author | wenzelm |
Tue, 24 Sep 2024 21:31:20 +0200 | |
changeset 80946 | b76f64d7d493 |
parent 69989 | bcba61d92558 |
permissions | -rw-r--r-- |
59720 | 1 |
(* Title: HOL/TPTP/TPTP_Proof_Reconstruction_Test_Units.thy |
55596 | 2 |
Author: Nik Sultana, Cambridge University Computer Laboratory |
3 |
||
4 |
Unit tests for proof reconstruction module. |
|
5 |
*) |
|
6 |
||
60649
e007aa6a8aa2
more explicit use of context and elimination of Thm.theory_of_thm, although unclear (and untested?) situations remain;
wenzelm
parents:
59720
diff
changeset
|
7 |
theory TPTP_Proof_Reconstruction_Test_Units |
55596 | 8 |
imports TPTP_Test TPTP_Proof_Reconstruction |
9 |
begin |
|
10 |
||
56281 | 11 |
declare [[ML_exception_trace, ML_print_depth = 200]] |
55596 | 12 |
|
60926 | 13 |
declare [[tptp_trace_reconstruction = true]] |
55596 | 14 |
|
15 |
lemma "! (X1 :: bool) (X2 :: bool) (X3 :: bool) (X4 :: bool) (X5 :: bool). P \<Longrightarrow> ! (X1 :: bool) (X3 :: bool) (X5 :: bool). P" |
|
63167 | 16 |
apply (tactic \<open>canonicalise_qtfr_order @{context} 1\<close>) |
55596 | 17 |
oops |
18 |
||
19 |
lemma "! (X1 :: bool) (X2 :: bool) (X3 :: bool) (X4 :: bool) (X5 :: bool). P \<Longrightarrow> ! (X1 :: bool) (X3 :: bool) (X5 :: bool). P" |
|
63167 | 20 |
apply (tactic \<open>canonicalise_qtfr_order @{context} 1\<close>) |
55596 | 21 |
apply (rule allI)+ |
63167 | 22 |
apply (tactic \<open>nominal_inst_parametermatch_tac @{context} @{thm allE} 1\<close>)+ |
55596 | 23 |
oops |
24 |
||
25 |
(*Could test bind_tac further with NUM667^1 inode43*) |
|
26 |
||
27 |
(* |
|
28 |
(* SEU581^2.p_nux *) |
|
29 |
(* (Annotated_step ("inode1", "bind"), *) |
|
61076 | 30 |
lemma "\<forall>(SV5::TPTP_Interpret.ind \<Rightarrow> bool) |
31 |
SV6::TPTP_Interpret.ind. |
|
55596 | 32 |
(bnd_in (bnd_dsetconstr bnd_sK1_A bnd_sK2_SY15) |
33 |
(bnd_powerset bnd_sK1_A) = |
|
34 |
bnd_in (bnd_dsetconstr SV6 SV5) |
|
35 |
(bnd_powerset SV6)) = |
|
36 |
False \<Longrightarrow> |
|
37 |
(bnd_in (bnd_dsetconstr bnd_sK1_A bnd_sK2_SY15) |
|
38 |
(bnd_powerset bnd_sK1_A) = |
|
39 |
bnd_in (bnd_dsetconstr bnd_sK1_A bnd_sK2_SY15) |
|
40 |
(bnd_powerset bnd_sK1_A)) = |
|
41 |
False" |
|
42 |
ML_prf {* |
|
43 |
open TPTP_Syntax; |
|
44 |
open TPTP_Proof; |
|
45 |
||
46 |
||
47 |
val binds = |
|
48 |
[Bind ("SV6", Atom (THF_Atom_term (Term_Func (Uninterpreted "sK1_A", [])))), Bind ("SV5", Quant (Lambda, [("SX0", SOME (Fmla_type (Atom (THF_Atom_term (Term_Func (TypeSymbol Type_Ind, []))))))], Fmla (Interpreted_ExtraLogic Apply, [Atom (THF_Atom_term (Term_Func (Uninterpreted "sK2_SY15", []))), Atom (THF_Atom_term (Term_Var "SX0"))])))] |
|
49 |
(* |> TPTP_Reconstruct.permute *) |
|
50 |
||
51 |
(* |
|
52 |
val binds = |
|
53 |
[Bind ("SV5", Quant (Lambda, [("SX0", SOME (Fmla_type (Atom (THF_Atom_term (Term_Func (TypeSymbol Type_Ind, []))))))], Fmla (Interpreted_ExtraLogic Apply, [Atom (THF_Atom_term (Term_Func (Uninterpreted "sK2_SY15", []))), Atom (THF_Atom_term (Term_Var "SX0"))]))), |
|
54 |
Bind ("SV6", Atom (THF_Atom_term (Term_Func (Uninterpreted "sK1_A", [])))) |
|
55 |
] |
|
56 |
*) |
|
57 |
||
58 |
val tec = |
|
59 |
(* |
|
60 |
map (bind_tac @{context} (hd prob_names)) binds |
|
61 |
|> FIRST |
|
62 |
*) |
|
63 |
bind_tac @{context} (hd prob_names) binds |
|
64 |
*} |
|
65 |
apply (tactic {*tec*}) |
|
66 |
done |
|
67 |
||
68 |
(* (Annotated_step ("inode2", "bind"), *) |
|
61076 | 69 |
lemma "\<forall>(SV7::TPTP_Interpret.ind) SV8::TPTP_Interpret.ind. |
55596 | 70 |
(bnd_subset SV8 SV7 = |
71 |
bnd_subset (bnd_dsetconstr bnd_sK1_A bnd_sK2_SY15) |
|
72 |
bnd_sK1_A) = |
|
73 |
False \<or> |
|
74 |
bnd_in SV8 (bnd_powerset SV7) = False \<Longrightarrow> |
|
75 |
(bnd_subset (bnd_dsetconstr bnd_sK1_A bnd_sK2_SY15) |
|
76 |
bnd_sK1_A = |
|
77 |
bnd_subset (bnd_dsetconstr bnd_sK1_A bnd_sK2_SY15) |
|
78 |
bnd_sK1_A) = |
|
79 |
False \<or> |
|
80 |
bnd_in (bnd_dsetconstr bnd_sK1_A bnd_sK2_SY15) |
|
81 |
(bnd_powerset bnd_sK1_A) = |
|
82 |
False" |
|
83 |
ML_prf {* |
|
84 |
open TPTP_Syntax; |
|
85 |
open TPTP_Proof; |
|
86 |
||
87 |
||
88 |
val binds = |
|
89 |
[Bind ("SV8", Fmla (Interpreted_ExtraLogic Apply, [Fmla (Interpreted_ExtraLogic Apply, [Atom (THF_Atom_term (Term_Func (Uninterpreted "dsetconstr", []))), Atom (THF_Atom_term (Term_Func (Uninterpreted "sK1_A", [])))]), Quant (Lambda, [("SX0", SOME (Fmla_type (Atom (THF_Atom_term (Term_Func (TypeSymbol Type_Ind, []))))))], Fmla (Interpreted_ExtraLogic Apply, [Atom (THF_Atom_term (Term_Func (Uninterpreted "sK2_SY15", []))), Atom (THF_Atom_term (Term_Var "SX0"))]))])), Bind ("SV7", Atom (THF_Atom_term (Term_Func (Uninterpreted "sK1_A", []))))] |
|
90 |
(* |> TPTP_Reconstruct.permute *) |
|
91 |
||
92 |
val tec = |
|
93 |
(* |
|
94 |
map (bind_tac @{context} (hd prob_names)) binds |
|
95 |
|> FIRST |
|
96 |
*) |
|
97 |
bind_tac @{context} (hd prob_names) binds |
|
98 |
*} |
|
99 |
apply (tactic {*tec*}) |
|
100 |
done |
|
101 |
*) |
|
102 |
||
103 |
(* |
|
104 |
from SEU897^5 |
|
105 |
lemma " |
|
106 |
\<forall>SV9 SV10 SV11 SV12 SV13 SV14. |
|
107 |
(((((bnd_sK5_SY14 SV14 SV13 SV12 = SV11) = False \<or> |
|
108 |
(bnd_sK4_SX0 = SV10 (bnd_sK5_SY14 SV9 SV10 SV11)) = |
|
109 |
False) \<or> |
|
110 |
bnd_cR SV14 = False) \<or> |
|
111 |
(SV12 = SV13 SV14) = False) \<or> |
|
112 |
bnd_cR SV9 = False) \<or> |
|
113 |
(SV11 = SV10 SV9) = False \<Longrightarrow> |
|
114 |
\<forall>SV14 SV13 SV12 SV10 SV9. |
|
115 |
(((((bnd_sK5_SY14 SV14 SV13 SV12 = |
|
116 |
bnd_sK5_SY14 SV14 SV13 SV12) = |
|
117 |
False \<or> |
|
118 |
(bnd_sK4_SX0 = |
|
119 |
SV10 |
|
120 |
(bnd_sK5_SY14 SV9 SV10 |
|
121 |
(bnd_sK5_SY14 SV14 SV13 SV12))) = |
|
122 |
False) \<or> |
|
123 |
bnd_cR SV14 = False) \<or> |
|
124 |
(SV12 = SV13 SV14) = False) \<or> |
|
125 |
bnd_cR SV9 = False) \<or> |
|
126 |
(bnd_sK5_SY14 SV14 SV13 SV12 = SV10 SV9) = False" |
|
127 |
ML_prf {* |
|
128 |
open TPTP_Syntax; |
|
129 |
open TPTP_Proof; |
|
130 |
||
131 |
val binds = |
|
132 |
[Bind ("SV11", Fmla (Interpreted_ExtraLogic Apply, [Fmla (Interpreted_ExtraLogic Apply, [Fmla (Interpreted_ExtraLogic Apply, [Atom (THF_Atom_term (Term_Func (Uninterpreted "sK5_SY14", []))), Atom (THF_Atom_term (Term_Var "SV14"))]), Atom (THF_Atom_term (Term_Var "SV13"))]), Atom (THF_Atom_term (Term_Var "SV12"))]))] |
|
133 |
||
134 |
val tec = bind_tac @{context} (hd prob_names) binds |
|
135 |
*} |
|
136 |
apply (tactic {*tec*}) |
|
137 |
done |
|
138 |
*) |
|
139 |
||
140 |
||
141 |
subsection "Interpreting the inferences" |
|
142 |
||
143 |
(*from SET598^5 |
|
144 |
lemma "(bnd_sK1_X = (\<lambda>SY17. bnd_sK2_Y SY17 \<and> bnd_sK3_Z SY17) \<longrightarrow> |
|
145 |
((\<forall>SY25. bnd_sK1_X SY25 \<longrightarrow> bnd_sK2_Y SY25) \<and> |
|
146 |
(\<forall>SY26. bnd_sK1_X SY26 \<longrightarrow> bnd_sK3_Z SY26)) \<and> |
|
147 |
(\<forall>SY27. |
|
148 |
(\<forall>SY21. SY27 SY21 \<longrightarrow> bnd_sK2_Y SY21) \<and> |
|
149 |
(\<forall>SY15. SY27 SY15 \<longrightarrow> bnd_sK3_Z SY15) \<longrightarrow> |
|
150 |
(\<forall>SY30. SY27 SY30 \<longrightarrow> bnd_sK1_X SY30))) = |
|
151 |
False \<Longrightarrow> |
|
152 |
(\<not> (bnd_sK1_X = (\<lambda>SY17. bnd_sK2_Y SY17 \<and> bnd_sK3_Z SY17) \<longrightarrow> |
|
153 |
((\<forall>SY25. bnd_sK1_X SY25 \<longrightarrow> bnd_sK2_Y SY25) \<and> |
|
154 |
(\<forall>SY26. bnd_sK1_X SY26 \<longrightarrow> bnd_sK3_Z SY26)) \<and> |
|
155 |
(\<forall>SY27. |
|
156 |
(\<forall>SY21. SY27 SY21 \<longrightarrow> bnd_sK2_Y SY21) \<and> |
|
157 |
(\<forall>SY15. SY27 SY15 \<longrightarrow> bnd_sK3_Z SY15) \<longrightarrow> |
|
158 |
(\<forall>SY30. SY27 SY30 \<longrightarrow> bnd_sK1_X SY30)))) = |
|
159 |
True" |
|
160 |
apply (tactic {*polarity_switch_tac @{context}*}) |
|
161 |
done |
|
162 |
lemma " |
|
163 |
(((\<forall>SY25. bnd_sK1_X SY25 \<longrightarrow> bnd_sK2_Y SY25) \<and> |
|
164 |
(\<forall>SY26. bnd_sK1_X SY26 \<longrightarrow> bnd_sK3_Z SY26)) \<and> |
|
165 |
(\<forall>SY27. |
|
166 |
(\<forall>SY21. SY27 SY21 \<longrightarrow> bnd_sK2_Y SY21) \<and> |
|
167 |
(\<forall>SY15. SY27 SY15 \<longrightarrow> bnd_sK3_Z SY15) \<longrightarrow> |
|
168 |
(\<forall>SY30. SY27 SY30 \<longrightarrow> bnd_sK1_X SY30)) \<longrightarrow> |
|
169 |
bnd_sK1_X = (\<lambda>SY17. bnd_sK2_Y SY17 \<and> bnd_sK3_Z SY17)) = |
|
170 |
False \<Longrightarrow> |
|
171 |
(\<not> (((\<forall>SY25. bnd_sK1_X SY25 \<longrightarrow> bnd_sK2_Y SY25) \<and> |
|
172 |
(\<forall>SY26. bnd_sK1_X SY26 \<longrightarrow> bnd_sK3_Z SY26)) \<and> |
|
173 |
(\<forall>SY27. |
|
174 |
(\<forall>SY21. SY27 SY21 \<longrightarrow> bnd_sK2_Y SY21) \<and> |
|
175 |
(\<forall>SY15. SY27 SY15 \<longrightarrow> bnd_sK3_Z SY15) \<longrightarrow> |
|
176 |
(\<forall>SY30. SY27 SY30 \<longrightarrow> bnd_sK1_X SY30)) \<longrightarrow> |
|
177 |
bnd_sK1_X = (\<lambda>SY17. bnd_sK2_Y SY17 \<and> bnd_sK3_Z SY17))) = |
|
178 |
True" |
|
179 |
apply (tactic {*polarity_switch_tac @{context}*}) |
|
180 |
done |
|
181 |
*) |
|
182 |
||
183 |
(* beware lack of type annotations |
|
184 |
(* lemma "!!x. (A x = B x) = False ==> (B x = A x) = False" *) |
|
185 |
(* lemma "!!x. (A x = B x) = True ==> (B x = A x) = True" *) |
|
186 |
(* lemma "((A x) = (B x)) = True ==> ((B x) = (A x)) = True" *) |
|
187 |
lemma "(A = B) = True ==> (B = A) = True" |
|
188 |
*) |
|
189 |
lemma "!!x. ((A x :: bool) = B x) = False ==> (B x = A x) = False" |
|
63167 | 190 |
apply (tactic \<open>expander_animal @{context} 1\<close>) |
55596 | 191 |
oops |
192 |
||
193 |
lemma "(A & B) ==> ~(~A | ~B)" |
|
63167 | 194 |
by (tactic \<open>expander_animal @{context} 1\<close>) |
55596 | 195 |
|
196 |
lemma "(A | B) ==> ~(~A & ~B)" |
|
63167 | 197 |
by (tactic \<open>expander_animal @{context} 1\<close>) |
55596 | 198 |
|
199 |
lemma "(A | B) | C ==> A | (B | C)" |
|
63167 | 200 |
by (tactic \<open>expander_animal @{context} 1\<close>) |
55596 | 201 |
|
202 |
lemma "(~~A) = B ==> A = B" |
|
63167 | 203 |
by (tactic \<open>expander_animal @{context} 1\<close>) |
55596 | 204 |
|
205 |
lemma "~ ~ (A = True) ==> A = True" |
|
63167 | 206 |
by (tactic \<open>expander_animal @{context} 1\<close>) |
55596 | 207 |
|
208 |
(*This might not be a goal which might realistically arise: |
|
209 |
lemma "((~~A) = B) & (B = (~~A)) ==> ~(~(A = B) | ~(B = A))" *) |
|
210 |
lemma "((~~A) = True) ==> ~(~(A = True) | ~(True = A))" |
|
63167 | 211 |
apply (tactic \<open>expander_animal @{context} 1\<close>)+ |
55596 | 212 |
apply (rule conjI) |
213 |
apply assumption |
|
214 |
apply (rule sym, assumption) |
|
215 |
done |
|
216 |
||
217 |
lemma "A = B ==> ((~~A) = B) & (B = (~~A)) ==> ~(~(A = B) | ~(B = A))" |
|
63167 | 218 |
by (tactic \<open>expander_animal @{context} 1\<close>)+ |
55596 | 219 |
|
220 |
(*some lemmas assume constants in the signature of PUZ114^5*) |
|
221 |
consts |
|
222 |
PUZ114_5_bnd_sK1 :: "TPTP_Interpret.ind" |
|
223 |
PUZ114_5_bnd_sK2 :: "TPTP_Interpret.ind" |
|
224 |
PUZ114_5_bnd_sK3 :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
225 |
PUZ114_5_bnd_sK4 :: "(TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool) \<Rightarrow> TPTP_Interpret.ind" |
|
226 |
PUZ114_5_bnd_sK5 :: "(TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool) \<Rightarrow> TPTP_Interpret.ind" |
|
227 |
PUZ114_5_bnd_s :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
228 |
PUZ114_5_bnd_c1 :: TPTP_Interpret.ind |
|
229 |
||
230 |
(*testing logical expansion*) |
|
231 |
lemma "!! SY30. (SY30 PUZ114_5_bnd_c1 PUZ114_5_bnd_c1 \<and> |
|
232 |
(\<forall>Xj Xk. |
|
233 |
SY30 Xj Xk \<longrightarrow> |
|
234 |
SY30 (PUZ114_5_bnd_s (PUZ114_5_bnd_s Xj)) Xk \<and> |
|
235 |
SY30 (PUZ114_5_bnd_s Xj) (PUZ114_5_bnd_s Xk)) \<longrightarrow> |
|
236 |
SY30 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2) |
|
237 |
==> ( |
|
238 |
(~ SY30 PUZ114_5_bnd_c1 PUZ114_5_bnd_c1) |
|
239 |
| (~ (\<forall>Xj Xk. |
|
240 |
SY30 Xj Xk \<longrightarrow> |
|
241 |
SY30 (PUZ114_5_bnd_s (PUZ114_5_bnd_s Xj)) Xk \<and> |
|
242 |
SY30 (PUZ114_5_bnd_s Xj) (PUZ114_5_bnd_s Xk))) |
|
243 |
| SY30 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2 |
|
244 |
)" |
|
63167 | 245 |
by (tactic \<open>expander_animal @{context} 1\<close>)+ |
55596 | 246 |
|
247 |
(* |
|
248 |
extcnf_forall_pos: |
|
249 |
||
250 |
(! X. L1) | ... | Ln |
|
251 |
---------------------------- X' fresh |
|
252 |
! X'. (L1[X'/X] | ... | Ln) |
|
253 |
||
254 |
After elimination rule has been applied we'll have a subgoal which looks like this: |
|
255 |
(! X. L1) |
|
256 |
---------------------------- X' fresh |
|
257 |
! X'. (L1[X'/X] | ... | Ln) |
|
258 |
and we need to transform it so that, in Isabelle, we go from |
|
259 |
(! X. L1) ==> ! X'. (L1[X'/X] | ... | Ln) |
|
260 |
to |
|
261 |
\<And> X'. L1[X'/X] ==> (L1[X'/X] | ... | Ln) |
|
262 |
(where X' is fresh, or renamings are done suitably).*) |
|
263 |
||
264 |
lemma "A | B \<Longrightarrow> A | B | C" |
|
63167 | 265 |
apply (tactic \<open>flip_conclusion_tac @{context} 1\<close>)+ |
266 |
apply (tactic \<open>break_hypotheses 1\<close>)+ |
|
55596 | 267 |
oops |
268 |
||
269 |
consts |
|
270 |
CSR122_1_bnd_lBill_THFTYPE_i :: TPTP_Interpret.ind |
|
271 |
CSR122_1_bnd_lMary_THFTYPE_i :: TPTP_Interpret.ind |
|
272 |
CSR122_1_bnd_lSue_THFTYPE_i :: TPTP_Interpret.ind |
|
273 |
CSR122_1_bnd_n2009_THFTYPE_i :: TPTP_Interpret.ind |
|
274 |
CSR122_1_bnd_lYearFn_THFTYPE_IiiI :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
275 |
CSR122_1_bnd_holdsDuring_THFTYPE_IiooI :: |
|
276 |
"TPTP_Interpret.ind \<Rightarrow> bool \<Rightarrow> bool" |
|
277 |
CSR122_1_bnd_likes_THFTYPE_IiioI :: |
|
278 |
"TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
279 |
||
280 |
lemma "\<forall>SV2. (CSR122_1_bnd_holdsDuring_THFTYPE_IiooI |
|
281 |
(CSR122_1_bnd_lYearFn_THFTYPE_IiiI CSR122_1_bnd_n2009_THFTYPE_i) |
|
282 |
(\<not> (\<not> CSR122_1_bnd_likes_THFTYPE_IiioI |
|
283 |
CSR122_1_bnd_lMary_THFTYPE_i |
|
284 |
CSR122_1_bnd_lBill_THFTYPE_i \<or> |
|
285 |
\<not> CSR122_1_bnd_likes_THFTYPE_IiioI |
|
286 |
CSR122_1_bnd_lSue_THFTYPE_i |
|
287 |
CSR122_1_bnd_lBill_THFTYPE_i)) = |
|
288 |
CSR122_1_bnd_holdsDuring_THFTYPE_IiooI SV2 True) = |
|
289 |
False \<Longrightarrow> |
|
290 |
\<forall>SV2. (CSR122_1_bnd_lYearFn_THFTYPE_IiiI CSR122_1_bnd_n2009_THFTYPE_i = |
|
291 |
SV2) = |
|
292 |
False \<or> |
|
293 |
((\<not> (\<not> CSR122_1_bnd_likes_THFTYPE_IiioI |
|
294 |
CSR122_1_bnd_lMary_THFTYPE_i CSR122_1_bnd_lBill_THFTYPE_i \<or> |
|
295 |
\<not> CSR122_1_bnd_likes_THFTYPE_IiioI CSR122_1_bnd_lSue_THFTYPE_i |
|
296 |
CSR122_1_bnd_lBill_THFTYPE_i)) = |
|
297 |
True) = |
|
298 |
False" |
|
299 |
apply (rule allI, erule_tac x = "SV2" in allE) |
|
63167 | 300 |
apply (tactic \<open>extuni_dec_tac @{context} 1\<close>) |
55596 | 301 |
done |
302 |
||
303 |
(*SEU882^5*) |
|
304 |
(* |
|
305 |
lemma |
|
61076 | 306 |
"\<forall>(SV2::TPTP_Interpret.ind) |
307 |
SV1::TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind. |
|
55596 | 308 |
(SV1 SV2 = bnd_sK1_Xy) = |
309 |
False |
|
310 |
\<Longrightarrow> |
|
61076 | 311 |
\<forall>SV2::TPTP_Interpret.ind. |
55596 | 312 |
(bnd_sK1_Xy = bnd_sK1_Xy) = |
313 |
False" |
|
314 |
ML_prf {* |
|
315 |
open TPTP_Syntax; |
|
316 |
open TPTP_Proof; |
|
317 |
||
318 |
val binds = |
|
319 |
[Bind ("SV1", Quant (Lambda, [("SX0", SOME (Fmla_type (Atom (THF_Atom_term (Term_Func (TypeSymbol Type_Ind, []))))))], Atom (THF_Atom_term (Term_Func (Uninterpreted "sK1_Xy", [])))))] |
|
320 |
||
321 |
val tec = bind_tac @{context} (hd prob_names) binds |
|
322 |
*} |
|
323 |
(* |
|
324 |
apply (tactic {*strip_qtfrs |
|
325 |
(* THEN tec *)*}) |
|
326 |
*) |
|
327 |
apply (tactic {*tec*}) |
|
328 |
done |
|
329 |
*) |
|
330 |
||
331 |
lemma "A | B \<Longrightarrow> C1 | A | C2 | B | C3" |
|
332 |
apply (erule disjE) |
|
63167 | 333 |
apply (tactic \<open>clause_breaker 1\<close>) |
334 |
apply (tactic \<open>clause_breaker 1\<close>) |
|
55596 | 335 |
done |
336 |
||
337 |
lemma "A \<Longrightarrow> A" |
|
63167 | 338 |
apply (tactic \<open>clause_breaker 1\<close>) |
55596 | 339 |
done |
340 |
||
341 |
typedecl NUM667_1_bnd_nat |
|
342 |
consts |
|
343 |
NUM667_1_bnd_less :: "NUM667_1_bnd_nat \<Rightarrow> NUM667_1_bnd_nat \<Rightarrow> bool" |
|
344 |
NUM667_1_bnd_x :: NUM667_1_bnd_nat |
|
345 |
NUM667_1_bnd_y :: NUM667_1_bnd_nat |
|
346 |
||
347 |
(*NUM667^1 node 302 -- dec*) |
|
348 |
lemma "\<forall>SV12 SV13 SV14 SV9 SV10 SV11. |
|
349 |
((((NUM667_1_bnd_less SV12 SV13 = NUM667_1_bnd_less SV11 SV10) = False \<or> |
|
350 |
(SV14 = SV13) = False) \<or> |
|
351 |
NUM667_1_bnd_less SV12 SV14 = False) \<or> |
|
352 |
NUM667_1_bnd_less SV9 SV10 = True) \<or> |
|
353 |
(SV9 = SV11) = |
|
354 |
False \<Longrightarrow> |
|
355 |
\<forall>SV9 SV14 SV10 SV13 SV11 SV12. |
|
356 |
(((((SV12 = SV11) = False \<or> (SV13 = SV10) = False) \<or> |
|
357 |
(SV14 = SV13) = False) \<or> |
|
358 |
NUM667_1_bnd_less SV12 SV14 = False) \<or> |
|
359 |
NUM667_1_bnd_less SV9 SV10 = True) \<or> |
|
360 |
(SV9 = SV11) = |
|
361 |
False" |
|
63167 | 362 |
apply (tactic \<open>strip_qtfrs_tac @{context}\<close>) |
363 |
apply (tactic \<open>break_hypotheses 1\<close>) |
|
364 |
apply (tactic \<open>ALLGOALS (TRY o clause_breaker)\<close>) |
|
365 |
apply (tactic \<open>extuni_dec_tac @{context} 1\<close>) |
|
55596 | 366 |
done |
367 |
||
63167 | 368 |
ML \<open> |
55596 | 369 |
extuni_dec_n @{context} 2; |
63167 | 370 |
\<close> |
55596 | 371 |
|
372 |
(*NUM667^1, node 202*) |
|
373 |
lemma "\<forall>SV9 SV10 SV11. |
|
374 |
((((SV9 = SV11) = (NUM667_1_bnd_x = NUM667_1_bnd_y)) = False \<or> |
|
375 |
NUM667_1_bnd_less SV11 SV10 = False) \<or> |
|
376 |
NUM667_1_bnd_less SV9 SV10 = True) \<or> |
|
377 |
NUM667_1_bnd_less NUM667_1_bnd_x NUM667_1_bnd_y = |
|
378 |
True \<Longrightarrow> |
|
379 |
\<forall>SV10 SV9 SV11. |
|
380 |
((((SV11 = NUM667_1_bnd_x) = False \<or> (SV9 = NUM667_1_bnd_y) = False) \<or> |
|
381 |
NUM667_1_bnd_less SV11 SV10 = False) \<or> |
|
382 |
NUM667_1_bnd_less SV9 SV10 = True) \<or> |
|
383 |
NUM667_1_bnd_less NUM667_1_bnd_x NUM667_1_bnd_y = |
|
384 |
True" |
|
63167 | 385 |
apply (tactic \<open>strip_qtfrs_tac @{context}\<close>) |
386 |
apply (tactic \<open>break_hypotheses 1\<close>) |
|
387 |
apply (tactic \<open>ALLGOALS (TRY o clause_breaker)\<close>) |
|
388 |
apply (tactic \<open>extuni_dec_tac @{context} 1\<close>) |
|
55596 | 389 |
done |
390 |
||
391 |
(*NUM667^1 node 141*) |
|
392 |
(* |
|
393 |
lemma "((bnd_x = bnd_x) = False \<or> (bnd_y = bnd_z) = False) \<or> |
|
394 |
bnd_less bnd_x bnd_y = True \<Longrightarrow> |
|
395 |
(bnd_y = bnd_z) = False \<or> bnd_less bnd_x bnd_y = True" |
|
396 |
apply (tactic {*strip_qtfrs*}) |
|
397 |
apply (tactic {*break_hypotheses 1*}) |
|
398 |
apply (tactic {*ALLGOALS (TRY o clause_breaker)*}) |
|
399 |
apply (erule extuni_triv) |
|
400 |
done |
|
401 |
*) |
|
402 |
||
63167 | 403 |
ML \<open> |
55596 | 404 |
fun full_extcnf_combined_tac ctxt = |
405 |
extcnf_combined_tac ctxt NONE |
|
406 |
[ConstsDiff, |
|
407 |
StripQuantifiers, |
|
408 |
Flip_Conclusion, |
|
409 |
Loop [ |
|
410 |
Close_Branch, |
|
411 |
ConjI, |
|
412 |
King_Cong, |
|
413 |
Break_Hypotheses, |
|
414 |
Existential_Free, |
|
415 |
Existential_Var, |
|
416 |
Universal, |
|
417 |
RemoveRedundantQuantifications], |
|
418 |
CleanUp [RemoveHypothesesFromSkolemDefs, RemoveDuplicates], |
|
419 |
AbsorbSkolemDefs] |
|
420 |
[] |
|
63167 | 421 |
\<close> |
55596 | 422 |
|
63167 | 423 |
ML \<open> |
55596 | 424 |
fun nonfull_extcnf_combined_tac ctxt feats = |
425 |
extcnf_combined_tac ctxt NONE |
|
426 |
[ConstsDiff, |
|
427 |
StripQuantifiers, |
|
428 |
InnerLoopOnce (Break_Hypotheses :: feats), |
|
429 |
AbsorbSkolemDefs] |
|
430 |
[] |
|
63167 | 431 |
\<close> |
55596 | 432 |
|
433 |
consts SEU882_5_bnd_sK1_Xy :: TPTP_Interpret.ind |
|
434 |
lemma |
|
435 |
"\<forall>SV2. (SEU882_5_bnd_sK1_Xy = SEU882_5_bnd_sK1_Xy) = False \<Longrightarrow> |
|
436 |
(SEU882_5_bnd_sK1_Xy = SEU882_5_bnd_sK1_Xy) = False" |
|
437 |
(* apply (erule_tac x = "(@X. False)" in allE) *) |
|
438 |
(* apply (tactic {*remove_redundant_quantification 1*}) *) |
|
439 |
(* apply assumption *) |
|
63167 | 440 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [RemoveRedundantQuantifications, Extuni_FlexRigid]\<close>) |
55596 | 441 |
|
442 |
(*NUM667^1*) |
|
443 |
(* |
|
444 |
(* (Annotated_step ("153", "extuni_triv"), *) |
|
445 |
lemma "((bnd_y = bnd_x) = False \<or> (bnd_z = bnd_z) = False) \<or> |
|
446 |
(bnd_y = bnd_z) = True \<Longrightarrow> |
|
447 |
(bnd_y = bnd_x) = False \<or> (bnd_y = bnd_z) = True" |
|
448 |
apply (tactic {*nonfull_extcnf_combined_tac [Extuni_Triv]*}) |
|
449 |
done |
|
450 |
(* (Annotated_step ("162", "extuni_triv"), *) |
|
451 |
lemma "((bnd_y = bnd_x) = False \<or> (bnd_z = bnd_z) = False) \<or> |
|
452 |
bnd_less bnd_y bnd_z = True \<Longrightarrow> |
|
453 |
(bnd_y = bnd_x) = False \<or> bnd_less bnd_y bnd_z = True" |
|
454 |
apply (tactic {*nonfull_extcnf_combined_tac [Extuni_Triv]*}) |
|
455 |
done |
|
456 |
*) |
|
457 |
||
458 |
(* SEU602^2 *) |
|
459 |
consts |
|
460 |
SEU602_2_bnd_sK7_E :: "(TPTP_Interpret.ind \<Rightarrow> bool) \<Rightarrow> TPTP_Interpret.ind" |
|
461 |
SEU602_2_bnd_sK2_SY17 :: TPTP_Interpret.ind |
|
462 |
SEU602_2_bnd_in :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
463 |
||
464 |
(* (Annotated_step ("113", "extuni_func"), *) |
|
61076 | 465 |
lemma "\<forall>SV49::TPTP_Interpret.ind \<Rightarrow> bool. |
55596 | 466 |
(SV49 = |
61076 | 467 |
(\<lambda>SY23::TPTP_Interpret.ind. |
55596 | 468 |
\<not> SEU602_2_bnd_in SY23 SEU602_2_bnd_sK2_SY17)) = |
469 |
False \<Longrightarrow> |
|
61076 | 470 |
\<forall>SV49::TPTP_Interpret.ind \<Rightarrow> bool. |
55596 | 471 |
(SV49 (SEU602_2_bnd_sK7_E SV49) = |
472 |
(\<not> SEU602_2_bnd_in (SEU602_2_bnd_sK7_E SV49) SEU602_2_bnd_sK2_SY17)) = |
|
473 |
False" |
|
474 |
(*FIXME this (and similar) tests are getting the "Bad background theory of goal state" error since upgrading to Isabelle2013-2.*) |
|
63167 | 475 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Extuni_Func, Existential_Var]\<close>) |
55596 | 476 |
|
477 |
consts |
|
478 |
SEV405_5_bnd_sK1_SY2 :: "(TPTP_Interpret.ind \<Rightarrow> bool) \<Rightarrow> TPTP_Interpret.ind" |
|
479 |
SEV405_5_bnd_cA :: bool |
|
480 |
||
61076 | 481 |
lemma "\<forall>SV1::TPTP_Interpret.ind \<Rightarrow> bool. |
482 |
(\<forall>SY2::TPTP_Interpret.ind. |
|
55596 | 483 |
\<not> (\<not> (\<not> SV1 SY2 \<or> SEV405_5_bnd_cA) \<or> |
484 |
\<not> (\<not> SEV405_5_bnd_cA \<or> SV1 SY2))) = |
|
485 |
False \<Longrightarrow> |
|
61076 | 486 |
\<forall>SV1::TPTP_Interpret.ind \<Rightarrow> bool. |
55596 | 487 |
(\<not> (\<not> (\<not> SV1 (SEV405_5_bnd_sK1_SY2 SV1) \<or> SEV405_5_bnd_cA) \<or> |
488 |
\<not> (\<not> SEV405_5_bnd_cA \<or> SV1 (SEV405_5_bnd_sK1_SY2 SV1)))) = |
|
489 |
False" |
|
63167 | 490 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Existential_Var]\<close>) |
55596 | 491 |
(* |
492 |
strip quantifiers -- creating a space of permutations; from shallowest to deepest (iterative deepening) |
|
493 |
flip the conclusion -- giving us branch |
|
494 |
apply some collection of rules, in some order, until the space has been explored completely. advantage of not having extcnf_combined: search space is shallow -- particularly if the collection of rules is small. |
|
495 |
*) |
|
496 |
||
497 |
consts |
|
498 |
SEU581_2_bnd_sK1 :: "TPTP_Interpret.ind" |
|
499 |
SEU581_2_bnd_sK2 :: "TPTP_Interpret.ind \<Rightarrow> bool" |
|
500 |
SEU581_2_bnd_subset :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> HOL.bool" |
|
501 |
SEU581_2_bnd_dsetconstr :: "TPTP_Interpret.ind \<Rightarrow> (TPTP_Interpret.ind \<Rightarrow> HOL.bool) \<Rightarrow> TPTP_Interpret.ind" |
|
502 |
||
503 |
(*testing parameters*) |
|
504 |
lemma "! X :: TPTP_Interpret.ind . (\<forall>A B. SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \<longrightarrow> SEU581_2_bnd_subset B A) = True |
|
505 |
\<Longrightarrow> ! X :: TPTP_Interpret.ind . (\<forall>A B. \<not> SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \<or> SEU581_2_bnd_subset B A) = True" |
|
63167 | 506 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 507 |
|
508 |
lemma "(A & B) = True ==> (A | B) = True" |
|
63167 | 509 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 510 |
|
511 |
lemma "(\<not> bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = True \<Longrightarrow> (bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = False" |
|
63167 | 512 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 513 |
|
514 |
(*testing goals with parameters*) |
|
515 |
lemma "(\<not> bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = True \<Longrightarrow> ! X. (bnd_subset (bnd_dsetconstr bnd_sK1 bnd_sK2) bnd_sK1) = False" |
|
63167 | 516 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 517 |
|
518 |
lemma "(A & B) = True ==> (B & A) = True" |
|
63167 | 519 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 520 |
|
521 |
(*appreciating differences between THEN, REPEAT, and APPEND*) |
|
522 |
lemma "A & B ==> B & A" |
|
63167 | 523 |
apply (tactic \<open> |
55596 | 524 |
TRY (etac @{thm conjE} 1) |
63167 | 525 |
THEN TRY (rtac @{thm conjI} 1)\<close>) |
55596 | 526 |
by assumption+ |
527 |
||
528 |
lemma "A & B ==> B & A" |
|
63167 | 529 |
by (tactic \<open> |
55596 | 530 |
etac @{thm conjE} 1 |
531 |
THEN rtac @{thm conjI} 1 |
|
63167 | 532 |
THEN REPEAT (atac 1)\<close>) |
55596 | 533 |
|
534 |
lemma "A & B ==> B & A" |
|
63167 | 535 |
apply (tactic \<open> |
55596 | 536 |
rtac @{thm conjI} 1 |
63167 | 537 |
APPEND etac @{thm conjE} 1\<close>)+ |
55596 | 538 |
back |
539 |
by assumption+ |
|
540 |
||
541 |
consts |
|
542 |
SEU581_2_bnd_sK3 :: "TPTP_Interpret.ind" |
|
543 |
SEU581_2_bnd_sK4 :: "TPTP_Interpret.ind" |
|
544 |
SEU581_2_bnd_sK5 :: "(TPTP_Interpret.ind \<Rightarrow> bool) \<Rightarrow> TPTP_Interpret.ind" |
|
545 |
SEU581_2_bnd_powerset :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
546 |
SEU581_2_bnd_in :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
547 |
||
548 |
consts |
|
549 |
bnd_c1 :: TPTP_Interpret.ind |
|
550 |
bnd_s :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
551 |
||
552 |
lemma "(\<forall>SX0. (\<not> (\<not> SX0 (PUZ114_5_bnd_sK4 SX0) (PUZ114_5_bnd_sK5 SX0) \<or> |
|
553 |
\<not> (\<not> SX0 (bnd_s (bnd_s (PUZ114_5_bnd_sK4 SX0))) |
|
554 |
(PUZ114_5_bnd_sK5 SX0) \<or> |
|
555 |
\<not> SX0 (bnd_s (PUZ114_5_bnd_sK4 SX0)) |
|
556 |
(bnd_s (PUZ114_5_bnd_sK5 SX0)))) \<or> |
|
557 |
\<not> SX0 bnd_c1 bnd_c1) \<or> |
|
558 |
SX0 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2) = |
|
559 |
True ==> \<forall>SV1. ((\<not> (\<not> SV1 (PUZ114_5_bnd_sK4 SV1) (PUZ114_5_bnd_sK5 SV1) \<or> |
|
560 |
\<not> (\<not> SV1 (bnd_s (bnd_s (PUZ114_5_bnd_sK4 SV1))) |
|
561 |
(PUZ114_5_bnd_sK5 SV1) \<or> |
|
562 |
\<not> SV1 (bnd_s (PUZ114_5_bnd_sK4 SV1)) |
|
563 |
(bnd_s (PUZ114_5_bnd_sK5 SV1)))) \<or> |
|
564 |
\<not> SV1 bnd_c1 bnd_c1) \<or> |
|
565 |
SV1 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2) = |
|
566 |
True" |
|
63167 | 567 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 568 |
|
569 |
lemma "(\<not> SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1) = True \<Longrightarrow> (SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1) = False" |
|
63167 | 570 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 571 |
|
572 |
(*testing repeated application of simulator*) |
|
573 |
lemma "(\<not> \<not> False) = True \<Longrightarrow> |
|
574 |
SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1 = True \<or> |
|
575 |
False = True \<or> False = True \<or> False = True" |
|
63167 | 576 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 577 |
|
578 |
(*Testing non-normal conclusion. Ideally we should be able to apply |
|
579 |
the tactic to arbitrary chains of extcnf steps -- where it's not |
|
580 |
generally the case that the conclusions are normal.*) |
|
581 |
lemma "(\<not> \<not> False) = True \<Longrightarrow> |
|
582 |
SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1 = True \<or> |
|
583 |
(\<not> False) = False" |
|
63167 | 584 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 585 |
|
586 |
(*testing repeated application of simulator, involving different extcnf rules*) |
|
587 |
lemma "(\<not> \<not> (False | False)) = True \<Longrightarrow> |
|
588 |
SEU581_2_bnd_subset (SEU581_2_bnd_dsetconstr SEU581_2_bnd_sK1 SEU581_2_bnd_sK2) SEU581_2_bnd_sK1 = True \<or> |
|
589 |
False = True \<or> False = True \<or> False = True" |
|
63167 | 590 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 591 |
|
592 |
(*testing logical expansion*) |
|
593 |
lemma "(\<forall>A B. SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \<longrightarrow> SEU581_2_bnd_subset B A) = True |
|
594 |
\<Longrightarrow> (\<forall>A B. \<not> SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \<or> SEU581_2_bnd_subset B A) = True" |
|
63167 | 595 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 596 |
|
597 |
(*testing extcnf_forall_pos*) |
|
598 |
lemma "(\<forall>A Xphi. SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr A Xphi) (SEU581_2_bnd_powerset A)) = True \<Longrightarrow> \<forall>SV1. (\<forall>SY14. |
|
599 |
SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr SV1 SY14) |
|
600 |
(SEU581_2_bnd_powerset SV1)) = True" |
|
63167 | 601 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 602 |
|
603 |
lemma "((\<forall>A Xphi. SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr A Xphi) (SEU581_2_bnd_powerset A)) = True) | ((~ False) = False) \<Longrightarrow> |
|
604 |
\<forall>SV1. ((\<forall>SY14. SEU581_2_bnd_in (SEU581_2_bnd_dsetconstr SV1 SY14) (SEU581_2_bnd_powerset SV1)) = True) | ((~ False) = False)" |
|
63167 | 605 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 606 |
|
607 |
(*testing parameters*) |
|
608 |
lemma "(\<forall>A B. SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \<longrightarrow> SEU581_2_bnd_subset B A) = True |
|
609 |
\<Longrightarrow> ! X. (\<forall>A B. \<not> SEU581_2_bnd_in B (SEU581_2_bnd_powerset A) \<or> SEU581_2_bnd_subset B A) = True" |
|
63167 | 610 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 611 |
|
612 |
lemma "((? A .P1 A) = False) | P2 = True \<Longrightarrow> !X. ((P1 X) = False | P2 = True)" |
|
63167 | 613 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 614 |
|
615 |
lemma "((!A . (P1a A | P1b A)) = True) | (P2 = True) \<Longrightarrow> !X. (P1a X = True | P1b X = True | P2 = True)" |
|
63167 | 616 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 617 |
|
618 |
lemma "! Y. (((!A .(P1a A | P1b A)) = True) | P2 = True) \<Longrightarrow> ! Y. (!X. (P1a X = True | P1b X = True | P2 = True))" |
|
63167 | 619 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 620 |
|
621 |
lemma "! Y. (((!A .(P1a A | P1b A)) = True) | P2 = True) \<Longrightarrow> ! Y. (!X. (P1a X = True | P1b X = True | P2 = True))" |
|
63167 | 622 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 623 |
|
624 |
lemma "! Y. (((!A .(P1a A | P1b A)) = True) | P2 = True) \<Longrightarrow> ! Y. (!X. (P1a X = True | P1b X = True | P2 = True))" |
|
63167 | 625 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 626 |
|
627 |
consts dud_bnd_s :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
628 |
||
629 |
(*this lemma kills blast*) |
|
630 |
lemma "(\<not> (\<forall>SX0 SX1. |
|
631 |
\<not> PUZ114_5_bnd_sK3 SX0 SX1 \<or> PUZ114_5_bnd_sK3 (dud_bnd_s (dud_bnd_s SX0)) SX1) \<or> |
|
632 |
\<not> (\<forall>SX0 SX1. |
|
633 |
\<not> PUZ114_5_bnd_sK3 SX0 SX1 \<or> |
|
634 |
PUZ114_5_bnd_sK3 (dud_bnd_s SX0) (dud_bnd_s SX1))) = |
|
635 |
False \<Longrightarrow> (\<not> (\<forall>SX0 SX1. |
|
636 |
\<not> PUZ114_5_bnd_sK3 SX0 SX1 \<or> |
|
637 |
PUZ114_5_bnd_sK3 (dud_bnd_s SX0) (dud_bnd_s SX1))) = |
|
638 |
False" |
|
63167 | 639 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 640 |
|
641 |
(*testing logical expansion -- this should be done by blast*) |
|
642 |
lemma "(\<forall>A B. bnd_in B (bnd_powerset A) \<longrightarrow> SEU581_2_bnd_subset B A) = True |
|
643 |
\<Longrightarrow> (\<forall>A B. \<not> bnd_in B (bnd_powerset A) \<or> SEU581_2_bnd_subset B A) = True" |
|
63167 | 644 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 645 |
|
646 |
(*testing related to PUZ114^5.p.out*) |
|
647 |
lemma "\<forall>SV1. ((\<not> (\<not> SV1 (PUZ114_5_bnd_sK4 SV1) (PUZ114_5_bnd_sK5 SV1) \<or> |
|
648 |
\<not> (\<not> SV1 (bnd_s (bnd_s (PUZ114_5_bnd_sK4 SV1))) |
|
649 |
(PUZ114_5_bnd_sK5 SV1) \<or> |
|
650 |
\<not> SV1 (bnd_s (PUZ114_5_bnd_sK4 SV1)) |
|
651 |
(bnd_s (PUZ114_5_bnd_sK5 SV1))))) = |
|
652 |
True \<or> |
|
653 |
(\<not> SV1 bnd_c1 bnd_c1) = True) \<or> |
|
654 |
SV1 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2 = True \<Longrightarrow> |
|
655 |
\<forall>SV1. (SV1 bnd_c1 bnd_c1 = False \<or> |
|
656 |
(\<not> (\<not> SV1 (PUZ114_5_bnd_sK4 SV1) (PUZ114_5_bnd_sK5 SV1) \<or> |
|
657 |
\<not> (\<not> SV1 (bnd_s (bnd_s (PUZ114_5_bnd_sK4 SV1))) |
|
658 |
(PUZ114_5_bnd_sK5 SV1) \<or> |
|
659 |
\<not> SV1 (bnd_s (PUZ114_5_bnd_sK4 SV1)) |
|
660 |
(bnd_s (PUZ114_5_bnd_sK5 SV1))))) = |
|
661 |
True) \<or> |
|
662 |
SV1 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2 = True" |
|
63167 | 663 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 664 |
|
665 |
lemma "\<forall>SV2. (\<forall>SY41. |
|
666 |
\<not> PUZ114_5_bnd_sK3 SV2 SY41 \<or> |
|
667 |
PUZ114_5_bnd_sK3 (dud_bnd_s (dud_bnd_s SV2)) SY41) = |
|
668 |
True \<Longrightarrow> |
|
669 |
\<forall>SV4 SV2. |
|
670 |
(\<not> PUZ114_5_bnd_sK3 SV2 SV4 \<or> |
|
671 |
PUZ114_5_bnd_sK3 (dud_bnd_s (dud_bnd_s SV2)) SV4) = |
|
672 |
True" |
|
63167 | 673 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 674 |
|
675 |
lemma "\<forall>SV3. (\<forall>SY42. |
|
676 |
\<not> PUZ114_5_bnd_sK3 SV3 SY42 \<or> |
|
677 |
PUZ114_5_bnd_sK3 (dud_bnd_s SV3) (dud_bnd_s SY42)) = |
|
678 |
True \<Longrightarrow> |
|
679 |
\<forall>SV5 SV3. |
|
680 |
(\<not> PUZ114_5_bnd_sK3 SV3 SV5 \<or> |
|
681 |
PUZ114_5_bnd_sK3 (dud_bnd_s SV3) (dud_bnd_s SV5)) = |
|
682 |
True" |
|
63167 | 683 |
by (tactic \<open>full_extcnf_combined_tac @{context}\<close>) |
55596 | 684 |
|
685 |
||
686 |
subsection "unfold_def" |
|
687 |
(* (Annotated_step ("9", "unfold_def"), *) |
|
688 |
lemma "bnd_kpairiskpair = |
|
689 |
(ALL Xx Xy. |
|
690 |
bnd_iskpair |
|
691 |
(bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
692 |
(bnd_setadjoin (bnd_setadjoin Xx (bnd_setadjoin Xy bnd_emptyset)) |
|
693 |
bnd_emptyset))) & |
|
694 |
bnd_kpair = |
|
695 |
(%Xx Xy. |
|
696 |
bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
697 |
(bnd_setadjoin (bnd_setadjoin Xx (bnd_setadjoin Xy bnd_emptyset)) |
|
698 |
bnd_emptyset)) & |
|
699 |
bnd_iskpair = |
|
700 |
(%A. EX Xx. bnd_in Xx (bnd_setunion A) & |
|
701 |
(EX Xy. bnd_in Xy (bnd_setunion A) & |
|
702 |
A = bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
703 |
(bnd_setadjoin |
|
704 |
(bnd_setadjoin Xx |
|
705 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
706 |
bnd_emptyset))) & |
|
707 |
(~ (ALL SY0 SY1. |
|
708 |
EX SY3. |
|
709 |
bnd_in SY3 |
|
710 |
(bnd_setunion |
|
711 |
(bnd_setadjoin (bnd_setadjoin SY0 bnd_emptyset) |
|
712 |
(bnd_setadjoin |
|
713 |
(bnd_setadjoin SY0 (bnd_setadjoin SY1 bnd_emptyset)) |
|
714 |
bnd_emptyset))) & |
|
715 |
(EX SY4. |
|
716 |
bnd_in SY4 |
|
717 |
(bnd_setunion |
|
718 |
(bnd_setadjoin (bnd_setadjoin SY0 bnd_emptyset) |
|
719 |
(bnd_setadjoin |
|
720 |
(bnd_setadjoin SY0 |
|
721 |
(bnd_setadjoin SY1 bnd_emptyset)) |
|
722 |
bnd_emptyset))) & |
|
723 |
bnd_setadjoin (bnd_setadjoin SY0 bnd_emptyset) |
|
724 |
(bnd_setadjoin |
|
725 |
(bnd_setadjoin SY0 (bnd_setadjoin SY1 bnd_emptyset)) |
|
726 |
bnd_emptyset) = |
|
727 |
bnd_setadjoin (bnd_setadjoin SY3 bnd_emptyset) |
|
728 |
(bnd_setadjoin |
|
729 |
(bnd_setadjoin SY3 (bnd_setadjoin SY4 bnd_emptyset)) |
|
730 |
bnd_emptyset)))) = |
|
731 |
True |
|
732 |
==> (~ (ALL SX0 SX1. |
|
733 |
~ (ALL SX2. |
|
734 |
~ ~ (~ bnd_in SX2 |
|
735 |
(bnd_setunion |
|
736 |
(bnd_setadjoin |
|
737 |
(bnd_setadjoin SX0 bnd_emptyset) |
|
738 |
(bnd_setadjoin (bnd_setadjoin SX0 (bnd_setadjoin SX1 bnd_emptyset)) bnd_emptyset))) | |
|
739 |
~ ~ (ALL SX3. |
|
740 |
~ ~ (~ bnd_in SX3 |
|
741 |
(bnd_setunion |
|
742 |
(bnd_setadjoin (bnd_setadjoin SX0 bnd_emptyset) |
|
743 |
(bnd_setadjoin (bnd_setadjoin SX0 (bnd_setadjoin SX1 bnd_emptyset)) |
|
744 |
bnd_emptyset))) | |
|
745 |
bnd_setadjoin (bnd_setadjoin SX0 bnd_emptyset) |
|
746 |
(bnd_setadjoin (bnd_setadjoin SX0 (bnd_setadjoin SX1 bnd_emptyset)) |
|
747 |
bnd_emptyset) ~= |
|
748 |
bnd_setadjoin (bnd_setadjoin SX2 bnd_emptyset) |
|
749 |
(bnd_setadjoin (bnd_setadjoin SX2 (bnd_setadjoin SX3 bnd_emptyset)) |
|
750 |
bnd_emptyset))))))) = |
|
751 |
True" |
|
63167 | 752 |
by (tactic \<open>unfold_def_tac @{context} []\<close>) |
55596 | 753 |
|
754 |
(* (Annotated_step ("10", "unfold_def"), *) |
|
755 |
lemma "bnd_kpairiskpair = |
|
756 |
(ALL Xx Xy. |
|
757 |
bnd_iskpair |
|
758 |
(bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
759 |
(bnd_setadjoin (bnd_setadjoin Xx (bnd_setadjoin Xy bnd_emptyset)) |
|
760 |
bnd_emptyset))) & |
|
761 |
bnd_kpair = |
|
762 |
(%Xx Xy. |
|
763 |
bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
764 |
(bnd_setadjoin (bnd_setadjoin Xx (bnd_setadjoin Xy bnd_emptyset)) |
|
765 |
bnd_emptyset)) & |
|
766 |
bnd_iskpair = |
|
767 |
(%A. EX Xx. bnd_in Xx (bnd_setunion A) & |
|
768 |
(EX Xy. bnd_in Xy (bnd_setunion A) & |
|
769 |
A = bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
770 |
(bnd_setadjoin |
|
771 |
(bnd_setadjoin Xx |
|
772 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
773 |
bnd_emptyset))) & |
|
774 |
(ALL SY5 SY6. |
|
775 |
EX SY7. |
|
776 |
bnd_in SY7 |
|
777 |
(bnd_setunion |
|
778 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
779 |
(bnd_setadjoin |
|
780 |
(bnd_setadjoin SY5 (bnd_setadjoin SY6 bnd_emptyset)) |
|
781 |
bnd_emptyset))) & |
|
782 |
(EX SY8. |
|
783 |
bnd_in SY8 |
|
784 |
(bnd_setunion |
|
785 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
786 |
(bnd_setadjoin |
|
787 |
(bnd_setadjoin SY5 (bnd_setadjoin SY6 bnd_emptyset)) |
|
788 |
bnd_emptyset))) & |
|
789 |
bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
790 |
(bnd_setadjoin |
|
791 |
(bnd_setadjoin SY5 (bnd_setadjoin SY6 bnd_emptyset)) |
|
792 |
bnd_emptyset) = |
|
793 |
bnd_setadjoin (bnd_setadjoin SY7 bnd_emptyset) |
|
794 |
(bnd_setadjoin |
|
795 |
(bnd_setadjoin SY7 (bnd_setadjoin SY8 bnd_emptyset)) |
|
796 |
bnd_emptyset))) = |
|
797 |
True |
|
798 |
==> (ALL SX0 SX1. |
|
799 |
~ (ALL SX2. |
|
800 |
~ ~ (~ bnd_in SX2 |
|
801 |
(bnd_setunion |
|
802 |
(bnd_setadjoin (bnd_setadjoin SX0 bnd_emptyset) |
|
803 |
(bnd_setadjoin |
|
804 |
(bnd_setadjoin SX0 |
|
805 |
(bnd_setadjoin SX1 bnd_emptyset)) |
|
806 |
bnd_emptyset))) | |
|
807 |
~ ~ (ALL SX3. |
|
808 |
~ ~ (~ bnd_in SX3 |
|
809 |
(bnd_setunion |
|
810 |
(bnd_setadjoin (bnd_setadjoin SX0 bnd_emptyset) |
|
811 |
(bnd_setadjoin (bnd_setadjoin SX0 (bnd_setadjoin SX1 bnd_emptyset)) |
|
812 |
bnd_emptyset))) | |
|
813 |
bnd_setadjoin (bnd_setadjoin SX0 bnd_emptyset) |
|
814 |
(bnd_setadjoin (bnd_setadjoin SX0 (bnd_setadjoin SX1 bnd_emptyset)) |
|
815 |
bnd_emptyset) ~= |
|
816 |
bnd_setadjoin (bnd_setadjoin SX2 bnd_emptyset) |
|
817 |
(bnd_setadjoin (bnd_setadjoin SX2 (bnd_setadjoin SX3 bnd_emptyset)) |
|
818 |
bnd_emptyset)))))) = |
|
819 |
True" |
|
63167 | 820 |
by (tactic \<open>unfold_def_tac @{context} []\<close>) |
55596 | 821 |
|
822 |
(* (Annotated_step ("12", "unfold_def"), *) |
|
823 |
lemma "bnd_cCKB6_BLACK = |
|
824 |
(\<lambda>Xu Xv. |
|
825 |
\<forall>Xw. Xw bnd_c1 bnd_c1 \<and> |
|
826 |
(\<forall>Xj Xk. |
|
827 |
Xw Xj Xk \<longrightarrow> |
|
828 |
Xw (bnd_s (bnd_s Xj)) Xk \<and> |
|
829 |
Xw (bnd_s Xj) (bnd_s Xk)) \<longrightarrow> |
|
830 |
Xw Xu Xv) \<and> |
|
831 |
((((\<forall>SY36 SY37. |
|
832 |
\<not> PUZ114_5_bnd_sK3 SY36 SY37 \<or> |
|
833 |
PUZ114_5_bnd_sK3 (bnd_s (bnd_s SY36)) SY37) \<and> |
|
834 |
(\<forall>SY38 SY39. |
|
835 |
\<not> PUZ114_5_bnd_sK3 SY38 SY39 \<or> |
|
836 |
PUZ114_5_bnd_sK3 (bnd_s SY38) (bnd_s SY39))) \<and> |
|
837 |
PUZ114_5_bnd_sK3 bnd_c1 bnd_c1) \<and> |
|
838 |
\<not> PUZ114_5_bnd_sK3 (bnd_s (bnd_s (bnd_s PUZ114_5_bnd_sK1))) |
|
839 |
(bnd_s PUZ114_5_bnd_sK2)) = |
|
840 |
True \<Longrightarrow> |
|
841 |
(\<not> (\<not> \<not> (\<not> \<not> (\<not> (\<forall>SX0 SX1. |
|
842 |
\<not> PUZ114_5_bnd_sK3 SX0 SX1 \<or> |
|
843 |
PUZ114_5_bnd_sK3 (bnd_s (bnd_s SX0)) SX1) \<or> |
|
844 |
\<not> (\<forall>SX0 SX1. |
|
845 |
\<not> PUZ114_5_bnd_sK3 SX0 SX1 \<or> |
|
846 |
PUZ114_5_bnd_sK3 (bnd_s SX0) (bnd_s SX1))) \<or> |
|
847 |
\<not> PUZ114_5_bnd_sK3 bnd_c1 bnd_c1) \<or> |
|
848 |
\<not> \<not> PUZ114_5_bnd_sK3 (bnd_s (bnd_s (bnd_s PUZ114_5_bnd_sK1))) |
|
849 |
(bnd_s PUZ114_5_bnd_sK2))) = |
|
850 |
True" |
|
851 |
(* |
|
852 |
apply (erule conjE)+ |
|
853 |
apply (erule subst)+ |
|
854 |
apply (tactic {*log_expander 1*})+ |
|
855 |
apply (rule refl) |
|
856 |
*) |
|
63167 | 857 |
by (tactic \<open>unfold_def_tac @{context} []\<close>) |
55596 | 858 |
|
859 |
(* (Annotated_step ("13", "unfold_def"), *) |
|
860 |
lemma "bnd_cCKB6_BLACK = |
|
861 |
(\<lambda>Xu Xv. |
|
862 |
\<forall>Xw. Xw bnd_c1 bnd_c1 \<and> |
|
863 |
(\<forall>Xj Xk. |
|
864 |
Xw Xj Xk \<longrightarrow> |
|
865 |
Xw (bnd_s (bnd_s Xj)) Xk \<and> |
|
866 |
Xw (bnd_s Xj) (bnd_s Xk)) \<longrightarrow> |
|
867 |
Xw Xu Xv) \<and> |
|
868 |
(\<forall>SY30. |
|
869 |
(SY30 (PUZ114_5_bnd_sK4 SY30) (PUZ114_5_bnd_sK5 SY30) \<and> |
|
870 |
(\<not> SY30 (bnd_s (bnd_s (PUZ114_5_bnd_sK4 SY30))) |
|
871 |
(PUZ114_5_bnd_sK5 SY30) \<or> |
|
872 |
\<not> SY30 (bnd_s (PUZ114_5_bnd_sK4 SY30)) |
|
873 |
(bnd_s (PUZ114_5_bnd_sK5 SY30))) \<or> |
|
874 |
\<not> SY30 bnd_c1 bnd_c1) \<or> |
|
875 |
SY30 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2) = |
|
876 |
True \<Longrightarrow> |
|
877 |
(\<forall>SX0. (\<not> (\<not> SX0 (PUZ114_5_bnd_sK4 SX0) (PUZ114_5_bnd_sK5 SX0) \<or> |
|
878 |
\<not> (\<not> SX0 (bnd_s (bnd_s (PUZ114_5_bnd_sK4 SX0))) |
|
879 |
(PUZ114_5_bnd_sK5 SX0) \<or> |
|
880 |
\<not> SX0 (bnd_s (PUZ114_5_bnd_sK4 SX0)) |
|
881 |
(bnd_s (PUZ114_5_bnd_sK5 SX0)))) \<or> |
|
882 |
\<not> SX0 bnd_c1 bnd_c1) \<or> |
|
883 |
SX0 PUZ114_5_bnd_sK1 PUZ114_5_bnd_sK2) = |
|
884 |
True" |
|
885 |
(* |
|
886 |
apply (erule conjE)+ |
|
887 |
apply (tactic {*expander_animal 1*})+ |
|
888 |
apply assumption |
|
889 |
*) |
|
63167 | 890 |
by (tactic \<open>unfold_def_tac @{context} []\<close>) |
55596 | 891 |
|
892 |
(*FIXME move this heuristic elsewhere*) |
|
63167 | 893 |
ML \<open> |
55596 | 894 |
(*Other than the list (which must not be empty) this function |
895 |
expects a parameter indicating the smallest integer. |
|
896 |
(Using Int.minInt isn't always viable).*) |
|
897 |
fun max_int_floored min l = |
|
898 |
if null l then raise List.Empty |
|
899 |
else fold (curry Int.max) l min; |
|
900 |
||
901 |
val _ = @{assert} (max_int_floored ~101002 [1] = 1) |
|
902 |
val _ = @{assert} (max_int_floored 0 [1, 3, 5] = 5) |
|
903 |
||
904 |
fun max_index_floored min l = |
|
905 |
let |
|
906 |
val max = max_int_floored min l |
|
67399 | 907 |
in find_index (pair max #> (=)) l end |
63167 | 908 |
\<close> |
55596 | 909 |
|
63167 | 910 |
ML \<open> |
55596 | 911 |
max_index_floored 0 [1, 3, 5] |
63167 | 912 |
\<close> |
55596 | 913 |
|
63167 | 914 |
ML \<open> |
55596 | 915 |
(* |
916 |
Given argument ([h_1, ..., h_n], conc), |
|
917 |
obtained from term of form |
|
918 |
h_1 ==> ... ==> h_n ==> conclusion, |
|
919 |
this function indicates which h_i is biggest, |
|
920 |
or NONE if h_n = 0. |
|
921 |
*) |
|
922 |
fun biggest_hypothesis (hypos, _) = |
|
923 |
if null hypos then NONE |
|
924 |
else |
|
925 |
map size_of_term hypos |
|
926 |
|> max_index_floored 0 |
|
927 |
|> SOME |
|
63167 | 928 |
\<close> |
55596 | 929 |
|
63167 | 930 |
ML \<open> |
55596 | 931 |
fun biggest_hyp_first_tac i = fn st => |
932 |
let |
|
933 |
val results = TERMFUN biggest_hypothesis (SOME i) st |
|
934 |
in |
|
935 |
if null results then no_tac st |
|
936 |
else |
|
937 |
let |
|
938 |
val result = the_single results |
|
939 |
in |
|
940 |
case result of |
|
941 |
NONE => no_tac st |
|
942 |
| SOME n => |
|
943 |
if n > 0 then rotate_tac n i st else no_tac st |
|
944 |
end |
|
945 |
end |
|
63167 | 946 |
\<close> |
55596 | 947 |
|
948 |
(* (Annotated_step ("6", "unfold_def"), *) |
|
949 |
lemma "(\<not> (\<exists>U :: TPTP_Interpret.ind \<Rightarrow> bool. \<forall>V. U V = SEV405_5_bnd_cA)) = True \<Longrightarrow> |
|
950 |
(\<not> \<not> (\<forall>SX0 :: TPTP_Interpret.ind \<Rightarrow> bool. \<not> (\<forall>SX1. \<not> (\<not> (\<not> SX0 SX1 \<or> SEV405_5_bnd_cA) \<or> |
|
951 |
\<not> (\<not> SEV405_5_bnd_cA \<or> SX0 SX1))))) = |
|
952 |
True" |
|
953 |
(* by (tactic {*unfold_def_tac []*}) *) |
|
954 |
oops |
|
955 |
||
956 |
subsection "Using leo2_tac" |
|
957 |
(*these require PUZ114^5's proof to be loaded |
|
958 |
||
959 |
ML {*leo2_tac @{context} (hd prob_names) "50"*} |
|
960 |
||
961 |
ML {*leo2_tac @{context} (hd prob_names) "4"*} |
|
962 |
||
963 |
ML {*leo2_tac @{context} (hd prob_names) "9"*} |
|
964 |
||
965 |
(* (Annotated_step ("9", "extcnf_combined"), *) |
|
966 |
lemma "(\<forall>SY30. |
|
967 |
SY30 bnd_c1 bnd_c1 \<and> |
|
968 |
(\<forall>Xj Xk. |
|
969 |
SY30 Xj Xk \<longrightarrow> |
|
970 |
SY30 (bnd_s (bnd_s Xj)) Xk \<and> |
|
971 |
SY30 (bnd_s Xj) (bnd_s Xk)) \<longrightarrow> |
|
972 |
SY30 bnd_sK1 bnd_sK2) = |
|
973 |
True \<Longrightarrow> |
|
974 |
(\<forall>SY30. |
|
975 |
(SY30 (bnd_sK4 SY30) (bnd_sK5 SY30) \<and> |
|
976 |
(\<not> SY30 (bnd_s (bnd_s (bnd_sK4 SY30))) |
|
977 |
(bnd_sK5 SY30) \<or> |
|
978 |
\<not> SY30 (bnd_s (bnd_sK4 SY30)) |
|
979 |
(bnd_s (bnd_sK5 SY30))) \<or> |
|
980 |
\<not> SY30 bnd_c1 bnd_c1) \<or> |
|
981 |
SY30 bnd_sK1 bnd_sK2) = |
|
982 |
True" |
|
983 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "9") 1*}) |
|
984 |
*) |
|
985 |
||
986 |
||
987 |
||
988 |
typedecl GEG007_1_bnd_reg |
|
989 |
consts |
|
990 |
GEG007_1_bnd_sK7_SX2 :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> GEG007_1_bnd_reg" |
|
991 |
GEG007_1_bnd_sK6_SX2 :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> GEG007_1_bnd_reg" |
|
992 |
GEG007_1_bnd_a :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
993 |
GEG007_1_bnd_catalunya :: "GEG007_1_bnd_reg" |
|
994 |
GEG007_1_bnd_spain :: "GEG007_1_bnd_reg" |
|
995 |
GEG007_1_bnd_c :: "GEG007_1_bnd_reg \<Rightarrow> GEG007_1_bnd_reg \<Rightarrow> bool" |
|
996 |
||
997 |
(* (Annotated_step ("147", "extcnf_forall_neg"), *) |
|
998 |
lemma "\<forall>SV13 SV6. |
|
999 |
(\<forall>SX2. \<not> GEG007_1_bnd_c SX2 GEG007_1_bnd_spain \<or> |
|
1000 |
GEG007_1_bnd_c SX2 GEG007_1_bnd_catalunya) = |
|
1001 |
False \<or> |
|
1002 |
GEG007_1_bnd_a SV6 SV13 = False \<Longrightarrow> |
|
1003 |
\<forall>SV6 SV13. |
|
1004 |
(\<not> GEG007_1_bnd_c (GEG007_1_bnd_sK7_SX2 SV13 SV6) GEG007_1_bnd_spain \<or> |
|
1005 |
GEG007_1_bnd_c (GEG007_1_bnd_sK7_SX2 SV13 SV6) GEG007_1_bnd_catalunya) = |
|
1006 |
False \<or> |
|
1007 |
GEG007_1_bnd_a SV6 SV13 = False" |
|
63167 | 1008 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Existential_Var]\<close>) |
55596 | 1009 |
|
1010 |
(* (Annotated_step ("116", "extcnf_forall_neg"), *) |
|
1011 |
lemma "\<forall>SV13 SV6. |
|
1012 |
(\<forall>SX2. \<not> \<not> (\<not> \<not> (\<not> GEG007_1_bnd_c SX2 GEG007_1_bnd_catalunya \<or> |
|
1013 |
\<not> \<not> \<not> (\<forall>SX3. |
|
1014 |
\<not> \<not> (\<not> (\<forall>SX4. \<not> GEG007_1_bnd_c SX4 SX3 \<or> GEG007_1_bnd_c SX4 SX2) \<or> |
|
1015 |
\<not> (\<forall>SX4. \<not> GEG007_1_bnd_c SX4 SX3 \<or> |
|
1016 |
GEG007_1_bnd_c SX4 GEG007_1_bnd_catalunya)))) \<or> |
|
1017 |
\<not> \<not> (\<not> GEG007_1_bnd_c SX2 GEG007_1_bnd_spain \<or> |
|
1018 |
\<not> \<not> \<not> (\<forall>SX3. |
|
1019 |
\<not> \<not> (\<not> (\<forall>SX4. \<not> GEG007_1_bnd_c SX4 SX3 \<or> GEG007_1_bnd_c SX4 SX2) \<or> |
|
1020 |
\<not> (\<forall>SX4. \<not> GEG007_1_bnd_c SX4 SX3 \<or> |
|
1021 |
GEG007_1_bnd_c SX4 GEG007_1_bnd_spain)))))) = |
|
1022 |
False \<or> |
|
1023 |
GEG007_1_bnd_a SV6 SV13 = False \<Longrightarrow> |
|
1024 |
\<forall>SV6 SV13. |
|
1025 |
(\<not> \<not> (\<not> \<not> (\<not> GEG007_1_bnd_c (GEG007_1_bnd_sK6_SX2 SV13 SV6) |
|
1026 |
GEG007_1_bnd_catalunya \<or> |
|
1027 |
\<not> \<not> \<not> (\<forall>SY68. |
|
1028 |
\<not> \<not> (\<not> (\<forall>SY69. |
|
1029 |
\<not> GEG007_1_bnd_c SY69 SY68 \<or> |
|
1030 |
GEG007_1_bnd_c SY69 (GEG007_1_bnd_sK6_SX2 SV13 SV6)) \<or> |
|
1031 |
\<not> (\<forall>SX4. \<not> GEG007_1_bnd_c SX4 SY68 \<or> GEG007_1_bnd_c SX4 GEG007_1_bnd_catalunya)))) \<or> |
|
1032 |
\<not> \<not> (\<not> GEG007_1_bnd_c (GEG007_1_bnd_sK6_SX2 SV13 SV6) |
|
1033 |
GEG007_1_bnd_spain \<or> |
|
1034 |
\<not> \<not> \<not> (\<forall>SY71. |
|
1035 |
\<not> \<not> (\<not> (\<forall>SY72. |
|
1036 |
\<not> GEG007_1_bnd_c SY72 SY71 \<or> |
|
1037 |
GEG007_1_bnd_c SY72 (GEG007_1_bnd_sK6_SX2 SV13 SV6)) \<or> |
|
1038 |
\<not> (\<forall>SX4. \<not> GEG007_1_bnd_c SX4 SY71 \<or> GEG007_1_bnd_c SX4 GEG007_1_bnd_spain)))))) = |
|
1039 |
False \<or> |
|
1040 |
GEG007_1_bnd_a SV6 SV13 = False" |
|
63167 | 1041 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Existential_Var]\<close>) |
55596 | 1042 |
|
1043 |
consts PUZ107_5_bnd_sK1_SX0 :: |
|
1044 |
"TPTP_Interpret.ind |
|
1045 |
\<Rightarrow> TPTP_Interpret.ind |
|
1046 |
\<Rightarrow> TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1047 |
||
61076 | 1048 |
lemma "\<forall>(SV4::TPTP_Interpret.ind) (SV8::TPTP_Interpret.ind) |
1049 |
(SV6::TPTP_Interpret.ind) (SV2::TPTP_Interpret.ind) |
|
1050 |
(SV3::TPTP_Interpret.ind) SV1::TPTP_Interpret.ind. |
|
55596 | 1051 |
((SV1 \<noteq> SV3) = False \<or> PUZ107_5_bnd_sK1_SX0 SV1 SV2 SV6 SV8 = False) \<or> |
1052 |
PUZ107_5_bnd_sK1_SX0 SV3 SV4 SV6 SV8 = False \<Longrightarrow> |
|
61076 | 1053 |
\<forall>(SV4::TPTP_Interpret.ind) (SV8::TPTP_Interpret.ind) |
1054 |
(SV6::TPTP_Interpret.ind) (SV2::TPTP_Interpret.ind) |
|
1055 |
(SV3::TPTP_Interpret.ind) SV1::TPTP_Interpret.ind. |
|
55596 | 1056 |
((SV1 = SV3) = True \<or> PUZ107_5_bnd_sK1_SX0 SV1 SV2 SV6 SV8 = False) \<or> |
1057 |
PUZ107_5_bnd_sK1_SX0 SV3 SV4 SV6 SV8 = False" |
|
63167 | 1058 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Not_neg]\<close>) |
55596 | 1059 |
|
1060 |
lemma " |
|
61076 | 1061 |
\<forall>(SV8::TPTP_Interpret.ind) (SV6::TPTP_Interpret.ind) |
1062 |
(SV4::TPTP_Interpret.ind) (SV2::TPTP_Interpret.ind) |
|
1063 |
(SV3::TPTP_Interpret.ind) SV1::TPTP_Interpret.ind. |
|
55596 | 1064 |
((SV1 \<noteq> SV3 \<or> SV2 \<noteq> SV4) = False \<or> |
1065 |
PUZ107_5_bnd_sK1_SX0 SV1 SV2 SV6 SV8 = False) \<or> |
|
1066 |
PUZ107_5_bnd_sK1_SX0 SV3 SV4 SV6 SV8 = False \<Longrightarrow> |
|
61076 | 1067 |
\<forall>(SV4::TPTP_Interpret.ind) (SV8::TPTP_Interpret.ind) |
1068 |
(SV6::TPTP_Interpret.ind) (SV2::TPTP_Interpret.ind) |
|
1069 |
(SV3::TPTP_Interpret.ind) SV1::TPTP_Interpret.ind. |
|
55596 | 1070 |
((SV1 \<noteq> SV3) = False \<or> PUZ107_5_bnd_sK1_SX0 SV1 SV2 SV6 SV8 = False) \<or> |
1071 |
PUZ107_5_bnd_sK1_SX0 SV3 SV4 SV6 SV8 = False" |
|
63167 | 1072 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Or_neg]\<close>) |
55596 | 1073 |
|
1074 |
consts |
|
1075 |
NUM016_5_bnd_a :: TPTP_Interpret.ind |
|
1076 |
NUM016_5_bnd_prime :: "TPTP_Interpret.ind \<Rightarrow> bool" |
|
1077 |
NUM016_5_bnd_factorial_plus_one :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
1078 |
NUM016_5_bnd_prime_divisor :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
1079 |
NUM016_5_bnd_divides :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1080 |
NUM016_5_bnd_less :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1081 |
||
1082 |
(* (Annotated_step ("6", "unfold_def"), *) |
|
61076 | 1083 |
lemma "((((((((((((\<forall>X::TPTP_Interpret.ind. \<not> NUM016_5_bnd_less X X) \<and> |
1084 |
(\<forall>(X::TPTP_Interpret.ind) |
|
1085 |
Y::TPTP_Interpret.ind. |
|
55596 | 1086 |
\<not> NUM016_5_bnd_less X Y \<or> \<not> NUM016_5_bnd_less Y X)) \<and> |
61076 | 1087 |
(\<forall>X::TPTP_Interpret.ind. NUM016_5_bnd_divides X X)) \<and> |
1088 |
(\<forall>(X::TPTP_Interpret.ind) |
|
1089 |
(Y::TPTP_Interpret.ind) |
|
1090 |
Z::TPTP_Interpret.ind. |
|
55596 | 1091 |
(\<not> NUM016_5_bnd_divides X Y \<or> \<not> NUM016_5_bnd_divides Y Z) \<or> |
1092 |
NUM016_5_bnd_divides X Z)) \<and> |
|
61076 | 1093 |
(\<forall>(X::TPTP_Interpret.ind) Y::TPTP_Interpret.ind. |
55596 | 1094 |
\<not> NUM016_5_bnd_divides X Y \<or> \<not> NUM016_5_bnd_less Y X)) \<and> |
61076 | 1095 |
(\<forall>X::TPTP_Interpret.ind. |
55596 | 1096 |
NUM016_5_bnd_less X (NUM016_5_bnd_factorial_plus_one X))) \<and> |
61076 | 1097 |
(\<forall>(X::TPTP_Interpret.ind) Y::TPTP_Interpret.ind. |
55596 | 1098 |
\<not> NUM016_5_bnd_divides X (NUM016_5_bnd_factorial_plus_one Y) \<or> |
1099 |
NUM016_5_bnd_less Y X)) \<and> |
|
61076 | 1100 |
(\<forall>X::TPTP_Interpret.ind. |
55596 | 1101 |
NUM016_5_bnd_prime X \<or> |
1102 |
NUM016_5_bnd_divides (NUM016_5_bnd_prime_divisor X) X)) \<and> |
|
61076 | 1103 |
(\<forall>X::TPTP_Interpret.ind. |
55596 | 1104 |
NUM016_5_bnd_prime X \<or> |
1105 |
NUM016_5_bnd_prime (NUM016_5_bnd_prime_divisor X))) \<and> |
|
61076 | 1106 |
(\<forall>X::TPTP_Interpret.ind. |
55596 | 1107 |
NUM016_5_bnd_prime X \<or> |
1108 |
NUM016_5_bnd_less (NUM016_5_bnd_prime_divisor X) X)) \<and> |
|
1109 |
NUM016_5_bnd_prime NUM016_5_bnd_a) \<and> |
|
61076 | 1110 |
(\<forall>X::TPTP_Interpret.ind. |
55596 | 1111 |
(\<not> NUM016_5_bnd_prime X \<or> \<not> NUM016_5_bnd_less NUM016_5_bnd_a X) \<or> |
1112 |
NUM016_5_bnd_less (NUM016_5_bnd_factorial_plus_one NUM016_5_bnd_a) X)) = |
|
1113 |
True \<Longrightarrow> |
|
61076 | 1114 |
(\<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> \<not> (\<not> (\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1115 |
\<not> NUM016_5_bnd_less SX0 SX0) \<or> |
61076 | 1116 |
\<not> (\<forall>(SX0::TPTP_Interpret.ind) |
1117 |
SX1::TPTP_Interpret.ind. |
|
55596 | 1118 |
\<not> NUM016_5_bnd_less SX0 SX1 \<or> \<not> NUM016_5_bnd_less SX1 SX0)) \<or> |
61076 | 1119 |
\<not> (\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1120 |
NUM016_5_bnd_divides SX0 SX0)) \<or> |
61076 | 1121 |
\<not> (\<forall>(SX0::TPTP_Interpret.ind) |
1122 |
(SX1::TPTP_Interpret.ind) |
|
1123 |
SX2::TPTP_Interpret.ind. |
|
55596 | 1124 |
(\<not> NUM016_5_bnd_divides SX0 SX1 \<or> |
1125 |
\<not> NUM016_5_bnd_divides SX1 SX2) \<or> |
|
1126 |
NUM016_5_bnd_divides SX0 SX2)) \<or> |
|
61076 | 1127 |
\<not> (\<forall>(SX0::TPTP_Interpret.ind) |
1128 |
SX1::TPTP_Interpret.ind. |
|
55596 | 1129 |
\<not> NUM016_5_bnd_divides SX0 SX1 \<or> |
1130 |
\<not> NUM016_5_bnd_less SX1 SX0)) \<or> |
|
61076 | 1131 |
\<not> (\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1132 |
NUM016_5_bnd_less SX0 (NUM016_5_bnd_factorial_plus_one SX0))) \<or> |
61076 | 1133 |
\<not> (\<forall>(SX0::TPTP_Interpret.ind) SX1::TPTP_Interpret.ind. |
55596 | 1134 |
\<not> NUM016_5_bnd_divides SX0 (NUM016_5_bnd_factorial_plus_one SX1) \<or> |
1135 |
NUM016_5_bnd_less SX1 SX0)) \<or> |
|
61076 | 1136 |
\<not> (\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1137 |
NUM016_5_bnd_prime SX0 \<or> |
1138 |
NUM016_5_bnd_divides (NUM016_5_bnd_prime_divisor SX0) SX0)) \<or> |
|
61076 | 1139 |
\<not> (\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1140 |
NUM016_5_bnd_prime SX0 \<or> NUM016_5_bnd_prime (NUM016_5_bnd_prime_divisor SX0))) \<or> |
61076 | 1141 |
\<not> (\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1142 |
NUM016_5_bnd_prime SX0 \<or> |
1143 |
NUM016_5_bnd_less (NUM016_5_bnd_prime_divisor SX0) |
|
1144 |
SX0)) \<or> |
|
1145 |
\<not> NUM016_5_bnd_prime NUM016_5_bnd_a) \<or> |
|
61076 | 1146 |
\<not> (\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1147 |
(\<not> NUM016_5_bnd_prime SX0 \<or> \<not> NUM016_5_bnd_less NUM016_5_bnd_a SX0) \<or> |
1148 |
NUM016_5_bnd_less (NUM016_5_bnd_factorial_plus_one NUM016_5_bnd_a) |
|
1149 |
SX0))) = |
|
1150 |
True" |
|
63167 | 1151 |
by (tactic \<open>unfold_def_tac @{context} []\<close>) |
55596 | 1152 |
|
1153 |
(* (Annotated_step ("3", "unfold_def"), *) |
|
1154 |
lemma "(~ ((((((((((((ALL X. ~ bnd_less X X) & |
|
1155 |
(ALL X Y. ~ bnd_less X Y | ~ bnd_less Y X)) & |
|
1156 |
(ALL X. bnd_divides X X)) & |
|
1157 |
(ALL X Y Z. |
|
1158 |
(~ bnd_divides X Y | ~ bnd_divides Y Z) | |
|
1159 |
bnd_divides X Z)) & |
|
1160 |
(ALL X Y. ~ bnd_divides X Y | ~ bnd_less Y X)) & |
|
1161 |
(ALL X. bnd_less X (bnd_factorial_plus_one X))) & |
|
1162 |
(ALL X Y. |
|
1163 |
~ bnd_divides X (bnd_factorial_plus_one Y) | |
|
1164 |
bnd_less Y X)) & |
|
1165 |
(ALL X. bnd_prime X | bnd_divides (bnd_prime_divisor X) X)) & |
|
1166 |
(ALL X. bnd_prime X | bnd_prime (bnd_prime_divisor X))) & |
|
1167 |
(ALL X. bnd_prime X | bnd_less (bnd_prime_divisor X) X)) & |
|
1168 |
bnd_prime bnd_a) & |
|
1169 |
(ALL X. (~ bnd_prime X | ~ bnd_less bnd_a X) | |
|
1170 |
bnd_less (bnd_factorial_plus_one bnd_a) X))) = |
|
1171 |
False |
|
1172 |
==> (~ ((((((((((((ALL X. ~ bnd_less X X) & |
|
1173 |
(ALL X Y. ~ bnd_less X Y | ~ bnd_less Y X)) & |
|
1174 |
(ALL X. bnd_divides X X)) & |
|
1175 |
(ALL X Y Z. |
|
1176 |
(~ bnd_divides X Y | ~ bnd_divides Y Z) | |
|
1177 |
bnd_divides X Z)) & |
|
1178 |
(ALL X Y. ~ bnd_divides X Y | ~ bnd_less Y X)) & |
|
1179 |
(ALL X. bnd_less X (bnd_factorial_plus_one X))) & |
|
1180 |
(ALL X Y. |
|
1181 |
~ bnd_divides X (bnd_factorial_plus_one Y) | |
|
1182 |
bnd_less Y X)) & |
|
1183 |
(ALL X. bnd_prime X | |
|
1184 |
bnd_divides (bnd_prime_divisor X) X)) & |
|
1185 |
(ALL X. bnd_prime X | bnd_prime (bnd_prime_divisor X))) & |
|
1186 |
(ALL X. bnd_prime X | bnd_less (bnd_prime_divisor X) X)) & |
|
1187 |
bnd_prime bnd_a) & |
|
1188 |
(ALL X. (~ bnd_prime X | ~ bnd_less bnd_a X) | |
|
1189 |
bnd_less (bnd_factorial_plus_one bnd_a) X))) = |
|
1190 |
False" |
|
63167 | 1191 |
by (tactic \<open>unfold_def_tac @{context} []\<close>) |
55596 | 1192 |
|
1193 |
(* SET062^6.p.out |
|
1194 |
[[(Annotated_step ("3", "unfold_def"), *) |
|
1195 |
lemma "(\<forall>Z3. False \<longrightarrow> bnd_cA Z3) = False \<Longrightarrow> |
|
1196 |
(\<forall>Z3. False \<longrightarrow> bnd_cA Z3) = False" |
|
63167 | 1197 |
by (tactic \<open>unfold_def_tac @{context} []\<close>) |
55596 | 1198 |
|
1199 |
(* |
|
1200 |
(* SEU559^2.p.out *) |
|
1201 |
(* [[(Annotated_step ("3", "unfold_def"), *) |
|
1202 |
lemma "bnd_subset = (\<lambda>A B. \<forall>Xx. bnd_in Xx A \<longrightarrow> bnd_in Xx B) \<and> |
|
1203 |
(\<forall>A B. (\<forall>Xx. bnd_in Xx A \<longrightarrow> bnd_in Xx B) \<longrightarrow> |
|
1204 |
bnd_subset A B) = |
|
1205 |
False \<Longrightarrow> |
|
1206 |
(\<forall>SY0 SY1. |
|
1207 |
(\<forall>Xx. bnd_in Xx SY0 \<longrightarrow> bnd_in Xx SY1) \<longrightarrow> |
|
1208 |
(\<forall>SY5. bnd_in SY5 SY0 \<longrightarrow> bnd_in SY5 SY1)) = |
|
1209 |
False" |
|
1210 |
by (tactic {*unfold_def_tac [@{thm bnd_subset_def}]*}) |
|
1211 |
||
1212 |
(* SEU559^2.p.out |
|
1213 |
[[(Annotated_step ("6", "unfold_def"), *) |
|
1214 |
lemma "(\<not> (\<exists>Xx. \<forall>Xy. Xx \<longrightarrow> Xy)) = True \<Longrightarrow> |
|
1215 |
(\<not> \<not> (\<forall>SX0. \<not> (\<forall>SX1. \<not> SX0 \<or> SX1))) = True" |
|
1216 |
by (tactic {*unfold_def_tac []*}) |
|
1217 |
||
1218 |
(* SEU502^2.p.out |
|
1219 |
[[(Annotated_step ("3", "unfold_def"), *) |
|
1220 |
lemma "bnd_emptysetE = |
|
1221 |
(\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> (\<forall>Xphi. Xphi)) \<and> |
|
1222 |
(bnd_emptysetE \<longrightarrow> |
|
1223 |
(\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> False)) = |
|
1224 |
False \<Longrightarrow> |
|
1225 |
((\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> (\<forall>Xphi. Xphi)) \<longrightarrow> |
|
1226 |
(\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> False)) = |
|
1227 |
False" |
|
1228 |
by (tactic {*unfold_def_tac [@{thm bnd_emptysetE_def}]*}) |
|
1229 |
*) |
|
1230 |
||
1231 |
typedecl AGT037_2_bnd_mu |
|
1232 |
consts |
|
1233 |
AGT037_2_bnd_sK1_SX0 :: TPTP_Interpret.ind |
|
1234 |
AGT037_2_bnd_cola :: AGT037_2_bnd_mu |
|
1235 |
AGT037_2_bnd_jan :: AGT037_2_bnd_mu |
|
1236 |
AGT037_2_bnd_possibly_likes :: "AGT037_2_bnd_mu \<Rightarrow> AGT037_2_bnd_mu \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1237 |
AGT037_2_bnd_sK5_SY68 :: |
|
1238 |
"TPTP_Interpret.ind |
|
1239 |
\<Rightarrow> AGT037_2_bnd_mu |
|
1240 |
\<Rightarrow> AGT037_2_bnd_mu |
|
1241 |
\<Rightarrow> TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind" |
|
1242 |
AGT037_2_bnd_likes :: "AGT037_2_bnd_mu \<Rightarrow> AGT037_2_bnd_mu \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1243 |
AGT037_2_bnd_very_much_likes :: "AGT037_2_bnd_mu \<Rightarrow> AGT037_2_bnd_mu \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1244 |
AGT037_2_bnd_a1 :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1245 |
AGT037_2_bnd_a2 :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1246 |
AGT037_2_bnd_a3 :: "TPTP_Interpret.ind \<Rightarrow> TPTP_Interpret.ind \<Rightarrow> bool" |
|
1247 |
||
1248 |
(*test that nullary skolem terms are OK*) |
|
1249 |
(* (Annotated_step ("79", "extcnf_forall_neg"), *) |
|
61076 | 1250 |
lemma "(\<forall>SX0::TPTP_Interpret.ind. |
55596 | 1251 |
AGT037_2_bnd_possibly_likes AGT037_2_bnd_jan AGT037_2_bnd_cola SX0) = |
1252 |
False \<Longrightarrow> |
|
1253 |
AGT037_2_bnd_possibly_likes AGT037_2_bnd_jan AGT037_2_bnd_cola AGT037_2_bnd_sK1_SX0 = |
|
1254 |
False" |
|
63167 | 1255 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Existential_Var]\<close>) |
55596 | 1256 |
|
1257 |
(* (Annotated_step ("202", "extcnf_forall_neg"), *) |
|
61076 | 1258 |
lemma "\<forall>(SV13::TPTP_Interpret.ind) (SV39::AGT037_2_bnd_mu) (SV29::AGT037_2_bnd_mu) |
1259 |
SV45::TPTP_Interpret.ind. |
|
1260 |
((((\<forall>SY68::TPTP_Interpret.ind. |
|
55596 | 1261 |
\<not> AGT037_2_bnd_a1 SV45 SY68 \<or> |
1262 |
AGT037_2_bnd_likes SV29 SV39 SY68) = |
|
1263 |
False \<or> |
|
61076 | 1264 |
(\<not> (\<forall>SY69::TPTP_Interpret.ind. |
55596 | 1265 |
\<not> AGT037_2_bnd_a2 SV45 SY69 \<or> |
1266 |
AGT037_2_bnd_likes SV29 SV39 SY69)) = |
|
1267 |
True) \<or> |
|
1268 |
AGT037_2_bnd_likes SV29 SV39 SV45 = False) \<or> |
|
1269 |
AGT037_2_bnd_very_much_likes SV29 SV39 SV45 = True) \<or> |
|
1270 |
AGT037_2_bnd_a3 SV13 SV45 = False \<Longrightarrow> |
|
61076 | 1271 |
\<forall>(SV29::AGT037_2_bnd_mu) (SV39::AGT037_2_bnd_mu) (SV13::TPTP_Interpret.ind) |
1272 |
SV45::TPTP_Interpret.ind. |
|
55596 | 1273 |
((((\<not> AGT037_2_bnd_a1 SV45 |
1274 |
(AGT037_2_bnd_sK5_SY68 SV13 SV39 SV29 SV45) \<or> |
|
1275 |
AGT037_2_bnd_likes SV29 SV39 |
|
1276 |
(AGT037_2_bnd_sK5_SY68 SV13 SV39 SV29 SV45)) = |
|
1277 |
False \<or> |
|
61076 | 1278 |
(\<not> (\<forall>SY69::TPTP_Interpret.ind. |
55596 | 1279 |
\<not> AGT037_2_bnd_a2 SV45 SY69 \<or> |
1280 |
AGT037_2_bnd_likes SV29 SV39 SY69)) = |
|
1281 |
True) \<or> |
|
1282 |
AGT037_2_bnd_likes SV29 SV39 SV45 = False) \<or> |
|
1283 |
AGT037_2_bnd_very_much_likes SV29 SV39 SV45 = True) \<or> |
|
1284 |
AGT037_2_bnd_a3 SV13 SV45 = False" |
|
1285 |
(* |
|
1286 |
apply (rule allI)+ |
|
1287 |
apply (erule_tac x = "SV13" in allE) |
|
1288 |
apply (erule_tac x = "SV39" in allE) |
|
1289 |
apply (erule_tac x = "SV29" in allE) |
|
1290 |
apply (erule_tac x = "SV45" in allE) |
|
1291 |
apply (erule disjE)+ |
|
1292 |
defer |
|
1293 |
apply (tactic {*clause_breaker 1*})+ |
|
1294 |
apply (drule_tac sk = "bnd_sK5_SY68 SV13 SV39 SV29 SV45" in leo2_skolemise) |
|
1295 |
defer |
|
1296 |
apply (tactic {*clause_breaker 1*}) |
|
1297 |
apply (tactic {*nonfull_extcnf_combined_tac []*}) |
|
1298 |
*) |
|
63167 | 1299 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Existential_Var]\<close>) |
55596 | 1300 |
|
1301 |
(*(*NUM667^1*) |
|
1302 |
lemma "\<forall>SV12 SV13 SV14 SV9 SV10 SV11. |
|
1303 |
((((bnd_less SV12 SV13 = bnd_less SV11 SV10) = False \<or> |
|
1304 |
(SV14 = SV13) = False) \<or> |
|
1305 |
bnd_less SV12 SV14 = False) \<or> |
|
1306 |
bnd_less SV9 SV10 = True) \<or> |
|
1307 |
(SV9 = SV11) = False \<Longrightarrow> |
|
1308 |
\<forall>SV9 SV14 SV10 SV11 SV13 SV12. |
|
1309 |
((((bnd_less SV12 SV13 = False \<or> |
|
1310 |
bnd_less SV11 SV10 = False) \<or> |
|
1311 |
(SV14 = SV13) = False) \<or> |
|
1312 |
bnd_less SV12 SV14 = False) \<or> |
|
1313 |
bnd_less SV9 SV10 = True) \<or> |
|
1314 |
(SV9 = SV11) = False" |
|
1315 |
(* |
|
1316 |
apply (tactic {* |
|
1317 |
extcnf_combined_tac NONE |
|
1318 |
[ConstsDiff, |
|
1319 |
StripQuantifiers] |
|
1320 |
[]*}) |
|
1321 |
*) |
|
1322 |
(* |
|
1323 |
apply (rule allI)+ |
|
1324 |
apply (erule_tac x = "SV12" in allE) |
|
1325 |
apply (erule_tac x = "SV13" in allE) |
|
1326 |
apply (erule_tac x = "SV14" in allE) |
|
1327 |
apply (erule_tac x = "SV9" in allE) |
|
1328 |
apply (erule_tac x = "SV10" in allE) |
|
1329 |
apply (erule_tac x = "SV11" in allE) |
|
1330 |
*) |
|
1331 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "300") 1*}) |
|
1332 |
||
1333 |
||
1334 |
(*NUM667^1 node 302 -- dec*) |
|
1335 |
lemma "\<forall>SV12 SV13 SV14 SV9 SV10 SV11. |
|
1336 |
((((bnd_less SV12 SV13 = bnd_less SV11 SV10) = False \<or> |
|
1337 |
(SV14 = SV13) = False) \<or> |
|
1338 |
bnd_less SV12 SV14 = False) \<or> |
|
1339 |
bnd_less SV9 SV10 = True) \<or> |
|
1340 |
(SV9 = SV11) = |
|
1341 |
False \<Longrightarrow> |
|
1342 |
\<forall>SV9 SV14 SV10 SV13 SV11 SV12. |
|
1343 |
(((((SV12 = SV11) = False \<or> (SV13 = SV10) = False) \<or> |
|
1344 |
(SV14 = SV13) = False) \<or> |
|
1345 |
bnd_less SV12 SV14 = False) \<or> |
|
1346 |
bnd_less SV9 SV10 = True) \<or> |
|
1347 |
(SV9 = SV11) = |
|
1348 |
False" |
|
1349 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "302") 1*}) |
|
1350 |
*) |
|
1351 |
||
1352 |
||
1353 |
(* |
|
1354 |
(*CSR122^2*) |
|
1355 |
(* (Annotated_step ("23", "extuni_bool2"), *) |
|
1356 |
lemma "(bnd_holdsDuring_THFTYPE_IiooI |
|
1357 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1358 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1359 |
bnd_lBill_THFTYPE_i \<or> |
|
1360 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1361 |
bnd_lBill_THFTYPE_i)) = |
|
1362 |
bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1363 |
bnd_lBill_THFTYPE_i) = |
|
1364 |
False \<Longrightarrow> |
|
1365 |
bnd_holdsDuring_THFTYPE_IiooI |
|
1366 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1367 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1368 |
bnd_lBill_THFTYPE_i \<or> |
|
1369 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1370 |
bnd_lBill_THFTYPE_i)) = |
|
1371 |
True \<or> |
|
1372 |
bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1373 |
bnd_lBill_THFTYPE_i = |
|
1374 |
True" |
|
1375 |
(* apply (erule extuni_bool2) *) |
|
1376 |
(* done *) |
|
1377 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "23") 1*}) |
|
1378 |
||
1379 |
(* (Annotated_step ("24", "extuni_bool1"), *) |
|
1380 |
lemma "(bnd_holdsDuring_THFTYPE_IiooI |
|
1381 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1382 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1383 |
bnd_lBill_THFTYPE_i \<or> |
|
1384 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1385 |
bnd_lBill_THFTYPE_i)) = |
|
1386 |
bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1387 |
bnd_lBill_THFTYPE_i) = |
|
1388 |
False \<Longrightarrow> |
|
1389 |
bnd_holdsDuring_THFTYPE_IiooI |
|
1390 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1391 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1392 |
bnd_lBill_THFTYPE_i \<or> |
|
1393 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1394 |
bnd_lBill_THFTYPE_i)) = |
|
1395 |
False \<or> |
|
1396 |
bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1397 |
bnd_lBill_THFTYPE_i = |
|
1398 |
False" |
|
1399 |
(* apply (erule extuni_bool1) *) |
|
1400 |
(* done *) |
|
1401 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "24") 1*}) |
|
1402 |
||
1403 |
(* (Annotated_step ("25", "extuni_bool2"), *) |
|
1404 |
lemma "(bnd_holdsDuring_THFTYPE_IiooI |
|
1405 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1406 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1407 |
bnd_lBill_THFTYPE_i \<or> |
|
1408 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1409 |
bnd_lBill_THFTYPE_i)) = |
|
1410 |
bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1411 |
bnd_lBill_THFTYPE_i) = |
|
1412 |
False \<Longrightarrow> |
|
1413 |
bnd_holdsDuring_THFTYPE_IiooI |
|
1414 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1415 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1416 |
bnd_lBill_THFTYPE_i \<or> |
|
1417 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1418 |
bnd_lBill_THFTYPE_i)) = |
|
1419 |
True \<or> |
|
1420 |
bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1421 |
bnd_lBill_THFTYPE_i = |
|
1422 |
True" |
|
1423 |
(* apply (erule extuni_bool2) *) |
|
1424 |
(* done *) |
|
1425 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "25") 1*}) |
|
1426 |
||
1427 |
(* (Annotated_step ("26", "extuni_bool1"), *) |
|
1428 |
lemma "\<forall>SV2. (bnd_holdsDuring_THFTYPE_IiooI |
|
1429 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1430 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI |
|
1431 |
bnd_lMary_THFTYPE_i |
|
1432 |
bnd_lBill_THFTYPE_i \<or> |
|
1433 |
\<not> bnd_likes_THFTYPE_IiioI |
|
1434 |
bnd_lSue_THFTYPE_i |
|
1435 |
bnd_lBill_THFTYPE_i)) = |
|
1436 |
bnd_holdsDuring_THFTYPE_IiooI SV2 True) = |
|
1437 |
False \<Longrightarrow> |
|
1438 |
\<forall>SV2. bnd_holdsDuring_THFTYPE_IiooI |
|
1439 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1440 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI |
|
1441 |
bnd_lMary_THFTYPE_i bnd_lBill_THFTYPE_i \<or> |
|
1442 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1443 |
bnd_lBill_THFTYPE_i)) = |
|
1444 |
False \<or> |
|
1445 |
bnd_holdsDuring_THFTYPE_IiooI SV2 True = False" |
|
1446 |
(* apply (rule allI, erule allE) *) |
|
1447 |
(* apply (erule extuni_bool1) *) |
|
1448 |
(* done *) |
|
1449 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "26") 1*}) |
|
1450 |
||
1451 |
(* (Annotated_step ("27", "extuni_bool2"), *) |
|
1452 |
lemma "\<forall>SV2. (bnd_holdsDuring_THFTYPE_IiooI |
|
1453 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1454 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI |
|
1455 |
bnd_lMary_THFTYPE_i |
|
1456 |
bnd_lBill_THFTYPE_i \<or> |
|
1457 |
\<not> bnd_likes_THFTYPE_IiioI |
|
1458 |
bnd_lSue_THFTYPE_i |
|
1459 |
bnd_lBill_THFTYPE_i)) = |
|
1460 |
bnd_holdsDuring_THFTYPE_IiooI SV2 True) = |
|
1461 |
False \<Longrightarrow> |
|
1462 |
\<forall>SV2. bnd_holdsDuring_THFTYPE_IiooI |
|
1463 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1464 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI |
|
1465 |
bnd_lMary_THFTYPE_i bnd_lBill_THFTYPE_i \<or> |
|
1466 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1467 |
bnd_lBill_THFTYPE_i)) = |
|
1468 |
True \<or> |
|
1469 |
bnd_holdsDuring_THFTYPE_IiooI SV2 True = True" |
|
1470 |
(* apply (rule allI, erule allE) *) |
|
1471 |
(* apply (erule extuni_bool2) *) |
|
1472 |
(* done *) |
|
1473 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "27") 1*}) |
|
1474 |
||
1475 |
(* (Annotated_step ("30", "extuni_bool1"), *) |
|
1476 |
lemma "((\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1477 |
bnd_lBill_THFTYPE_i \<or> |
|
1478 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1479 |
bnd_lBill_THFTYPE_i)) = |
|
1480 |
True) = |
|
1481 |
False \<Longrightarrow> |
|
1482 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1483 |
bnd_lBill_THFTYPE_i \<or> |
|
1484 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1485 |
bnd_lBill_THFTYPE_i)) = |
|
1486 |
False \<or> |
|
1487 |
True = False" |
|
1488 |
(* apply (erule extuni_bool1) *) |
|
1489 |
(* done *) |
|
1490 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "30") 1*}) |
|
1491 |
||
1492 |
(* (Annotated_step ("29", "extuni_bind"), *) |
|
1493 |
lemma "(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i = |
|
1494 |
bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) = |
|
1495 |
False \<or> |
|
1496 |
((\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1497 |
bnd_lBill_THFTYPE_i \<or> |
|
1498 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1499 |
bnd_lBill_THFTYPE_i)) = |
|
1500 |
True) = |
|
1501 |
False \<Longrightarrow> |
|
1502 |
((\<not> (\<not> bnd_likes_THFTYPE_IiioI bnd_lMary_THFTYPE_i |
|
1503 |
bnd_lBill_THFTYPE_i \<or> |
|
1504 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1505 |
bnd_lBill_THFTYPE_i)) = |
|
1506 |
True) = |
|
1507 |
False" |
|
1508 |
(* apply (tactic {*break_hypotheses 1*}) *) |
|
1509 |
(* apply (erule extuni_bind) *) |
|
1510 |
(* apply (tactic {*clause_breaker 1*}) *) |
|
1511 |
(* done *) |
|
1512 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "29") 1*}) |
|
1513 |
||
1514 |
(* (Annotated_step ("28", "extuni_dec"), *) |
|
1515 |
lemma "\<forall>SV2. (bnd_holdsDuring_THFTYPE_IiooI |
|
1516 |
(bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i) |
|
1517 |
(\<not> (\<not> bnd_likes_THFTYPE_IiioI |
|
1518 |
bnd_lMary_THFTYPE_i |
|
1519 |
bnd_lBill_THFTYPE_i \<or> |
|
1520 |
\<not> bnd_likes_THFTYPE_IiioI |
|
1521 |
bnd_lSue_THFTYPE_i |
|
1522 |
bnd_lBill_THFTYPE_i)) = |
|
1523 |
bnd_holdsDuring_THFTYPE_IiooI SV2 True) = |
|
1524 |
False \<Longrightarrow> |
|
1525 |
\<forall>SV2. (bnd_lYearFn_THFTYPE_IiiI bnd_n2009_THFTYPE_i = |
|
1526 |
SV2) = |
|
1527 |
False \<or> |
|
1528 |
((\<not> (\<not> bnd_likes_THFTYPE_IiioI |
|
1529 |
bnd_lMary_THFTYPE_i bnd_lBill_THFTYPE_i \<or> |
|
1530 |
\<not> bnd_likes_THFTYPE_IiioI bnd_lSue_THFTYPE_i |
|
1531 |
bnd_lBill_THFTYPE_i)) = |
|
1532 |
True) = |
|
1533 |
False" |
|
1534 |
(* apply (rule allI) *) |
|
1535 |
(* apply (erule_tac x = "SV2" in allE) *) |
|
1536 |
(* apply (erule extuni_dec_2) *) |
|
1537 |
(* done *) |
|
1538 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "28") 1*}) |
|
1539 |
*) |
|
1540 |
||
1541 |
(* QUA002^1 |
|
1542 |
(* [[(Annotated_step ("49", "extuni_dec"), *) |
|
1543 |
lemma "((bnd_sK3_E = bnd_sK1_X1 \<or> bnd_sK3_E = bnd_sK2_X2) = |
|
1544 |
(bnd_sK3_E = bnd_sK2_X2 \<or> bnd_sK3_E = bnd_sK1_X1)) = |
|
1545 |
False \<Longrightarrow> |
|
1546 |
((bnd_sK3_E = bnd_sK2_X2) = (bnd_sK3_E = bnd_sK2_X2)) = |
|
1547 |
False \<or> |
|
1548 |
((bnd_sK3_E = bnd_sK1_X1) = (bnd_sK3_E = bnd_sK1_X1)) = |
|
1549 |
False" |
|
1550 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "49") 1*}) |
|
1551 |
||
1552 |
(* (Annotated_step ("20", "unfold_def"), *) |
|
1553 |
lemma "(bnd_addition bnd_sK1_X1 bnd_sK2_X2 \<noteq> |
|
1554 |
bnd_addition bnd_sK2_X2 bnd_sK1_X1) = |
|
1555 |
True \<Longrightarrow> |
|
1556 |
(bnd_sup |
|
61076 | 1557 |
(\<lambda>SX0::TPTP_Interpret.ind. |
55596 | 1558 |
SX0 = bnd_sK1_X1 \<or> SX0 = bnd_sK2_X2) \<noteq> |
1559 |
bnd_sup |
|
61076 | 1560 |
(\<lambda>SX0::TPTP_Interpret.ind. |
55596 | 1561 |
SX0 = bnd_sK2_X2 \<or> SX0 = bnd_sK1_X1)) = |
1562 |
True" |
|
1563 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "20") 1*}) |
|
1564 |
*) |
|
1565 |
||
1566 |
(* |
|
1567 |
(*SEU620^2*) |
|
1568 |
(* (Annotated_step ("11", "unfold_def"), *) |
|
1569 |
lemma "bnd_kpairiskpair = |
|
1570 |
(\<forall>Xx Xy. |
|
1571 |
bnd_iskpair |
|
1572 |
(bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
1573 |
(bnd_setadjoin |
|
1574 |
(bnd_setadjoin Xx |
|
1575 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
1576 |
bnd_emptyset))) \<and> |
|
1577 |
bnd_kpair = |
|
1578 |
(\<lambda>Xx Xy. |
|
1579 |
bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
1580 |
(bnd_setadjoin |
|
1581 |
(bnd_setadjoin Xx |
|
1582 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
1583 |
bnd_emptyset)) \<and> |
|
1584 |
bnd_iskpair = |
|
1585 |
(\<lambda>A. \<exists>Xx. bnd_in Xx (bnd_setunion A) \<and> |
|
1586 |
(\<exists>Xy. bnd_in Xy (bnd_setunion A) \<and> |
|
1587 |
A = |
|
1588 |
bnd_setadjoin |
|
1589 |
(bnd_setadjoin Xx bnd_emptyset) |
|
1590 |
(bnd_setadjoin |
|
1591 |
(bnd_setadjoin Xx |
|
1592 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
1593 |
bnd_emptyset))) \<and> |
|
1594 |
(\<forall>SY5 SY6. |
|
1595 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
1596 |
(bnd_setadjoin |
|
1597 |
(bnd_setadjoin SY5 |
|
1598 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1599 |
bnd_emptyset) = |
|
1600 |
bnd_setadjoin |
|
1601 |
(bnd_setadjoin (bnd_sK3 SY6 SY5) bnd_emptyset) |
|
1602 |
(bnd_setadjoin |
|
1603 |
(bnd_setadjoin (bnd_sK3 SY6 SY5) |
|
1604 |
(bnd_setadjoin (bnd_sK4 SY6 SY5) |
|
1605 |
bnd_emptyset)) |
|
1606 |
bnd_emptyset) \<and> |
|
1607 |
bnd_in (bnd_sK4 SY6 SY5) |
|
1608 |
(bnd_setunion |
|
1609 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
1610 |
(bnd_setadjoin |
|
1611 |
(bnd_setadjoin SY5 |
|
1612 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1613 |
bnd_emptyset)))) \<and> |
|
1614 |
bnd_in (bnd_sK3 SY6 SY5) |
|
1615 |
(bnd_setunion |
|
1616 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
1617 |
(bnd_setadjoin |
|
1618 |
(bnd_setadjoin SY5 |
|
1619 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1620 |
bnd_emptyset)))) = |
|
1621 |
True \<Longrightarrow> |
|
1622 |
(\<forall>SX0 SX1. |
|
1623 |
\<not> (\<not> \<not> (bnd_setadjoin |
|
1624 |
(bnd_setadjoin SX0 bnd_emptyset) |
|
1625 |
(bnd_setadjoin |
|
1626 |
(bnd_setadjoin SX0 |
|
1627 |
(bnd_setadjoin SX1 bnd_emptyset)) |
|
1628 |
bnd_emptyset) \<noteq> |
|
1629 |
bnd_setadjoin |
|
1630 |
(bnd_setadjoin (bnd_sK3 SX1 SX0) |
|
1631 |
bnd_emptyset) |
|
1632 |
(bnd_setadjoin |
|
1633 |
(bnd_setadjoin (bnd_sK3 SX1 SX0) |
|
1634 |
(bnd_setadjoin (bnd_sK4 SX1 SX0) |
|
1635 |
bnd_emptyset)) |
|
1636 |
bnd_emptyset) \<or> |
|
1637 |
\<not> bnd_in (bnd_sK4 SX1 SX0) |
|
1638 |
(bnd_setunion |
|
1639 |
(bnd_setadjoin |
|
1640 |
(bnd_setadjoin SX0 bnd_emptyset) |
|
1641 |
(bnd_setadjoin |
|
1642 |
(bnd_setadjoin SX0 |
|
1643 |
(bnd_setadjoin SX1 bnd_emptyset)) |
|
1644 |
bnd_emptyset)))) \<or> |
|
1645 |
\<not> bnd_in (bnd_sK3 SX1 SX0) |
|
1646 |
(bnd_setunion |
|
1647 |
(bnd_setadjoin |
|
1648 |
(bnd_setadjoin SX0 bnd_emptyset) |
|
1649 |
(bnd_setadjoin |
|
1650 |
(bnd_setadjoin SX0 |
|
1651 |
(bnd_setadjoin SX1 bnd_emptyset)) |
|
1652 |
bnd_emptyset))))) = |
|
1653 |
True" |
|
1654 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "11") 1*}) |
|
1655 |
||
1656 |
(* (Annotated_step ("3", "unfold_def"), *) |
|
1657 |
lemma "bnd_kpairiskpair = |
|
1658 |
(\<forall>Xx Xy. |
|
1659 |
bnd_iskpair |
|
1660 |
(bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
1661 |
(bnd_setadjoin |
|
1662 |
(bnd_setadjoin Xx |
|
1663 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
1664 |
bnd_emptyset))) \<and> |
|
1665 |
bnd_kpair = |
|
1666 |
(\<lambda>Xx Xy. |
|
1667 |
bnd_setadjoin (bnd_setadjoin Xx bnd_emptyset) |
|
1668 |
(bnd_setadjoin |
|
1669 |
(bnd_setadjoin Xx |
|
1670 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
1671 |
bnd_emptyset)) \<and> |
|
1672 |
bnd_iskpair = |
|
1673 |
(\<lambda>A. \<exists>Xx. bnd_in Xx (bnd_setunion A) \<and> |
|
1674 |
(\<exists>Xy. bnd_in Xy (bnd_setunion A) \<and> |
|
1675 |
A = |
|
1676 |
bnd_setadjoin |
|
1677 |
(bnd_setadjoin Xx bnd_emptyset) |
|
1678 |
(bnd_setadjoin |
|
1679 |
(bnd_setadjoin Xx |
|
1680 |
(bnd_setadjoin Xy bnd_emptyset)) |
|
1681 |
bnd_emptyset))) \<and> |
|
1682 |
(bnd_kpairiskpair \<longrightarrow> |
|
1683 |
(\<forall>Xx Xy. bnd_iskpair (bnd_kpair Xx Xy))) = |
|
1684 |
False \<Longrightarrow> |
|
1685 |
((\<forall>SY5 SY6. |
|
1686 |
\<exists>SY7. bnd_in SY7 |
|
1687 |
(bnd_setunion |
|
1688 |
(bnd_setadjoin |
|
1689 |
(bnd_setadjoin SY5 bnd_emptyset) |
|
1690 |
(bnd_setadjoin |
|
1691 |
(bnd_setadjoin SY5 |
|
1692 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1693 |
bnd_emptyset))) \<and> |
|
1694 |
(\<exists>SY8. bnd_in SY8 |
|
1695 |
(bnd_setunion |
|
1696 |
(bnd_setadjoin |
|
1697 |
(bnd_setadjoin SY5 bnd_emptyset) |
|
1698 |
(bnd_setadjoin |
|
1699 |
(bnd_setadjoin SY5 (bnd_setadjoin SY6 bnd_emptyset)) |
|
1700 |
bnd_emptyset))) \<and> |
|
1701 |
bnd_setadjoin |
|
1702 |
(bnd_setadjoin SY5 bnd_emptyset) |
|
1703 |
(bnd_setadjoin |
|
1704 |
(bnd_setadjoin SY5 |
|
1705 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1706 |
bnd_emptyset) = |
|
1707 |
bnd_setadjoin |
|
1708 |
(bnd_setadjoin SY7 bnd_emptyset) |
|
1709 |
(bnd_setadjoin |
|
1710 |
(bnd_setadjoin SY7 |
|
1711 |
(bnd_setadjoin SY8 bnd_emptyset)) |
|
1712 |
bnd_emptyset))) \<longrightarrow> |
|
1713 |
(\<forall>SY0 SY1. |
|
1714 |
\<exists>SY3. bnd_in SY3 |
|
1715 |
(bnd_setunion |
|
1716 |
(bnd_setadjoin |
|
1717 |
(bnd_setadjoin SY0 bnd_emptyset) |
|
1718 |
(bnd_setadjoin |
|
1719 |
(bnd_setadjoin SY0 |
|
1720 |
(bnd_setadjoin SY1 bnd_emptyset)) |
|
1721 |
bnd_emptyset))) \<and> |
|
1722 |
(\<exists>SY4. bnd_in SY4 |
|
1723 |
(bnd_setunion |
|
1724 |
(bnd_setadjoin |
|
1725 |
(bnd_setadjoin SY0 bnd_emptyset) |
|
1726 |
(bnd_setadjoin |
|
1727 |
(bnd_setadjoin SY0 (bnd_setadjoin SY1 bnd_emptyset)) |
|
1728 |
bnd_emptyset))) \<and> |
|
1729 |
bnd_setadjoin |
|
1730 |
(bnd_setadjoin SY0 bnd_emptyset) |
|
1731 |
(bnd_setadjoin |
|
1732 |
(bnd_setadjoin SY0 |
|
1733 |
(bnd_setadjoin SY1 bnd_emptyset)) |
|
1734 |
bnd_emptyset) = |
|
1735 |
bnd_setadjoin |
|
1736 |
(bnd_setadjoin SY3 bnd_emptyset) |
|
1737 |
(bnd_setadjoin |
|
1738 |
(bnd_setadjoin SY3 |
|
1739 |
(bnd_setadjoin SY4 bnd_emptyset)) |
|
1740 |
bnd_emptyset)))) = |
|
1741 |
False" |
|
1742 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "3") 1*}) |
|
1743 |
||
1744 |
(* (Annotated_step ("8", "extcnf_combined"), *) |
|
1745 |
lemma "(\<forall>SY5 SY6. |
|
1746 |
\<exists>SY7. bnd_in SY7 |
|
1747 |
(bnd_setunion |
|
1748 |
(bnd_setadjoin |
|
1749 |
(bnd_setadjoin SY5 bnd_emptyset) |
|
1750 |
(bnd_setadjoin |
|
1751 |
(bnd_setadjoin SY5 |
|
1752 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1753 |
bnd_emptyset))) \<and> |
|
1754 |
(\<exists>SY8. bnd_in SY8 |
|
1755 |
(bnd_setunion |
|
1756 |
(bnd_setadjoin |
|
1757 |
(bnd_setadjoin SY5 bnd_emptyset) |
|
1758 |
(bnd_setadjoin |
|
1759 |
(bnd_setadjoin SY5 (bnd_setadjoin SY6 bnd_emptyset)) |
|
1760 |
bnd_emptyset))) \<and> |
|
1761 |
bnd_setadjoin |
|
1762 |
(bnd_setadjoin SY5 bnd_emptyset) |
|
1763 |
(bnd_setadjoin |
|
1764 |
(bnd_setadjoin SY5 |
|
1765 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1766 |
bnd_emptyset) = |
|
1767 |
bnd_setadjoin |
|
1768 |
(bnd_setadjoin SY7 bnd_emptyset) |
|
1769 |
(bnd_setadjoin |
|
1770 |
(bnd_setadjoin SY7 |
|
1771 |
(bnd_setadjoin SY8 bnd_emptyset)) |
|
1772 |
bnd_emptyset))) = |
|
1773 |
True \<Longrightarrow> |
|
1774 |
(\<forall>SY5 SY6. |
|
1775 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
1776 |
(bnd_setadjoin |
|
1777 |
(bnd_setadjoin SY5 |
|
1778 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1779 |
bnd_emptyset) = |
|
1780 |
bnd_setadjoin |
|
1781 |
(bnd_setadjoin (bnd_sK3 SY6 SY5) bnd_emptyset) |
|
1782 |
(bnd_setadjoin |
|
1783 |
(bnd_setadjoin (bnd_sK3 SY6 SY5) |
|
1784 |
(bnd_setadjoin (bnd_sK4 SY6 SY5) |
|
1785 |
bnd_emptyset)) |
|
1786 |
bnd_emptyset) \<and> |
|
1787 |
bnd_in (bnd_sK4 SY6 SY5) |
|
1788 |
(bnd_setunion |
|
1789 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
1790 |
(bnd_setadjoin |
|
1791 |
(bnd_setadjoin SY5 |
|
1792 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1793 |
bnd_emptyset)))) \<and> |
|
1794 |
bnd_in (bnd_sK3 SY6 SY5) |
|
1795 |
(bnd_setunion |
|
1796 |
(bnd_setadjoin (bnd_setadjoin SY5 bnd_emptyset) |
|
1797 |
(bnd_setadjoin |
|
1798 |
(bnd_setadjoin SY5 |
|
1799 |
(bnd_setadjoin SY6 bnd_emptyset)) |
|
1800 |
bnd_emptyset)))) = |
|
1801 |
True" |
|
1802 |
by (tactic {* |
|
1803 |
HEADGOAL (extcnf_combined_tac Full false (hd prob_names)) |
|
1804 |
*}) |
|
1805 |
||
1806 |
(* (Annotated_step ("7", "extcnf_combined"), *) |
|
1807 |
lemma "(\<not> (\<forall>SY0 SY1. |
|
1808 |
\<exists>SY3. bnd_in SY3 |
|
1809 |
(bnd_setunion |
|
1810 |
(bnd_setadjoin |
|
1811 |
(bnd_setadjoin SY0 bnd_emptyset) |
|
1812 |
(bnd_setadjoin |
|
1813 |
(bnd_setadjoin SY0 |
|
1814 |
(bnd_setadjoin SY1 bnd_emptyset)) |
|
1815 |
bnd_emptyset))) \<and> |
|
1816 |
(\<exists>SY4. bnd_in SY4 |
|
1817 |
(bnd_setunion |
|
1818 |
(bnd_setadjoin (bnd_setadjoin SY0 bnd_emptyset) |
|
1819 |
(bnd_setadjoin |
|
1820 |
(bnd_setadjoin SY0 (bnd_setadjoin SY1 bnd_emptyset)) |
|
1821 |
bnd_emptyset))) \<and> |
|
1822 |
bnd_setadjoin |
|
1823 |
(bnd_setadjoin SY0 bnd_emptyset) |
|
1824 |
(bnd_setadjoin |
|
1825 |
(bnd_setadjoin SY0 (bnd_setadjoin SY1 bnd_emptyset)) |
|
1826 |
bnd_emptyset) = |
|
1827 |
bnd_setadjoin |
|
1828 |
(bnd_setadjoin SY3 bnd_emptyset) |
|
1829 |
(bnd_setadjoin |
|
1830 |
(bnd_setadjoin SY3 (bnd_setadjoin SY4 bnd_emptyset)) |
|
1831 |
bnd_emptyset)))) = |
|
1832 |
True \<Longrightarrow> |
|
1833 |
(\<forall>SY24. |
|
1834 |
(\<forall>SY25. |
|
1835 |
bnd_setadjoin |
|
1836 |
(bnd_setadjoin bnd_sK1 bnd_emptyset) |
|
1837 |
(bnd_setadjoin |
|
1838 |
(bnd_setadjoin bnd_sK1 |
|
1839 |
(bnd_setadjoin bnd_sK2 bnd_emptyset)) |
|
1840 |
bnd_emptyset) \<noteq> |
|
1841 |
bnd_setadjoin (bnd_setadjoin SY24 bnd_emptyset) |
|
1842 |
(bnd_setadjoin |
|
1843 |
(bnd_setadjoin SY24 |
|
1844 |
(bnd_setadjoin SY25 bnd_emptyset)) |
|
1845 |
bnd_emptyset) \<or> |
|
1846 |
\<not> bnd_in SY25 |
|
1847 |
(bnd_setunion |
|
1848 |
(bnd_setadjoin |
|
1849 |
(bnd_setadjoin bnd_sK1 bnd_emptyset) |
|
1850 |
(bnd_setadjoin |
|
1851 |
(bnd_setadjoin bnd_sK1 |
|
1852 |
(bnd_setadjoin bnd_sK2 |
|
1853 |
bnd_emptyset)) |
|
1854 |
bnd_emptyset)))) \<or> |
|
1855 |
\<not> bnd_in SY24 |
|
1856 |
(bnd_setunion |
|
1857 |
(bnd_setadjoin |
|
1858 |
(bnd_setadjoin bnd_sK1 bnd_emptyset) |
|
1859 |
(bnd_setadjoin |
|
1860 |
(bnd_setadjoin bnd_sK1 |
|
1861 |
(bnd_setadjoin bnd_sK2 bnd_emptyset)) |
|
1862 |
bnd_emptyset)))) = |
|
1863 |
True" |
|
1864 |
by (tactic {*HEADGOAL (extcnf_combined_tac Full false (hd prob_names))*}) |
|
1865 |
*) |
|
1866 |
||
1867 |
(*PUZ081^2*) |
|
1868 |
(* |
|
1869 |
(* (Annotated_step ("9", "unfold_def"), *) |
|
1870 |
lemma "bnd_says bnd_mel |
|
1871 |
(\<not> bnd_knave bnd_zoey \<and> \<not> bnd_knave bnd_mel) \<Longrightarrow> |
|
1872 |
bnd_says bnd_mel |
|
1873 |
(\<not> bnd_knave bnd_zoey \<and> \<not> bnd_knave bnd_mel) = |
|
1874 |
True" |
|
1875 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "9") 1*}) |
|
1876 |
||
1877 |
(* (Annotated_step ("10", "unfold_def"), *) |
|
1878 |
lemma "bnd_says bnd_zoey (bnd_knave bnd_mel) \<Longrightarrow> |
|
1879 |
bnd_says bnd_zoey (bnd_knave bnd_mel) = True" |
|
1880 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "10") 1*}) |
|
1881 |
||
1882 |
(* (Annotated_step ("11", "unfold_def"), *) |
|
1883 |
lemma "\<forall>P S. bnd_knave P \<and> bnd_says P S \<longrightarrow> \<not> S \<Longrightarrow> |
|
1884 |
(\<forall>P S. bnd_knave P \<and> bnd_says P S \<longrightarrow> \<not> S) = True" |
|
1885 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "11") 1*}) |
|
1886 |
||
1887 |
(* (Annotated_step ("12", "unfold_def"), *) |
|
1888 |
lemma "\<forall>P S. bnd_knight P \<and> bnd_says P S \<longrightarrow> S \<Longrightarrow> |
|
1889 |
(\<forall>P S. bnd_knight P \<and> bnd_says P S \<longrightarrow> S) = True" |
|
1890 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "12") 1*}) |
|
1891 |
||
1892 |
(* (Annotated_step ("13", "unfold_def"), *) |
|
1893 |
lemma "\<forall>P. bnd_knight P \<noteq> bnd_knave P \<Longrightarrow> |
|
1894 |
(\<forall>P. bnd_knight P \<noteq> bnd_knave P) = True" |
|
1895 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "13") 1*}) |
|
1896 |
||
1897 |
(* (Annotated_step ("15", "extcnf_combined"), *) |
|
1898 |
lemma "(\<not> (\<exists>TZ TM. TZ bnd_zoey \<and> TM bnd_mel)) = True \<Longrightarrow> |
|
1899 |
((\<forall>TM. \<not> TM bnd_mel) \<or> (\<forall>TZ. \<not> TZ bnd_zoey)) = True" |
|
1900 |
by (tactic {*extcnf_combined_tac Full false (hd prob_names) 1*}) |
|
1901 |
||
1902 |
(* (Annotated_step ("18", "extcnf_combined"), *) |
|
1903 |
lemma "(\<forall>P. bnd_knight P \<noteq> bnd_knave P) = True \<Longrightarrow> |
|
1904 |
((\<forall>P. \<not> bnd_knave P \<or> \<not> bnd_knight P) \<and> |
|
1905 |
(\<forall>P. bnd_knave P \<or> bnd_knight P)) = |
|
1906 |
True" |
|
1907 |
by (tactic {*extcnf_combined_tac Full false (hd prob_names) 1*}) |
|
1908 |
*) |
|
1909 |
||
1910 |
(* |
|
1911 |
(*from SEU667^2.p.out*) |
|
1912 |
(* (Annotated_step ("10", "unfold_def"), *) |
|
1913 |
lemma "bnd_dpsetconstrSub = |
|
1914 |
(\<forall>A B Xphi. |
|
1915 |
bnd_subset (bnd_dpsetconstr A B Xphi) |
|
1916 |
(bnd_cartprod A B)) \<and> |
|
1917 |
bnd_dpsetconstr = |
|
1918 |
(\<lambda>A B Xphi. |
|
1919 |
bnd_dsetconstr (bnd_cartprod A B) |
|
1920 |
(\<lambda>Xu. \<exists>Xx. bnd_in Xx A \<and> |
|
1921 |
(\<exists>Xy. (bnd_in Xy B \<and> Xphi Xx Xy) \<and> |
|
1922 |
Xu = bnd_kpair Xx Xy))) \<and> |
|
1923 |
bnd_breln = (\<lambda>A B C. bnd_subset C (bnd_cartprod A B)) \<and> |
|
1924 |
(\<not> bnd_subset |
|
1925 |
(bnd_dsetconstr (bnd_cartprod bnd_sK1 bnd_sK2) |
|
1926 |
(\<lambda>SY66. |
|
1927 |
\<exists>SY67. |
|
1928 |
bnd_in SY67 bnd_sK1 \<and> |
|
1929 |
(\<exists>SY68. |
|
1930 |
(bnd_in SY68 bnd_sK2 \<and> |
|
1931 |
bnd_sK3 SY67 SY68) \<and> |
|
1932 |
SY66 = bnd_kpair SY67 SY68))) |
|
1933 |
(bnd_cartprod bnd_sK1 bnd_sK2)) = |
|
1934 |
True \<Longrightarrow> |
|
1935 |
(\<not> bnd_subset |
|
1936 |
(bnd_dsetconstr (bnd_cartprod bnd_sK1 bnd_sK2) |
|
1937 |
(\<lambda>SX0. \<not> (\<forall>SX1. \<not> \<not> (\<not> bnd_in SX1 bnd_sK1 \<or> |
|
1938 |
\<not> \<not> (\<forall>SX2. \<not> \<not> (\<not> \<not> (\<not> bnd_in SX2 bnd_sK2 \<or> |
|
1939 |
\<not> bnd_sK3 SX1 SX2) \<or> |
|
1940 |
SX0 \<noteq> bnd_kpair SX1 SX2)))))) |
|
1941 |
(bnd_cartprod bnd_sK1 bnd_sK2)) = |
|
1942 |
True" |
|
1943 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "10") 1*}) |
|
1944 |
||
1945 |
||
1946 |
(* (Annotated_step ("11", "unfold_def"), *) |
|
1947 |
lemma "bnd_dpsetconstrSub = |
|
1948 |
(\<forall>A B Xphi. |
|
1949 |
bnd_subset (bnd_dpsetconstr A B Xphi) |
|
1950 |
(bnd_cartprod A B)) \<and> |
|
1951 |
bnd_dpsetconstr = |
|
1952 |
(\<lambda>A B Xphi. |
|
1953 |
bnd_dsetconstr (bnd_cartprod A B) |
|
1954 |
(\<lambda>Xu. \<exists>Xx. bnd_in Xx A \<and> |
|
1955 |
(\<exists>Xy. (bnd_in Xy B \<and> Xphi Xx Xy) \<and> |
|
1956 |
Xu = bnd_kpair Xx Xy))) \<and> |
|
1957 |
bnd_breln = (\<lambda>A B C. bnd_subset C (bnd_cartprod A B)) \<and> |
|
1958 |
(\<forall>SY21 SY22 SY23. |
|
1959 |
bnd_subset |
|
1960 |
(bnd_dsetconstr (bnd_cartprod SY21 SY22) |
|
1961 |
(\<lambda>SY35. |
|
1962 |
\<exists>SY36. |
|
1963 |
bnd_in SY36 SY21 \<and> |
|
1964 |
(\<exists>SY37. |
|
1965 |
(bnd_in SY37 SY22 \<and> SY23 SY36 SY37) \<and> |
|
1966 |
SY35 = bnd_kpair SY36 SY37))) |
|
1967 |
(bnd_cartprod SY21 SY22)) = |
|
1968 |
True \<Longrightarrow> |
|
1969 |
(\<forall>SX0 SX1 SX2. |
|
1970 |
bnd_subset |
|
1971 |
(bnd_dsetconstr (bnd_cartprod SX0 SX1) |
|
1972 |
(\<lambda>SX3. \<not> (\<forall>SX4. \<not> \<not> (\<not> bnd_in SX4 SX0 \<or> |
|
1973 |
\<not> \<not> (\<forall>SX5. \<not> \<not> (\<not> \<not> (\<not> bnd_in SX5 SX1 \<or> \<not> SX2 SX4 SX5) \<or> |
|
1974 |
SX3 \<noteq> bnd_kpair SX4 SX5)))))) |
|
1975 |
(bnd_cartprod SX0 SX1)) = |
|
1976 |
True" |
|
1977 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "11") 1*}) |
|
1978 |
*) |
|
1979 |
||
1980 |
(* |
|
1981 |
(*from ALG001^5*) |
|
1982 |
(* (Annotated_step ("4", "extcnf_forall_neg"), *) |
|
1983 |
lemma "(\<forall>(Xh1 :: bnd_g \<Rightarrow> bnd_b) (Xh2 :: bnd_b \<Rightarrow> bnd_a) (Xf1 :: bnd_g \<Rightarrow> bnd_g \<Rightarrow> bnd_g) (Xf2 :: bnd_b \<Rightarrow> bnd_b \<Rightarrow> bnd_b) (Xf3 :: bnd_a \<Rightarrow> bnd_a \<Rightarrow> bnd_a). |
|
1984 |
(\<forall>Xx Xy. Xh1 (Xf1 Xx Xy) = Xf2 (Xh1 Xx) (Xh1 Xy)) \<and> |
|
1985 |
(\<forall>Xx Xy. |
|
1986 |
Xh2 (Xf2 Xx Xy) = Xf3 (Xh2 Xx) (Xh2 Xy)) \<longrightarrow> |
|
1987 |
(\<forall>Xx Xy. |
|
1988 |
Xh2 (Xh1 (Xf1 Xx Xy)) = |
|
1989 |
Xf3 (Xh2 (Xh1 Xx)) (Xh2 (Xh1 Xy)))) = |
|
1990 |
False \<Longrightarrow> |
|
1991 |
((\<forall>SY35 SY36. |
|
1992 |
bnd_sK1 (bnd_sK3 SY35 SY36) = |
|
1993 |
bnd_sK4 (bnd_sK1 SY35) (bnd_sK1 SY36)) \<and> |
|
1994 |
(\<forall>SY31 SY32. |
|
1995 |
bnd_sK2 (bnd_sK4 SY31 SY32) = |
|
1996 |
bnd_sK5 (bnd_sK2 SY31) (bnd_sK2 SY32)) \<longrightarrow> |
|
1997 |
(\<forall>SY39 SY40. |
|
1998 |
bnd_sK2 (bnd_sK1 (bnd_sK3 SY39 SY40)) = |
|
1999 |
bnd_sK5 (bnd_sK2 (bnd_sK1 SY39)) |
|
2000 |
(bnd_sK2 (bnd_sK1 SY40)))) = |
|
2001 |
False" |
|
2002 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "4") 1*}) |
|
2003 |
*) |
|
2004 |
||
2005 |
(*SYN044^4*) |
|
2006 |
(* |
|
56281 | 2007 |
declare [[ML_print_depth = 1400]] |
55596 | 2008 |
(* the_tactics *) |
2009 |
*} |
|
2010 |
||
2011 |
(* (Annotated_step ("12", "unfold_def"), *) |
|
2012 |
lemma "bnd_mor = |
|
61076 | 2013 |
(\<lambda>(X::TPTP_Interpret.ind \<Rightarrow> bool) |
2014 |
(Y::TPTP_Interpret.ind \<Rightarrow> bool) U::TPTP_Interpret.ind. |
|
55596 | 2015 |
X U \<or> Y U) \<and> |
2016 |
bnd_mnot = |
|
61076 | 2017 |
(\<lambda>(X::TPTP_Interpret.ind \<Rightarrow> bool) U::TPTP_Interpret.ind. |
55596 | 2018 |
\<not> X U) \<and> |
2019 |
bnd_mimplies = |
|
61076 | 2020 |
(\<lambda>U::TPTP_Interpret.ind \<Rightarrow> bool. bnd_mor (bnd_mnot U)) \<and> |
55596 | 2021 |
bnd_mbox_s4 = |
61076 | 2022 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) X::TPTP_Interpret.ind. |
2023 |
\<forall>Y::TPTP_Interpret.ind. bnd_irel X Y \<longrightarrow> P Y) \<and> |
|
55596 | 2024 |
bnd_mand = |
61076 | 2025 |
(\<lambda>(X::TPTP_Interpret.ind \<Rightarrow> bool) |
2026 |
(Y::TPTP_Interpret.ind \<Rightarrow> bool) U::TPTP_Interpret.ind. |
|
55596 | 2027 |
X U \<and> Y U) \<and> |
2028 |
bnd_ixor = |
|
61076 | 2029 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2030 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2031 |
bnd_inot (bnd_iequiv P Q)) \<and> |
2032 |
bnd_ivalid = All \<and> |
|
61076 | 2033 |
bnd_itrue = (\<lambda>W::TPTP_Interpret.ind. True) \<and> |
55596 | 2034 |
bnd_isatisfiable = Ex \<and> |
2035 |
bnd_ior = |
|
61076 | 2036 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2037 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2038 |
bnd_mor (bnd_mbox_s4 P) (bnd_mbox_s4 Q)) \<and> |
2039 |
bnd_inot = |
|
61076 | 2040 |
(\<lambda>P::TPTP_Interpret.ind \<Rightarrow> bool. |
55596 | 2041 |
bnd_mnot (bnd_mbox_s4 P)) \<and> |
2042 |
bnd_iinvalid = |
|
61076 | 2043 |
(\<lambda>Phi::TPTP_Interpret.ind \<Rightarrow> bool. |
2044 |
\<forall>W::TPTP_Interpret.ind. \<not> Phi W) \<and> |
|
55596 | 2045 |
bnd_iimplies = |
61076 | 2046 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2047 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2048 |
bnd_mimplies (bnd_mbox_s4 P) (bnd_mbox_s4 Q)) \<and> |
2049 |
bnd_iimplied = |
|
61076 | 2050 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2051 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. bnd_iimplies Q P) \<and> |
|
55596 | 2052 |
bnd_ifalse = bnd_inot bnd_itrue \<and> |
2053 |
bnd_iequiv = |
|
61076 | 2054 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2055 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2056 |
bnd_iand (bnd_iimplies P Q) (bnd_iimplies Q P)) \<and> |
2057 |
bnd_icountersatisfiable = |
|
61076 | 2058 |
(\<lambda>Phi::TPTP_Interpret.ind \<Rightarrow> bool. |
2059 |
\<exists>W::TPTP_Interpret.ind. \<not> Phi W) \<and> |
|
2060 |
bnd_iatom = (\<lambda>P::TPTP_Interpret.ind \<Rightarrow> bool. P) \<and> |
|
55596 | 2061 |
bnd_iand = bnd_mand \<and> |
61076 | 2062 |
(\<forall>(X::TPTP_Interpret.ind) (Y::TPTP_Interpret.ind) |
2063 |
Z::TPTP_Interpret.ind. |
|
55596 | 2064 |
bnd_irel X Y \<and> bnd_irel Y Z \<longrightarrow> bnd_irel X Z) \<Longrightarrow> |
61076 | 2065 |
(\<forall>(X::TPTP_Interpret.ind) (Y::TPTP_Interpret.ind) |
2066 |
Z::TPTP_Interpret.ind. |
|
55596 | 2067 |
bnd_irel X Y \<and> bnd_irel Y Z \<longrightarrow> bnd_irel X Z) = |
2068 |
True" |
|
2069 |
(* by (tactic {*tectoc @{context}*}) *) |
|
2070 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "12") 1*}) |
|
2071 |
||
2072 |
(* (Annotated_step ("11", "unfold_def"), *) |
|
2073 |
lemma "bnd_mor = |
|
61076 | 2074 |
(\<lambda>(X::TPTP_Interpret.ind \<Rightarrow> bool) |
2075 |
(Y::TPTP_Interpret.ind \<Rightarrow> bool) U::TPTP_Interpret.ind. |
|
55596 | 2076 |
X U \<or> Y U) \<and> |
2077 |
bnd_mnot = |
|
61076 | 2078 |
(\<lambda>(X::TPTP_Interpret.ind \<Rightarrow> bool) U::TPTP_Interpret.ind. |
55596 | 2079 |
\<not> X U) \<and> |
2080 |
bnd_mimplies = |
|
61076 | 2081 |
(\<lambda>U::TPTP_Interpret.ind \<Rightarrow> bool. bnd_mor (bnd_mnot U)) \<and> |
55596 | 2082 |
bnd_mbox_s4 = |
61076 | 2083 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) X::TPTP_Interpret.ind. |
2084 |
\<forall>Y::TPTP_Interpret.ind. bnd_irel X Y \<longrightarrow> P Y) \<and> |
|
55596 | 2085 |
bnd_mand = |
61076 | 2086 |
(\<lambda>(X::TPTP_Interpret.ind \<Rightarrow> bool) |
2087 |
(Y::TPTP_Interpret.ind \<Rightarrow> bool) U::TPTP_Interpret.ind. |
|
55596 | 2088 |
X U \<and> Y U) \<and> |
2089 |
bnd_ixor = |
|
61076 | 2090 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2091 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2092 |
bnd_inot (bnd_iequiv P Q)) \<and> |
2093 |
bnd_ivalid = All \<and> |
|
61076 | 2094 |
bnd_itrue = (\<lambda>W::TPTP_Interpret.ind. True) \<and> |
55596 | 2095 |
bnd_isatisfiable = Ex \<and> |
2096 |
bnd_ior = |
|
61076 | 2097 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2098 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2099 |
bnd_mor (bnd_mbox_s4 P) (bnd_mbox_s4 Q)) \<and> |
2100 |
bnd_inot = |
|
61076 | 2101 |
(\<lambda>P::TPTP_Interpret.ind \<Rightarrow> bool. |
55596 | 2102 |
bnd_mnot (bnd_mbox_s4 P)) \<and> |
2103 |
bnd_iinvalid = |
|
61076 | 2104 |
(\<lambda>Phi::TPTP_Interpret.ind \<Rightarrow> bool. |
2105 |
\<forall>W::TPTP_Interpret.ind. \<not> Phi W) \<and> |
|
55596 | 2106 |
bnd_iimplies = |
61076 | 2107 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2108 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2109 |
bnd_mimplies (bnd_mbox_s4 P) (bnd_mbox_s4 Q)) \<and> |
2110 |
bnd_iimplied = |
|
61076 | 2111 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2112 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. bnd_iimplies Q P) \<and> |
|
55596 | 2113 |
bnd_ifalse = bnd_inot bnd_itrue \<and> |
2114 |
bnd_iequiv = |
|
61076 | 2115 |
(\<lambda>(P::TPTP_Interpret.ind \<Rightarrow> bool) |
2116 |
Q::TPTP_Interpret.ind \<Rightarrow> bool. |
|
55596 | 2117 |
bnd_iand (bnd_iimplies P Q) (bnd_iimplies Q P)) \<and> |
2118 |
bnd_icountersatisfiable = |
|
61076 | 2119 |
(\<lambda>Phi::TPTP_Interpret.ind \<Rightarrow> bool. |
2120 |
\<exists>W::TPTP_Interpret.ind. \<not> Phi W) \<and> |
|
2121 |
bnd_iatom = (\<lambda>P::TPTP_Interpret.ind \<Rightarrow> bool. P) \<and> |
|
55596 | 2122 |
bnd_iand = bnd_mand \<and> |
2123 |
bnd_ivalid |
|
2124 |
(bnd_iimplies (bnd_iatom bnd_q) (bnd_iatom bnd_r)) \<Longrightarrow> |
|
61076 | 2125 |
(\<forall>SY161::TPTP_Interpret.ind. |
2126 |
\<not> (\<forall>SY162::TPTP_Interpret.ind. |
|
55596 | 2127 |
bnd_irel SY161 SY162 \<longrightarrow> bnd_q SY162) \<or> |
61076 | 2128 |
(\<forall>SY163::TPTP_Interpret.ind. |
55596 | 2129 |
bnd_irel SY161 SY163 \<longrightarrow> bnd_r SY163)) = |
2130 |
True" |
|
2131 |
(* by (tactic {*tectoc @{context}*}) *) |
|
2132 |
by (tactic {*rtac (leo2_tac @{context} (hd prob_names) "11") 1*}) |
|
2133 |
||
2134 |
lemma " |
|
2135 |
(\<forall>SY136. |
|
2136 |
\<not> (\<forall>SY137. bnd_irel SY136 SY137 \<longrightarrow> bnd_r SY137) \<or> |
|
2137 |
(\<forall>SY138. |
|
2138 |
bnd_irel SY136 SY138 \<longrightarrow> bnd_p SY138 \<and> bnd_q SY138)) = |
|
2139 |
True \<Longrightarrow> |
|
2140 |
(\<forall>SY136. |
|
2141 |
bnd_irel SY136 (bnd_sK5 SY136) \<and> \<not> bnd_r (bnd_sK5 SY136) \<or> |
|
2142 |
(\<forall>SY138. \<not> bnd_irel SY136 SY138 \<or> bnd_p SY138) \<and> |
|
2143 |
(\<forall>SY138. \<not> bnd_irel SY136 SY138 \<or> bnd_q SY138)) = |
|
2144 |
True" |
|
2145 |
by (tactic {*HEADGOAL (extcnf_combined_tac Full false (hd prob_names))*}) |
|
2146 |
*) |
|
2147 |
||
2148 |
(* (Annotated_step ("11", "extcnf_forall_neg"), *) |
|
61076 | 2149 |
lemma "\<forall>SV1::TPTP_Interpret.ind \<Rightarrow> bool. |
2150 |
(\<forall>SY2::TPTP_Interpret.ind. |
|
55596 | 2151 |
\<not> (\<not> (\<not> SV1 SY2 \<or> SEV405_5_bnd_cA) \<or> |
2152 |
\<not> (\<not> SEV405_5_bnd_cA \<or> SV1 SY2))) = |
|
2153 |
False \<Longrightarrow> |
|
61076 | 2154 |
\<forall>SV1::TPTP_Interpret.ind \<Rightarrow> bool. |
55596 | 2155 |
(\<not> (\<not> (\<not> SV1 (SEV405_5_bnd_sK1_SY2 SV1) \<or> SEV405_5_bnd_cA) \<or> |
2156 |
\<not> (\<not> SEV405_5_bnd_cA \<or> SV1 (SEV405_5_bnd_sK1_SY2 SV1)))) = |
|
2157 |
False" |
|
2158 |
(* apply (tactic {*full_extcnf_combined_tac*}) *) |
|
63167 | 2159 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Existential_Var]\<close>) |
55596 | 2160 |
|
2161 |
(* (Annotated_step ("13", "extcnf_forall_pos"), *) |
|
2162 |
lemma "(\<forall>SY31 SY32. |
|
2163 |
bnd_sK2 (bnd_sK4 SY31 SY32) = |
|
2164 |
bnd_sK5 (bnd_sK2 SY31) (bnd_sK2 SY32)) = |
|
2165 |
True \<Longrightarrow> |
|
2166 |
\<forall>SV1. (\<forall>SY42. |
|
2167 |
bnd_sK2 (bnd_sK4 SV1 SY42) = |
|
2168 |
bnd_sK5 (bnd_sK2 SV1) (bnd_sK2 SY42)) = |
|
2169 |
True" |
|
63167 | 2170 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Universal]\<close>) |
55596 | 2171 |
|
2172 |
(* (Annotated_step ("14", "extcnf_forall_pos"), *) |
|
2173 |
lemma "(\<forall>SY35 SY36. |
|
2174 |
bnd_sK1 (bnd_sK3 SY35 SY36) = |
|
2175 |
bnd_sK4 (bnd_sK1 SY35) (bnd_sK1 SY36)) = |
|
2176 |
True \<Longrightarrow> |
|
2177 |
\<forall>SV2. (\<forall>SY43. |
|
2178 |
bnd_sK1 (bnd_sK3 SV2 SY43) = |
|
2179 |
bnd_sK4 (bnd_sK1 SV2) (bnd_sK1 SY43)) = |
|
2180 |
True" |
|
63167 | 2181 |
by (tactic \<open>nonfull_extcnf_combined_tac @{context} [Universal]\<close>) |
55596 | 2182 |
|
2183 |
||
2184 |
(*from SYO198^5.p.out*) |
|
2185 |
(* [[(Annotated_step ("11", "extcnf_forall_special_pos"), *) |
|
61076 | 2186 |
lemma "(\<forall>SX0::bool \<Rightarrow> bool. |
55596 | 2187 |
\<not> \<not> (\<not> SX0 bnd_sK1_Xx \<or> \<not> SX0 bnd_sK2_Xy)) = |
2188 |
True \<Longrightarrow> |
|
2189 |
(\<not> \<not> (\<not> True \<or> \<not> True)) = True" |
|
63167 | 2190 |
apply (tactic \<open>extcnf_forall_special_pos_tac 1\<close>) |
55596 | 2191 |
done |
2192 |
||
2193 |
(* (Annotated_step ("13", "extcnf_forall_special_pos"), *) |
|
61076 | 2194 |
lemma "(\<forall>SX0::bool \<Rightarrow> bool. |
55596 | 2195 |
\<not> \<not> (\<not> SX0 bnd_sK1_Xx \<or> \<not> SX0 bnd_sK2_Xy)) = |
2196 |
True \<Longrightarrow> |
|
2197 |
(\<not> \<not> (\<not> bnd_sK1_Xx \<or> \<not> bnd_sK2_Xy)) = True" |
|
63167 | 2198 |
apply (tactic \<open>extcnf_forall_special_pos_tac 1\<close>) |
55596 | 2199 |
done |
2200 |
||
2201 |
(* [[(Annotated_step ("8", "polarity_switch"), *) |
|
61076 | 2202 |
lemma "(\<forall>(Xx::bool) (Xy::bool) Xz::bool. True \<and> True \<longrightarrow> True) = |
55596 | 2203 |
False \<Longrightarrow> |
61076 | 2204 |
(\<not> (\<forall>(Xx::bool) (Xy::bool) Xz::bool. |
55596 | 2205 |
True \<and> True \<longrightarrow> True)) = |
2206 |
True" |
|
63167 | 2207 |
apply (tactic \<open>nonfull_extcnf_combined_tac @{context} [Polarity_switch]\<close>) |
55596 | 2208 |
done |
2209 |
||
2210 |
lemma "((\<forall>SY22 SY23 SY24. |
|
2211 |
bnd_sK1_RRR SY22 SY23 \<and> bnd_sK1_RRR SY23 SY24 \<longrightarrow> |
|
2212 |
bnd_sK1_RRR SY22 SY24) \<and> |
|
2213 |
(\<forall>SY25. |
|
2214 |
(\<forall>SY26. SY25 SY26 \<longrightarrow> bnd_sK1_RRR SY26 (bnd_sK2_U SY25)) \<and> |
|
2215 |
(\<forall>SY27. |
|
2216 |
(\<forall>SY28. SY25 SY28 \<longrightarrow> bnd_sK1_RRR SY28 SY27) \<longrightarrow> |
|
2217 |
bnd_sK1_RRR (bnd_sK2_U SY25) SY27)) \<longrightarrow> |
|
2218 |
(\<forall>SY29. \<exists>SY30. \<forall>SY31. SY29 SY31 \<longrightarrow> bnd_sK1_RRR SY31 SY30)) = |
|
2219 |
False \<Longrightarrow> |
|
2220 |
(\<forall>SY25. |
|
2221 |
(\<forall>SY26. SY25 SY26 \<longrightarrow> bnd_sK1_RRR SY26 (bnd_sK2_U SY25)) \<and> |
|
2222 |
(\<forall>SY27. |
|
2223 |
(\<forall>SY28. SY25 SY28 \<longrightarrow> bnd_sK1_RRR SY28 SY27) \<longrightarrow> |
|
2224 |
bnd_sK1_RRR (bnd_sK2_U SY25) SY27)) = |
|
2225 |
True" |
|
63167 | 2226 |
apply (tactic \<open>standard_cnf_tac @{context} 1\<close>) |
55596 | 2227 |
done |
2228 |
||
2229 |
lemma "((\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> (\<forall>Xphi. Xphi)) \<longrightarrow> |
|
2230 |
(\<forall>Xx Xy. bnd_in Xx (bnd_setadjoin Xx Xy)) \<longrightarrow> |
|
2231 |
(\<forall>A B. A = B \<longrightarrow> |
|
2232 |
(\<forall>Xx Xy. Xx = Xy \<longrightarrow> bnd_in Xx A = bnd_in Xy B)) \<longrightarrow> |
|
2233 |
(\<forall>SY0. bnd_in SY0 bnd_omega \<longrightarrow> |
|
2234 |
bnd_setadjoin SY0 SY0 \<noteq> bnd_emptyset)) = |
|
2235 |
False \<Longrightarrow> |
|
2236 |
(\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> (\<forall>Xphi. Xphi)) = |
|
2237 |
True" |
|
63167 | 2238 |
apply (tactic \<open>standard_cnf_tac @{context} 1\<close>) |
55596 | 2239 |
done |
2240 |
||
2241 |
lemma "((\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> (\<forall>Xphi. Xphi)) \<longrightarrow> |
|
2242 |
(\<forall>Xx Xy. bnd_in Xx (bnd_setadjoin Xx Xy)) \<longrightarrow> |
|
2243 |
(\<forall>A B. A = B \<longrightarrow> |
|
2244 |
(\<forall>Xx Xy. Xx = Xy \<longrightarrow> bnd_in Xx A = bnd_in Xy B)) \<longrightarrow> |
|
2245 |
(\<forall>SY0. bnd_in SY0 bnd_omega \<longrightarrow> |
|
2246 |
bnd_setadjoin SY0 SY0 \<noteq> bnd_emptyset)) = |
|
2247 |
False \<Longrightarrow> |
|
2248 |
(\<forall>Xx Xy. bnd_in Xx (bnd_setadjoin Xx Xy)) = |
|
2249 |
True" |
|
63167 | 2250 |
apply (tactic \<open>standard_cnf_tac @{context} 1\<close>) |
55596 | 2251 |
done |
2252 |
||
2253 |
lemma "((\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> (\<forall>Xphi. Xphi)) \<longrightarrow> |
|
2254 |
(\<forall>Xx Xy. bnd_in Xx (bnd_setadjoin Xx Xy)) \<longrightarrow> |
|
2255 |
(\<forall>A B. A = B \<longrightarrow> |
|
2256 |
(\<forall>Xx Xy. Xx = Xy \<longrightarrow> bnd_in Xx A = bnd_in Xy B)) \<longrightarrow> |
|
2257 |
(\<forall>SY0. bnd_in SY0 bnd_omega \<longrightarrow> |
|
2258 |
bnd_setadjoin SY0 SY0 \<noteq> bnd_emptyset)) = |
|
2259 |
False \<Longrightarrow> |
|
2260 |
(\<forall>A B. A = B \<longrightarrow> |
|
2261 |
(\<forall>Xx Xy. Xx = Xy \<longrightarrow> bnd_in Xx A = bnd_in Xy B)) = |
|
2262 |
True" |
|
63167 | 2263 |
apply (tactic \<open>standard_cnf_tac @{context} 1\<close>) |
55596 | 2264 |
done |
2265 |
||
2266 |
lemma "((\<forall>Xx. bnd_in Xx bnd_emptyset \<longrightarrow> (\<forall>Xphi. Xphi)) \<longrightarrow> |
|
2267 |
(\<forall>Xx Xy. bnd_in Xx (bnd_setadjoin Xx Xy)) \<longrightarrow> |
|
2268 |
(\<forall>A B. A = B \<longrightarrow> |
|
2269 |
(\<forall>Xx Xy. Xx = Xy \<longrightarrow> bnd_in Xx A = bnd_in Xy B)) \<longrightarrow> |
|
2270 |
(\<forall>SY0. bnd_in SY0 bnd_omega \<longrightarrow> |
|
2271 |
bnd_setadjoin SY0 SY0 \<noteq> bnd_emptyset)) = |
|
2272 |
False \<Longrightarrow> |
|
2273 |
(\<forall>SY0. bnd_in SY0 bnd_omega \<longrightarrow> |
|
2274 |
bnd_setadjoin SY0 SY0 \<noteq> bnd_emptyset) = |
|
2275 |
False" |
|
63167 | 2276 |
apply (tactic \<open>standard_cnf_tac @{context} 1\<close>) |
55596 | 2277 |
done |
2278 |
||
2279 |
(*nested conjunctions*) |
|
2280 |
lemma "((((\<forall>Xx. bnd_cP bnd_e Xx = Xx) \<and> |
|
2281 |
(\<forall>Xy. bnd_cP Xy bnd_e = Xy)) \<and> |
|
2282 |
(\<forall>Xz. bnd_cP Xz Xz = bnd_e)) \<and> |
|
2283 |
(\<forall>Xx Xy Xz. |
|
2284 |
bnd_cP (bnd_cP Xx Xy) Xz = bnd_cP Xx (bnd_cP Xy Xz)) \<longrightarrow> |
|
2285 |
(\<forall>Xa Xb. bnd_cP Xa Xb = bnd_cP Xb Xa)) = |
|
2286 |
False \<Longrightarrow> |
|
2287 |
(\<forall>Xx. bnd_cP bnd_e Xx = Xx) = |
|
2288 |
True" |
|
63167 | 2289 |
apply (tactic \<open>standard_cnf_tac @{context} 1\<close>) |
55596 | 2290 |
done |
2291 |
||
62390 | 2292 |
end |