1465
|
1 |
(* Title: HOL/lfp.ML
|
923
|
2 |
ID: $Id$
|
1465
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
923
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
5316
|
6 |
The Knaster-Tarski Theorem
|
923
|
7 |
*)
|
|
8 |
|
|
9 |
open Lfp;
|
|
10 |
|
|
11 |
(*** Proof of Knaster-Tarski Theorem ***)
|
|
12 |
|
|
13 |
(* lfp(f) is the greatest lower bound of {u. f(u) <= u} *)
|
|
14 |
|
5316
|
15 |
Goalw [lfp_def] "f(A) <= A ==> lfp(f) <= A";
|
923
|
16 |
by (rtac (CollectI RS Inter_lower) 1);
|
5316
|
17 |
by (assume_tac 1);
|
923
|
18 |
qed "lfp_lowerbound";
|
|
19 |
|
5316
|
20 |
val prems = Goalw [lfp_def]
|
923
|
21 |
"[| !!u. f(u) <= u ==> A<=u |] ==> A <= lfp(f)";
|
|
22 |
by (REPEAT (ares_tac ([Inter_greatest]@prems) 1));
|
|
23 |
by (etac CollectD 1);
|
|
24 |
qed "lfp_greatest";
|
|
25 |
|
5316
|
26 |
Goal "mono(f) ==> f(lfp(f)) <= lfp(f)";
|
923
|
27 |
by (EVERY1 [rtac lfp_greatest, rtac subset_trans,
|
5316
|
28 |
etac monoD, rtac lfp_lowerbound, atac, atac]);
|
923
|
29 |
qed "lfp_lemma2";
|
|
30 |
|
5316
|
31 |
Goal "mono(f) ==> lfp(f) <= f(lfp(f))";
|
|
32 |
by (EVERY1 [rtac lfp_lowerbound, rtac monoD, assume_tac,
|
|
33 |
etac lfp_lemma2]);
|
923
|
34 |
qed "lfp_lemma3";
|
|
35 |
|
5316
|
36 |
Goal "mono(f) ==> lfp(f) = f(lfp(f))";
|
|
37 |
by (REPEAT (ares_tac [equalityI,lfp_lemma2,lfp_lemma3] 1));
|
923
|
38 |
qed "lfp_Tarski";
|
|
39 |
|
|
40 |
(*** General induction rule for least fixed points ***)
|
|
41 |
|
5316
|
42 |
val [lfp,mono,indhyp] = Goal
|
1465
|
43 |
"[| a: lfp(f); mono(f); \
|
3842
|
44 |
\ !!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x) \
|
923
|
45 |
\ |] ==> P(a)";
|
|
46 |
by (res_inst_tac [("a","a")] (Int_lower2 RS subsetD RS CollectD) 1);
|
|
47 |
by (rtac (lfp RSN (2, lfp_lowerbound RS subsetD)) 1);
|
|
48 |
by (EVERY1 [rtac Int_greatest, rtac subset_trans,
|
1465
|
49 |
rtac (Int_lower1 RS (mono RS monoD)),
|
|
50 |
rtac (mono RS lfp_lemma2),
|
|
51 |
rtac (CollectI RS subsetI), rtac indhyp, atac]);
|
923
|
52 |
qed "induct";
|
|
53 |
|
5098
|
54 |
bind_thm ("induct2",
|
|
55 |
split_rule (read_instantiate [("a","(a,b)")] induct));
|
1114
|
56 |
|
1125
|
57 |
|
923
|
58 |
(** Definition forms of lfp_Tarski and induct, to control unfolding **)
|
|
59 |
|
|
60 |
val [rew,mono] = goal Lfp.thy "[| h==lfp(f); mono(f) |] ==> h = f(h)";
|
|
61 |
by (rewtac rew);
|
|
62 |
by (rtac (mono RS lfp_Tarski) 1);
|
|
63 |
qed "def_lfp_Tarski";
|
|
64 |
|
5316
|
65 |
val rew::prems = Goal
|
1465
|
66 |
"[| A == lfp(f); mono(f); a:A; \
|
3842
|
67 |
\ !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x) \
|
923
|
68 |
\ |] ==> P(a)";
|
1465
|
69 |
by (EVERY1 [rtac induct, (*backtracking to force correct induction*)
|
|
70 |
REPEAT1 o (ares_tac (map (rewrite_rule [rew]) prems))]);
|
923
|
71 |
qed "def_induct";
|
|
72 |
|
|
73 |
(*Monotonicity of lfp!*)
|
5316
|
74 |
val [prem] = Goal "[| !!Z. f(Z)<=g(Z) |] ==> lfp(f) <= lfp(g)";
|
1465
|
75 |
by (rtac (lfp_lowerbound RS lfp_greatest) 1);
|
|
76 |
by (etac (prem RS subset_trans) 1);
|
923
|
77 |
qed "lfp_mono";
|