | 
|
160  | 
"node44 t1 a t2 b (Node4 t3 c t4 d t5 e t6) f (Up\<^sub>d t7) = T\<^sub>d(Node4 t1 a t2 b (Node2 t3 c t4) d (Node3 t5 e t6 f t7))"  | 
|
161  | 
||
| 68020 | 162  | 
fun split_min :: "'a tree234 \<Rightarrow> 'a * 'a up\<^sub>d" where  | 
163  | 
"split_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" |  | 
|
164  | 
"split_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" |  | 
|
165  | 
"split_min (Node4 Leaf a Leaf b Leaf c Leaf) = (a, T\<^sub>d(Node3 Leaf b Leaf c Leaf))" |  | 
|
166  | 
"split_min (Node2 l a r) = (let (x,l') = split_min l in (x, node21 l' a r))" |  | 
|
167  | 
"split_min (Node3 l a m b r) = (let (x,l') = split_min l in (x, node31 l' a m b r))" |  | 
|
168  | 
"split_min (Node4 l a m b n c r) = (let (x,l') = split_min l in (x, node41 l' a m b n c r))"  | 
|
| 61640 | 169  | 
|
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
170  | 
fun del :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where  | 
| 61640 | 171  | 
"del k Leaf = T\<^sub>d Leaf" |  | 
172  | 
"del k (Node2 Leaf p Leaf) = (if k=p then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf p Leaf))" |  | 
|
173  | 
"del k (Node3 Leaf p Leaf q Leaf) = T\<^sub>d(if k=p then Node2 Leaf q Leaf  | 
|
174  | 
else if k=q then Node2 Leaf p Leaf else Node3 Leaf p Leaf q Leaf)" |  | 
|
175  | 
"del k (Node4 Leaf a Leaf b Leaf c Leaf) =  | 
|
176  | 
T\<^sub>d(if k=a then Node3 Leaf b Leaf c Leaf else  | 
|
177  | 
if k=b then Node3 Leaf a Leaf c Leaf else  | 
|
178  | 
if k=c then Node3 Leaf a Leaf b Leaf  | 
|
179  | 
else Node4 Leaf a Leaf b Leaf c Leaf)" |  | 
|
180  | 
"del k (Node2 l a r) = (case cmp k a of  | 
|
181  | 
LT \<Rightarrow> node21 (del k l) a r |  | 
|
182  | 
GT \<Rightarrow> node22 l a (del k r) |  | 
|
| 68020 | 183  | 
EQ \<Rightarrow> let (a',t) = split_min r in node22 l a' t)" |  | 
| 61640 | 184  | 
"del k (Node3 l a m b r) = (case cmp k a of  | 
185  | 
LT \<Rightarrow> node31 (del k l) a m b r |  | 
|
| 68020 | 186  | 
EQ \<Rightarrow> let (a',m') = split_min m in node32 l a' m' b r |  | 
| 61640 | 187  | 
GT \<Rightarrow> (case cmp k b of  | 
188  | 
LT \<Rightarrow> node32 l a (del k m) b r |  | 
|
| 68020 | 189  | 
EQ \<Rightarrow> let (b',r') = split_min r in node33 l a m b' r' |  | 
| 61640 | 190  | 
GT \<Rightarrow> node33 l a m b (del k r)))" |  | 
191  | 
"del k (Node4 l a m b n c r) = (case cmp k b of  | 
|
192  | 
LT \<Rightarrow> (case cmp k a of  | 
|
193  | 
LT \<Rightarrow> node41 (del k l) a m b n c r |  | 
|
| 68020 | 194  | 
EQ \<Rightarrow> let (a',m') = split_min m in node42 l a' m' b n c r |  | 
| 61640 | 195  | 
GT \<Rightarrow> node42 l a (del k m) b n c r) |  | 
| 68020 | 196  | 
EQ \<Rightarrow> let (b',n') = split_min n in node43 l a m b' n' c r |  | 
| 61640 | 197  | 
GT \<Rightarrow> (case cmp k c of  | 
198  | 
LT \<Rightarrow> node43 l a m b (del k n) c r |  | 
|
| 68020 | 199  | 
EQ \<Rightarrow> let (c',r') = split_min r in node44 l a m b n c' r' |  | 
| 61640 | 200  | 
GT \<Rightarrow> node44 l a m b n c (del k r)))"  | 
201  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
202  | 
definition delete :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a tree234" where  | 
| 61640 | 203  | 
"delete x t = tree\<^sub>d(del x t)"  | 
204  | 
||
205  | 
||
206  | 
subsection "Functional correctness"  | 
|
207  | 
||
208  | 
subsubsection \<open>Functional correctness of isin:\<close>  | 
|
209  | 
||
| 67929 | 210  | 
lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> set (inorder t))"  | 
| 70628 | 211  | 
by (induction t) (auto simp: isin_simps)  | 
| 61640 | 212  | 
|
213  | 
||
214  | 
subsubsection \<open>Functional correctness of insert:\<close>  | 
|
215  | 
||
216  | 
lemma inorder_ins:  | 
|
217  | 
"sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)"  | 
|
| 63636 | 218  | 
by(induction t) (auto, auto simp: ins_list_simps split!: if_splits up\<^sub>i.splits)  | 
| 61640 | 219  | 
|
220  | 
lemma inorder_insert:  | 
|
221  | 
"sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"  | 
|
222  | 
by(simp add: insert_def inorder_ins)  | 
|
223  | 
||
224  | 
||
225  | 
subsubsection \<open>Functional correctness of delete\<close>  | 
|
226  | 
||
227  | 
lemma inorder_node21: "height r > 0 \<Longrightarrow>  | 
|
228  | 
inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r"  | 
|
229  | 
by(induct l' a r rule: node21.induct) auto  | 
|
230  | 
||
231  | 
lemma inorder_node22: "height l > 0 \<Longrightarrow>  | 
|
232  | 
inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')"  | 
|
233  | 
by(induct l a r' rule: node22.induct) auto  | 
|
234  | 
||
235  | 
lemma inorder_node31: "height m > 0 \<Longrightarrow>  | 
|
236  | 
inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r"  | 
|
237  | 
by(induct l' a m b r rule: node31.induct) auto  | 
|
238  | 
||
239  | 
lemma inorder_node32: "height r > 0 \<Longrightarrow>  | 
|
240  | 
inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r"  | 
|
241  | 
by(induct l a m' b r rule: node32.induct) auto  | 
|
242  | 
||
243  | 
lemma inorder_node33: "height m > 0 \<Longrightarrow>  | 
|
244  | 
inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')"  | 
|
245  | 
by(induct l a m b r' rule: node33.induct) auto  | 
|
246  | 
||
247  | 
lemma inorder_node41: "height m > 0 \<Longrightarrow>  | 
|
248  | 
inorder (tree\<^sub>d (node41 l' a m b n c r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder n @ c # inorder r"  | 
|
249  | 
by(induct l' a m b n c r rule: node41.induct) auto  | 
|
250  | 
||
251  | 
lemma inorder_node42: "height l > 0 \<Longrightarrow>  | 
|
252  | 
inorder (tree\<^sub>d (node42 l a m b n c r)) = inorder l @ a # inorder (tree\<^sub>d m) @ b # inorder n @ c # inorder r"  | 
|
253  | 
by(induct l a m b n c r rule: node42.induct) auto  | 
|
254  | 
||
255  | 
lemma inorder_node43: "height m > 0 \<Longrightarrow>  | 
|
256  | 
inorder (tree\<^sub>d (node43 l a m b n c r)) = inorder l @ a # inorder m @ b # inorder(tree\<^sub>d n) @ c # inorder r"  | 
|
257  | 
by(induct l a m b n c r rule: node43.induct) auto  | 
|
258  | 
||
259  | 
lemma inorder_node44: "height n > 0 \<Longrightarrow>  | 
|
260  | 
inorder (tree\<^sub>d (node44 l a m b n c r)) = inorder l @ a # inorder m @ b # inorder n @ c # inorder (tree\<^sub>d r)"  | 
|
261  | 
by(induct l a m b n c r rule: node44.induct) auto  | 
|
262  | 
||
263  | 
lemmas inorder_nodes = inorder_node21 inorder_node22  | 
|
264  | 
inorder_node31 inorder_node32 inorder_node33  | 
|
265  | 
inorder_node41 inorder_node42 inorder_node43 inorder_node44  | 
|
266  | 
||
| 68020 | 267  | 
lemma split_minD:  | 
268  | 
"split_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow>  | 
|
| 61640 | 269  | 
x # inorder(tree\<^sub>d t') = inorder t"  | 
| 68020 | 270  | 
by(induction t arbitrary: t' rule: split_min.induct)  | 
| 61640 | 271  | 
(auto simp: inorder_nodes split: prod.splits)  | 
272  | 
||
273  | 
lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>  | 
|
274  | 
inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"  | 
|
275  | 
by(induction t rule: del.induct)  | 
|
| 68020 | 276  | 
(auto simp: inorder_nodes del_list_simps split_minD split!: if_split prod.splits)  | 
| 63636 | 277  | 
(* 30 secs (2016) *)  | 
| 61640 | 278  | 
|
279  | 
lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>  | 
|
280  | 
inorder(delete x t) = del_list x (inorder t)"  | 
|
281  | 
by(simp add: delete_def inorder_del)  | 
|
282  | 
||
283  | 
||
284  | 
subsection \<open>Balancedness\<close>  | 
|
285  | 
||
286  | 
subsubsection "Proofs for insert"  | 
|
287  | 
||
| 69597 | 288  | 
text\<open>First a standard proof that \<^const>\<open>ins\<close> preserves \<^const>\<open>bal\<close>.\<close>  | 
| 61640 | 289  | 
|
290  | 
instantiation up\<^sub>i :: (type)height  | 
|
291  | 
begin  | 
|
292  | 
||
293  | 
fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where  | 
|
294  | 
"height (T\<^sub>i t) = height t" |  | 
|
295  | 
"height (Up\<^sub>i l a r) = height l"  | 
|
296  | 
||
297  | 
instance ..  | 
|
298  | 
||
299  | 
end  | 
|
300  | 
||
301  | 
lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t"  | 
|
| 63636 | 302  | 
by (induct t) (auto split!: if_split up\<^sub>i.split)  | 
| 61640 | 303  | 
|
304  | 
||
| 67406 | 305  | 
text\<open>Now an alternative proof (by Brian Huffman) that runs faster because  | 
306  | 
two properties (balance and height) are combined in one predicate.\<close>  | 
|
| 61640 | 307  | 
|
308  | 
inductive full :: "nat \<Rightarrow> 'a tree234 \<Rightarrow> bool" where  | 
|
309  | 
"full 0 Leaf" |  | 
|
310  | 
"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" |  | 
|
311  | 
"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)" |  | 
|
312  | 
"\<lbrakk>full n l; full n m; full n m'; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node4 l p m q m' q' r)"  | 
|
313  | 
||
314  | 
inductive_cases full_elims:  | 
|
315  | 
"full n Leaf"  | 
|
316  | 
"full n (Node2 l p r)"  | 
|
317  | 
"full n (Node3 l p m q r)"  | 
|
318  | 
"full n (Node4 l p m q m' q' r)"  | 
|
319  | 
||
320  | 
inductive_cases full_0_elim: "full 0 t"  | 
|
321  | 
inductive_cases full_Suc_elim: "full (Suc n) t"  | 
|
322  | 
||
323  | 
lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf"  | 
|
324  | 
by (auto elim: full_0_elim intro: full.intros)  | 
|
325  | 
||
326  | 
lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0"  | 
|
327  | 
by (auto elim: full_elims intro: full.intros)  | 
|
328  | 
||
329  | 
lemma full_Suc_Node2_iff [simp]:  | 
|
330  | 
"full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r"  | 
|
331  | 
by (auto elim: full_elims intro: full.intros)  | 
|
332  | 
||
333  | 
lemma full_Suc_Node3_iff [simp]:  | 
|
334  | 
"full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"  | 
|
335  | 
by (auto elim: full_elims intro: full.intros)  | 
|
336  | 
||
337  | 
lemma full_Suc_Node4_iff [simp]:  | 
|
338  | 
"full (Suc n) (Node4 l p m q m' q' r) \<longleftrightarrow> full n l \<and> full n m \<and> full n m' \<and> full n r"  | 
|
339  | 
by (auto elim: full_elims intro: full.intros)  | 
|
340  | 
||
341  | 
lemma full_imp_height: "full n t \<Longrightarrow> height t = n"  | 
|
342  | 
by (induct set: full, simp_all)  | 
|
343  | 
||
344  | 
lemma full_imp_bal: "full n t \<Longrightarrow> bal t"  | 
|
345  | 
by (induct set: full, auto dest: full_imp_height)  | 
|
346  | 
||
347  | 
lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"  | 
|
348  | 
by (induct t, simp_all)  | 
|
349  | 
||
350  | 
lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)"  | 
|
351  | 
by (auto elim!: bal_imp_full full_imp_bal)  | 
|
352  | 
||
| 69597 | 353  | 
text \<open>The \<^const>\<open>insert\<close> function either preserves the height of the  | 
354  | 
tree, or increases it by one. The constructor returned by the \<^term>\<open>insert\<close> function determines which: A return value of the form \<^term>\<open>T\<^sub>i t\<close> indicates that the height will be the same. A value of the  | 
|
355  | 
form \<^term>\<open>Up\<^sub>i l p r\<close> indicates an increase in height.\<close>  | 
|
| 61640 | 356  | 
|
357  | 
primrec full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where  | 
|
358  | 
"full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" |  | 
|
359  | 
"full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r"  | 
|
360  | 
||
361  | 
lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)"  | 
|
362  | 
by (induct rule: full.induct) (auto, auto split: up\<^sub>i.split)  | 
|
363  | 
||
| 69597 | 364  | 
text \<open>The \<^const>\<open>insert\<close> operation preserves balance.\<close>  | 
| 61640 | 365  | 
|
366  | 
lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)"  | 
|
367  | 
unfolding bal_iff_full insert_def  | 
|
368  | 
apply (erule exE)  | 
|
369  | 
apply (drule full\<^sub>i_ins [of _ _ a])  | 
|
370  | 
apply (cases "ins a t")  | 
|
371  | 
apply (auto intro: full.intros)  | 
|
372  | 
done  | 
|
373  | 
||
374  | 
||
375  | 
subsubsection "Proofs for delete"  | 
|
376  | 
||
377  | 
instantiation up\<^sub>d :: (type)height  | 
|
378  | 
begin  | 
|
379  | 
||
380  | 
fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where  | 
|
381  | 
"height (T\<^sub>d t) = height t" |  | 
|
382  | 
"height (Up\<^sub>d t) = height t + 1"  | 
|
383  | 
||
384  | 
instance ..  | 
|
385  | 
||
386  | 
end  | 
|
387  | 
||
388  | 
lemma bal_tree\<^sub>d_node21:  | 
|
389  | 
"\<lbrakk>bal r; bal (tree\<^sub>d l); height r = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l a r))"  | 
|
390  | 
by(induct l a r rule: node21.induct) auto  | 
|
391  | 
||
392  | 
lemma bal_tree\<^sub>d_node22:  | 
|
393  | 
"\<lbrakk>bal(tree\<^sub>d r); bal l; height r = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r))"  | 
|
394  | 
by(induct l a r rule: node22.induct) auto  | 
|
395  | 
||
396  | 
lemma bal_tree\<^sub>d_node31:  | 
|
397  | 
"\<lbrakk> bal (tree\<^sub>d l); bal m; bal r; height l = height r; height m = height r \<rbrakk>  | 
|
398  | 
\<Longrightarrow> bal (tree\<^sub>d (node31 l a m b r))"  | 
|
399  | 
by(induct l a m b r rule: node31.induct) auto  | 
|
400  | 
||
401  | 
lemma bal_tree\<^sub>d_node32:  | 
|
402  | 
"\<lbrakk> bal l; bal (tree\<^sub>d m); bal r; height l = height r; height m = height r \<rbrakk>  | 
|
403  | 
\<Longrightarrow> bal (tree\<^sub>d (node32 l a m b r))"  | 
|
404  | 
by(induct l a m b r rule: node32.induct) auto  | 
|
405  | 
||
406  | 
lemma bal_tree\<^sub>d_node33:  | 
|
407  | 
"\<lbrakk> bal l; bal m; bal(tree\<^sub>d r); height l = height r; height m = height r \<rbrakk>  | 
|
408  | 
\<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r))"  | 
|
409  | 
by(induct l a m b r rule: node33.induct) auto  | 
|
410  | 
||
411  | 
lemma bal_tree\<^sub>d_node41:  | 
|
412  | 
"\<lbrakk> bal (tree\<^sub>d l); bal m; bal n; bal r; height l = height r; height m = height r; height n = height r \<rbrakk>  | 
|
413  | 
\<Longrightarrow> bal (tree\<^sub>d (node41 l a m b n c r))"  | 
|
414  | 
by(induct l a m b n c r rule: node41.induct) auto  | 
|
415  | 
||
416  | 
lemma bal_tree\<^sub>d_node42:  | 
|
417  | 
"\<lbrakk> bal l; bal (tree\<^sub>d m); bal n; bal r; height l = height r; height m = height r; height n = height r \<rbrakk>  | 
|
418  | 
\<Longrightarrow> bal (tree\<^sub>d (node42 l a m b n c r))"  | 
|
419  | 
by(induct l a m b n c r rule: node42.induct) auto  | 
|
420  | 
||
421  | 
lemma bal_tree\<^sub>d_node43:  | 
|
422  | 
"\<lbrakk> bal l; bal m; bal (tree\<^sub>d n); bal r; height l = height r; height m = height r; height n = height r \<rbrakk>  | 
|
423  | 
\<Longrightarrow> bal (tree\<^sub>d (node43 l a m b n c r))"  | 
|
424  | 
by(induct l a m b n c r rule: node43.induct) auto  | 
|
425  | 
||
426  | 
lemma bal_tree\<^sub>d_node44:  | 
|
427  | 
"\<lbrakk> bal l; bal m; bal n; bal (tree\<^sub>d r); height l = height r; height m = height r; height n = height r \<rbrakk>  | 
|
428  | 
\<Longrightarrow> bal (tree\<^sub>d (node44 l a m b n c r))"  | 
|
429  | 
by(induct l a m b n c r rule: node44.induct) auto  | 
|
430  | 
||
431  | 
lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22  | 
|
432  | 
bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33  | 
|
433  | 
bal_tree\<^sub>d_node41 bal_tree\<^sub>d_node42 bal_tree\<^sub>d_node43 bal_tree\<^sub>d_node44  | 
|
434  | 
||
435  | 
lemma height_node21:  | 
|
436  | 
"height r > 0 \<Longrightarrow> height(node21 l a r) = max (height l) (height r) + 1"  | 
|
437  | 
by(induct l a r rule: node21.induct)(simp_all add: max.assoc)  | 
|
438  | 
||
439  | 
lemma height_node22:  | 
|
440  | 
"height l > 0 \<Longrightarrow> height(node22 l a r) = max (height l) (height r) + 1"  | 
|
441  | 
by(induct l a r rule: node22.induct)(simp_all add: max.assoc)  | 
|
442  | 
||
443  | 
lemma height_node31:  | 
|
444  | 
"height m > 0 \<Longrightarrow> height(node31 l a m b r) =  | 
|
445  | 
max (height l) (max (height m) (height r)) + 1"  | 
|
446  | 
by(induct l a m b r rule: node31.induct)(simp_all add: max_def)  | 
|
447  | 
||
448  | 
lemma height_node32:  | 
|
449  | 
"height r > 0 \<Longrightarrow> height(node32 l a m b r) =  | 
|
450  | 
max (height l) (max (height m) (height r)) + 1"  | 
|
451  | 
by(induct l a m b r rule: node32.induct)(simp_all add: max_def)  | 
|
452  | 
||
453  | 
lemma height_node33:  | 
|
454  | 
"height m > 0 \<Longrightarrow> height(node33 l a m b r) =  | 
|
455  | 
max (height l) (max (height m) (height r)) + 1"  | 
|
456  | 
by(induct l a m b r rule: node33.induct)(simp_all add: max_def)  | 
|
457  | 
||
458  | 
lemma height_node41:  | 
|
459  | 
"height m > 0 \<Longrightarrow> height(node41 l a m b n c r) =  | 
|
460  | 
max (height l) (max (height m) (max (height n) (height r))) + 1"  | 
|
461  | 
by(induct l a m b n c r rule: node41.induct)(simp_all add: max_def)  | 
|
462  | 
||
463  | 
lemma height_node42:  | 
|
464  | 
"height l > 0 \<Longrightarrow> height(node42 l a m b n c r) =  | 
|
465  | 
max (height l) (max (height m) (max (height n) (height r))) + 1"  | 
|
466  | 
by(induct l a m b n c r rule: node42.induct)(simp_all add: max_def)  | 
|
467  | 
||
468  | 
lemma height_node43:  | 
|
469  | 
"height m > 0 \<Longrightarrow> height(node43 l a m b n c r) =  | 
|
470  | 
max (height l) (max (height m) (max (height n) (height r))) + 1"  | 
|
471  | 
by(induct l a m b n c r rule: node43.induct)(simp_all add: max_def)  | 
|
472  | 
||
473  | 
lemma height_node44:  | 
|
474  | 
"height n > 0 \<Longrightarrow> height(node44 l a m b n c r) =  | 
|
475  | 
max (height l) (max (height m) (max (height n) (height r))) + 1"  | 
|
476  | 
by(induct l a m b n c r rule: node44.induct)(simp_all add: max_def)  | 
|
477  | 
||
478  | 
lemmas heights = height_node21 height_node22  | 
|
479  | 
height_node31 height_node32 height_node33  | 
|
480  | 
height_node41 height_node42 height_node43 height_node44  | 
|
481  | 
||
| 68020 | 482  | 
lemma height_split_min:  | 
483  | 
"split_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t"  | 
|
484  | 
by(induct t arbitrary: x t' rule: split_min.induct)  | 
|
| 61640 | 485  | 
(auto simp: heights split: prod.splits)  | 
486  | 
||
487  | 
lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"  | 
|
488  | 
by(induction x t rule: del.induct)  | 
|
| 68020 | 489  | 
(auto simp add: heights height_split_min split!: if_split prod.split)  | 
| 61640 | 490  | 
|
| 68020 | 491  | 
lemma bal_split_min:  | 
492  | 
"\<lbrakk> split_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')"  | 
|
493  | 
by(induct t arbitrary: x t' rule: split_min.induct)  | 
|
494  | 
(auto simp: heights height_split_min bals split: prod.splits)  | 
|
| 61640 | 495  | 
|
496  | 
lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"  | 
|
497  | 
by(induction x t rule: del.induct)  | 
|
| 68020 | 498  | 
(auto simp: bals bal_split_min height_del height_split_min split!: if_split prod.split)  | 
| 61640 | 499  | 
|
500  | 
corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"  | 
|
501  | 
by(simp add: delete_def bal_tree\<^sub>d_del)  | 
|
502  | 
||
503  | 
subsection \<open>Overall Correctness\<close>  | 
|
504  | 
||
| 68440 | 505  | 
interpretation S: Set_by_Ordered  | 
| 68431 | 506  | 
where empty = empty and isin = isin and insert = insert and delete = delete  | 
| 61640 | 507  | 
and inorder = inorder and inv = bal  | 
508  | 
proof (standard, goal_cases)  | 
|
509  | 
case 2 thus ?case by(simp add: isin_set)  | 
|
510  | 
next  | 
|
511  | 
case 3 thus ?case by(simp add: inorder_insert)  | 
|
512  | 
next  | 
|
513  | 
case 4 thus ?case by(simp add: inorder_delete)  | 
|
514  | 
next  | 
|
515  | 
case 6 thus ?case by(simp add: bal_insert)  | 
|
516  | 
next  | 
|
517  | 
case 7 thus ?case by(simp add: bal_delete)  | 
|
| 68431 | 518  | 
qed (simp add: empty_def)+  | 
| 61640 | 519  | 
|
520  | 
end  |