author | wenzelm |
Fri, 21 Apr 2017 21:36:49 +0200 | |
changeset 65548 | b7caa2b8bdbf |
parent 64916 | eb6ad9301841 |
child 66453 | cc19f7ca2ed6 |
permissions | -rw-r--r-- |
13383 | 1 |
(* Title: HOL/ex/Tarski.thy |
40945 | 2 |
Author: Florian Kammüller, Cambridge University Computer Laboratory |
13383 | 3 |
*) |
7112 | 4 |
|
61343 | 5 |
section \<open>The Full Theorem of Tarski\<close> |
7112 | 6 |
|
27681 | 7 |
theory Tarski |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
40945
diff
changeset
|
8 |
imports Main "~~/src/HOL/Library/FuncSet" |
27681 | 9 |
begin |
7112 | 10 |
|
61343 | 11 |
text \<open> |
13383 | 12 |
Minimal version of lattice theory plus the full theorem of Tarski: |
13 |
The fixedpoints of a complete lattice themselves form a complete |
|
14 |
lattice. |
|
15 |
||
16 |
Illustrates first-class theories, using the Sigma representation of |
|
17 |
structures. Tidied and converted to Isar by lcp. |
|
61343 | 18 |
\<close> |
13383 | 19 |
|
20 |
record 'a potype = |
|
7112 | 21 |
pset :: "'a set" |
64915 | 22 |
order :: "('a \<times> 'a) set" |
7112 | 23 |
|
64915 | 24 |
definition monotone :: "['a \<Rightarrow> 'a, 'a set, ('a \<times> 'a) set] \<Rightarrow> bool" |
25 |
where "monotone f A r \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. (x, y) \<in> r \<longrightarrow> (f x, f y) \<in> r)" |
|
7112 | 26 |
|
64915 | 27 |
definition least :: "['a \<Rightarrow> bool, 'a potype] \<Rightarrow> 'a" |
28 |
where "least P po = (SOME x. x \<in> pset po \<and> P x \<and> (\<forall>y \<in> pset po. P y \<longrightarrow> (x, y) \<in> order po))" |
|
7112 | 29 |
|
64915 | 30 |
definition greatest :: "['a \<Rightarrow> bool, 'a potype] \<Rightarrow> 'a" |
31 |
where "greatest P po = (SOME x. x \<in> pset po \<and> P x \<and> (\<forall>y \<in> pset po. P y \<longrightarrow> (y, x) \<in> order po))" |
|
7112 | 32 |
|
64915 | 33 |
definition lub :: "['a set, 'a potype] \<Rightarrow> 'a" |
34 |
where "lub S po = least (\<lambda>x. \<forall>y\<in>S. (y, x) \<in> order po) po" |
|
7112 | 35 |
|
64915 | 36 |
definition glb :: "['a set, 'a potype] \<Rightarrow> 'a" |
37 |
where "glb S po = greatest (\<lambda>x. \<forall>y\<in>S. (x, y) \<in> order po) po" |
|
7112 | 38 |
|
64915 | 39 |
definition isLub :: "['a set, 'a potype, 'a] \<Rightarrow> bool" |
40 |
where "isLub S po = |
|
41 |
(\<lambda>L. L \<in> pset po \<and> (\<forall>y\<in>S. (y, L) \<in> order po) \<and> |
|
42 |
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y, z) \<in> order po) \<longrightarrow> (L, z) \<in> order po))" |
|
7112 | 43 |
|
64915 | 44 |
definition isGlb :: "['a set, 'a potype, 'a] \<Rightarrow> bool" |
45 |
where "isGlb S po = |
|
46 |
(\<lambda>G. (G \<in> pset po \<and> (\<forall>y\<in>S. (G, y) \<in> order po) \<and> |
|
47 |
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z, y) \<in> order po) \<longrightarrow> (z, G) \<in> order po)))" |
|
7112 | 48 |
|
64915 | 49 |
definition "fix" :: "['a \<Rightarrow> 'a, 'a set] \<Rightarrow> 'a set" |
50 |
where "fix f A = {x. x \<in> A \<and> f x = x}" |
|
7112 | 51 |
|
64915 | 52 |
definition interval :: "[('a \<times> 'a) set, 'a, 'a] \<Rightarrow> 'a set" |
53 |
where "interval r a b = {x. (a, x) \<in> r \<and> (x, b) \<in> r}" |
|
7112 | 54 |
|
64915 | 55 |
definition Bot :: "'a potype \<Rightarrow> 'a" |
56 |
where "Bot po = least (\<lambda>x. True) po" |
|
7112 | 57 |
|
64915 | 58 |
definition Top :: "'a potype \<Rightarrow> 'a" |
59 |
where "Top po = greatest (\<lambda>x. True) po" |
|
7112 | 60 |
|
64915 | 61 |
definition PartialOrder :: "'a potype set" |
62 |
where "PartialOrder = {P. refl_on (pset P) (order P) \<and> antisym (order P) \<and> trans (order P)}" |
|
7112 | 63 |
|
64915 | 64 |
definition CompleteLattice :: "'a potype set" |
65 |
where "CompleteLattice = |
|
66 |
{cl. cl \<in> PartialOrder \<and> |
|
67 |
(\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>L. isLub S cl L)) \<and> |
|
68 |
(\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>G. isGlb S cl G))}" |
|
7112 | 69 |
|
64915 | 70 |
definition CLF_set :: "('a potype \<times> ('a \<Rightarrow> 'a)) set" |
71 |
where "CLF_set = |
|
72 |
(SIGMA cl : CompleteLattice. |
|
73 |
{f. f \<in> pset cl \<rightarrow> pset cl \<and> monotone f (pset cl) (order cl)})" |
|
13383 | 74 |
|
64915 | 75 |
definition induced :: "['a set, ('a \<times> 'a) set] \<Rightarrow> ('a \<times> 'a) set" |
76 |
where "induced A r = {(a, b). a \<in> A \<and> b \<in> A \<and> (a, b) \<in> r}" |
|
7112 | 77 |
|
64915 | 78 |
definition sublattice :: "('a potype \<times> 'a set) set" |
79 |
where "sublattice = |
|
80 |
(SIGMA cl : CompleteLattice. |
|
81 |
{S. S \<subseteq> pset cl \<and> \<lparr>pset = S, order = induced S (order cl)\<rparr> \<in> CompleteLattice})" |
|
7112 | 82 |
|
64915 | 83 |
abbreviation sublat :: "['a set, 'a potype] \<Rightarrow> bool" ("_ <<= _" [51, 50] 50) |
84 |
where "S <<= cl \<equiv> S \<in> sublattice `` {cl}" |
|
7112 | 85 |
|
64915 | 86 |
definition dual :: "'a potype \<Rightarrow> 'a potype" |
87 |
where "dual po = \<lparr>pset = pset po, order = converse (order po)\<rparr>" |
|
7112 | 88 |
|
27681 | 89 |
locale S = |
13115 | 90 |
fixes cl :: "'a potype" |
64915 | 91 |
and A :: "'a set" |
92 |
and r :: "('a \<times> 'a) set" |
|
93 |
defines A_def: "A \<equiv> pset cl" |
|
94 |
and r_def: "r \<equiv> order cl" |
|
7112 | 95 |
|
27681 | 96 |
locale PO = S + |
64915 | 97 |
assumes cl_po: "cl \<in> PartialOrder" |
27681 | 98 |
|
99 |
locale CL = S + |
|
64915 | 100 |
assumes cl_co: "cl \<in> CompleteLattice" |
7112 | 101 |
|
61565
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
ballarin
parents:
61384
diff
changeset
|
102 |
sublocale CL < po?: PO |
64915 | 103 |
apply (simp_all add: A_def r_def) |
104 |
apply unfold_locales |
|
105 |
using cl_co unfolding CompleteLattice_def |
|
106 |
apply auto |
|
107 |
done |
|
27681 | 108 |
|
109 |
locale CLF = S + |
|
64915 | 110 |
fixes f :: "'a \<Rightarrow> 'a" |
13115 | 111 |
and P :: "'a set" |
64915 | 112 |
assumes f_cl: "(cl, f) \<in> CLF_set" (*was the equivalent "f \<in> CLF_set``{cl}"*) |
113 |
defines P_def: "P \<equiv> fix f A" |
|
7112 | 114 |
|
61565
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
ballarin
parents:
61384
diff
changeset
|
115 |
sublocale CLF < cl?: CL |
64915 | 116 |
apply (simp_all add: A_def r_def) |
117 |
apply unfold_locales |
|
118 |
using f_cl unfolding CLF_set_def |
|
119 |
apply auto |
|
120 |
done |
|
7112 | 121 |
|
27681 | 122 |
locale Tarski = CLF + |
64915 | 123 |
fixes Y :: "'a set" |
13115 | 124 |
and intY1 :: "'a set" |
64915 | 125 |
and v :: "'a" |
126 |
assumes Y_ss: "Y \<subseteq> P" |
|
127 |
defines intY1_def: "intY1 \<equiv> interval r (lub Y cl) (Top cl)" |
|
128 |
and v_def: "v \<equiv> |
|
129 |
glb {x. ((\<lambda>x \<in> intY1. f x) x, x) \<in> induced intY1 r \<and> x \<in> intY1} |
|
130 |
\<lparr>pset = intY1, order = induced intY1 r\<rparr>" |
|
13115 | 131 |
|
132 |
||
61343 | 133 |
subsection \<open>Partial Order\<close> |
13115 | 134 |
|
64916 | 135 |
context PO |
136 |
begin |
|
137 |
||
138 |
lemma dual: "PO (dual cl)" |
|
64915 | 139 |
apply unfold_locales |
140 |
using cl_po |
|
141 |
unfolding PartialOrder_def dual_def |
|
142 |
apply auto |
|
143 |
done |
|
27681 | 144 |
|
64916 | 145 |
lemma PO_imp_refl_on [simp]: "refl_on A r" |
64915 | 146 |
using cl_po by (simp add: PartialOrder_def A_def r_def) |
13115 | 147 |
|
64916 | 148 |
lemma PO_imp_sym [simp]: "antisym r" |
64915 | 149 |
using cl_po by (simp add: PartialOrder_def r_def) |
13115 | 150 |
|
64916 | 151 |
lemma PO_imp_trans [simp]: "trans r" |
64915 | 152 |
using cl_po by (simp add: PartialOrder_def r_def) |
13115 | 153 |
|
64916 | 154 |
lemma reflE: "x \<in> A \<Longrightarrow> (x, x) \<in> r" |
64915 | 155 |
using cl_po by (simp add: PartialOrder_def refl_on_def A_def r_def) |
13115 | 156 |
|
64916 | 157 |
lemma antisymE: "\<lbrakk>(a, b) \<in> r; (b, a) \<in> r\<rbrakk> \<Longrightarrow> a = b" |
64915 | 158 |
using cl_po by (simp add: PartialOrder_def antisym_def r_def) |
13115 | 159 |
|
64916 | 160 |
lemma transE: "\<lbrakk>(a, b) \<in> r; (b, c) \<in> r\<rbrakk> \<Longrightarrow> (a, c) \<in> r" |
64915 | 161 |
using cl_po by (simp add: PartialOrder_def r_def) (unfold trans_def, fast) |
13115 | 162 |
|
64916 | 163 |
lemma monotoneE: "\<lbrakk>monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r\<rbrakk> \<Longrightarrow> (f x, f y) \<in> r" |
64915 | 164 |
by (simp add: monotone_def) |
13115 | 165 |
|
64916 | 166 |
lemma po_subset_po: "S \<subseteq> A \<Longrightarrow> \<lparr>pset = S, order = induced S r\<rparr> \<in> PartialOrder" |
64915 | 167 |
apply (simp add: PartialOrder_def) |
168 |
apply auto |
|
169 |
\<comment> \<open>refl\<close> |
|
170 |
apply (simp add: refl_on_def induced_def) |
|
171 |
apply (blast intro: reflE) |
|
172 |
\<comment> \<open>antisym\<close> |
|
173 |
apply (simp add: antisym_def induced_def) |
|
174 |
apply (blast intro: antisymE) |
|
175 |
\<comment> \<open>trans\<close> |
|
176 |
apply (simp add: trans_def induced_def) |
|
177 |
apply (blast intro: transE) |
|
178 |
done |
|
13115 | 179 |
|
64916 | 180 |
lemma indE: "\<lbrakk>(x, y) \<in> induced S r; S \<subseteq> A\<rbrakk> \<Longrightarrow> (x, y) \<in> r" |
64915 | 181 |
by (simp add: induced_def) |
13115 | 182 |
|
64916 | 183 |
lemma indI: "\<lbrakk>(x, y) \<in> r; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> (x, y) \<in> induced S r" |
64915 | 184 |
by (simp add: induced_def) |
13115 | 185 |
|
64916 | 186 |
end |
187 |
||
64915 | 188 |
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A \<Longrightarrow> \<exists>L. isLub S cl L" |
189 |
using cl_co by (simp add: CompleteLattice_def A_def) |
|
13115 | 190 |
|
191 |
declare (in CL) cl_co [simp] |
|
192 |
||
64915 | 193 |
lemma isLub_lub: "(\<exists>L. isLub S cl L) \<longleftrightarrow> isLub S cl (lub S cl)" |
194 |
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) |
|
13115 | 195 |
|
64915 | 196 |
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) \<longleftrightarrow> isGlb S cl (glb S cl)" |
197 |
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) |
|
13115 | 198 |
|
199 |
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" |
|
64915 | 200 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold) |
13115 | 201 |
|
202 |
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" |
|
64915 | 203 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold) |
13115 | 204 |
|
205 |
lemma (in PO) dualPO: "dual cl \<in> PartialOrder" |
|
64915 | 206 |
using cl_po by (simp add: PartialOrder_def dual_def) |
13115 | 207 |
|
208 |
lemma Rdual: |
|
64915 | 209 |
"\<forall>S. (S \<subseteq> A \<longrightarrow> (\<exists>L. isLub S \<lparr>pset = A, order = r\<rparr> L)) |
210 |
\<Longrightarrow> \<forall>S. S \<subseteq> A \<longrightarrow> (\<exists>G. isGlb S \<lparr>pset = A, order = r\<rparr> G)" |
|
211 |
apply safe |
|
212 |
apply (rule_tac x = "lub {y. y \<in> A \<and> (\<forall>k \<in> S. (y, k) \<in> r)} \<lparr>pset = A, order = r\<rparr>" in exI) |
|
213 |
apply (drule_tac x = "{y. y \<in> A \<and> (\<forall>k \<in> S. (y, k) \<in> r)}" in spec) |
|
214 |
apply (drule mp) |
|
215 |
apply fast |
|
216 |
apply (simp add: isLub_lub isGlb_def) |
|
217 |
apply (simp add: isLub_def) |
|
218 |
apply blast |
|
219 |
done |
|
13115 | 220 |
|
221 |
lemma lub_dual_glb: "lub S cl = glb S (dual cl)" |
|
64915 | 222 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) |
13115 | 223 |
|
224 |
lemma glb_dual_lub: "glb S cl = lub S (dual cl)" |
|
64915 | 225 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) |
13115 | 226 |
|
17841 | 227 |
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder" |
64915 | 228 |
by (auto simp: PartialOrder_def CompleteLattice_def) |
13115 | 229 |
|
230 |
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] |
|
231 |
||
27681 | 232 |
(*declare CL_imp_PO [THEN PO.PO_imp_refl, simp] |
21232 | 233 |
declare CL_imp_PO [THEN PO.PO_imp_sym, simp] |
27681 | 234 |
declare CL_imp_PO [THEN PO.PO_imp_trans, simp]*) |
13115 | 235 |
|
64916 | 236 |
context CL |
237 |
begin |
|
238 |
||
239 |
lemma CO_refl_on: "refl_on A r" |
|
64915 | 240 |
by (rule PO_imp_refl_on) |
13115 | 241 |
|
64916 | 242 |
lemma CO_antisym: "antisym r" |
64915 | 243 |
by (rule PO_imp_sym) |
13115 | 244 |
|
64916 | 245 |
lemma CO_trans: "trans r" |
64915 | 246 |
by (rule PO_imp_trans) |
13115 | 247 |
|
64916 | 248 |
end |
249 |
||
13115 | 250 |
lemma CompleteLatticeI: |
64915 | 251 |
"\<lbrakk>po \<in> PartialOrder; \<forall>S. S \<subseteq> pset po \<longrightarrow> (\<exists>L. isLub S po L); |
64916 | 252 |
\<forall>S. S \<subseteq> pset po \<longrightarrow> (\<exists>G. isGlb S po G)\<rbrakk> |
64915 | 253 |
\<Longrightarrow> po \<in> CompleteLattice" |
254 |
unfolding CompleteLattice_def by blast |
|
13115 | 255 |
|
256 |
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice" |
|
64915 | 257 |
using cl_co |
258 |
apply (simp add: CompleteLattice_def dual_def) |
|
259 |
apply (fold dual_def) |
|
260 |
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] dualPO) |
|
261 |
done |
|
13115 | 262 |
|
64916 | 263 |
context PO |
264 |
begin |
|
265 |
||
266 |
lemma dualA_iff: "pset (dual cl) = pset cl" |
|
64915 | 267 |
by (simp add: dual_def) |
13115 | 268 |
|
64916 | 269 |
lemma dualr_iff: "(x, y) \<in> (order (dual cl)) \<longleftrightarrow> (y, x) \<in> order cl" |
64915 | 270 |
by (simp add: dual_def) |
13115 | 271 |
|
64916 | 272 |
lemma monotone_dual: |
64915 | 273 |
"monotone f (pset cl) (order cl) \<Longrightarrow> monotone f (pset (dual cl)) (order(dual cl))" |
274 |
by (simp add: monotone_def dualA_iff dualr_iff) |
|
13115 | 275 |
|
64916 | 276 |
lemma interval_dual: "\<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> interval r x y = interval (order(dual cl)) y x" |
64915 | 277 |
apply (simp add: interval_def dualr_iff) |
278 |
apply (fold r_def) |
|
279 |
apply fast |
|
280 |
done |
|
13115 | 281 |
|
64916 | 282 |
lemma trans: "(x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r" |
64915 | 283 |
using cl_po |
284 |
apply (auto simp add: PartialOrder_def r_def) |
|
285 |
unfolding trans_def |
|
286 |
apply blast |
|
287 |
done |
|
13115 | 288 |
|
64916 | 289 |
lemma interval_not_empty: "interval r a b \<noteq> {} \<Longrightarrow> (a, b) \<in> r" |
64915 | 290 |
by (simp add: interval_def) (use trans in blast) |
291 |
||
64916 | 292 |
lemma interval_imp_mem: "x \<in> interval r a b \<Longrightarrow> (a, x) \<in> r" |
64915 | 293 |
by (simp add: interval_def) |
13115 | 294 |
|
64916 | 295 |
lemma left_in_interval: "\<lbrakk>a \<in> A; b \<in> A; interval r a b \<noteq> {}\<rbrakk> \<Longrightarrow> a \<in> interval r a b" |
64915 | 296 |
apply (simp (no_asm_simp) add: interval_def) |
297 |
apply (simp add: interval_not_empty) |
|
298 |
apply (simp add: reflE) |
|
299 |
done |
|
13115 | 300 |
|
64916 | 301 |
lemma right_in_interval: "\<lbrakk>a \<in> A; b \<in> A; interval r a b \<noteq> {}\<rbrakk> \<Longrightarrow> b \<in> interval r a b" |
64915 | 302 |
apply (simp (no_asm_simp) add: interval_def) |
303 |
apply (simp add: interval_not_empty) |
|
304 |
apply (simp add: reflE) |
|
305 |
done |
|
13115 | 306 |
|
64916 | 307 |
end |
308 |
||
13383 | 309 |
|
61343 | 310 |
subsection \<open>sublattice\<close> |
13383 | 311 |
|
13115 | 312 |
lemma (in PO) sublattice_imp_CL: |
64915 | 313 |
"S <<= cl \<Longrightarrow> \<lparr>pset = S, order = induced S r\<rparr> \<in> CompleteLattice" |
314 |
by (simp add: sublattice_def CompleteLattice_def r_def) |
|
13115 | 315 |
|
316 |
lemma (in CL) sublatticeI: |
|
64915 | 317 |
"\<lbrakk>S \<subseteq> A; \<lparr>pset = S, order = induced S r\<rparr> \<in> CompleteLattice\<rbrakk> \<Longrightarrow> S <<= cl" |
318 |
by (simp add: sublattice_def A_def r_def) |
|
13115 | 319 |
|
64915 | 320 |
lemma (in CL) dual: "CL (dual cl)" |
321 |
apply unfold_locales |
|
322 |
using cl_co |
|
323 |
unfolding CompleteLattice_def |
|
324 |
apply (simp add: dualPO isGlb_dual_isLub [symmetric] isLub_dual_isGlb [symmetric] dualA_iff) |
|
325 |
done |
|
27681 | 326 |
|
13383 | 327 |
|
61343 | 328 |
subsection \<open>lub\<close> |
13383 | 329 |
|
64916 | 330 |
context CL |
331 |
begin |
|
332 |
||
333 |
lemma lub_unique: "\<lbrakk>S \<subseteq> A; isLub S cl x; isLub S cl L\<rbrakk> \<Longrightarrow> x = L" |
|
64915 | 334 |
by (rule antisymE) (auto simp add: isLub_def r_def) |
13115 | 335 |
|
64916 | 336 |
lemma lub_upper: "\<lbrakk>S \<subseteq> A; x \<in> S\<rbrakk> \<Longrightarrow> (x, lub S cl) \<in> r" |
64915 | 337 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
338 |
apply (unfold lub_def least_def) |
|
339 |
apply (rule some_equality [THEN ssubst]) |
|
340 |
apply (simp add: isLub_def) |
|
341 |
apply (simp add: lub_unique A_def isLub_def) |
|
342 |
apply (simp add: isLub_def r_def) |
|
343 |
done |
|
13115 | 344 |
|
64916 | 345 |
lemma lub_least: "\<lbrakk>S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x, L) \<in> r\<rbrakk> \<Longrightarrow> (lub S cl, L) \<in> r" |
64915 | 346 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
347 |
apply (unfold lub_def least_def) |
|
348 |
apply (rule_tac s=x in some_equality [THEN ssubst]) |
|
349 |
apply (simp add: isLub_def) |
|
350 |
apply (simp add: lub_unique A_def isLub_def) |
|
351 |
apply (simp add: isLub_def r_def A_def) |
|
352 |
done |
|
13115 | 353 |
|
64916 | 354 |
lemma lub_in_lattice: "S \<subseteq> A \<Longrightarrow> lub S cl \<in> A" |
64915 | 355 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
356 |
apply (unfold lub_def least_def) |
|
357 |
apply (subst some_equality) |
|
358 |
apply (simp add: isLub_def) |
|
359 |
prefer 2 apply (simp add: isLub_def A_def) |
|
360 |
apply (simp add: lub_unique A_def isLub_def) |
|
361 |
done |
|
13115 | 362 |
|
64916 | 363 |
lemma lubI: |
64915 | 364 |
"\<lbrakk>S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x, L) \<in> r; |
365 |
\<forall>z \<in> A. (\<forall>y \<in> S. (y, z) \<in> r) \<longrightarrow> (L, z) \<in> r\<rbrakk> \<Longrightarrow> L = lub S cl" |
|
366 |
apply (rule lub_unique, assumption) |
|
367 |
apply (simp add: isLub_def A_def r_def) |
|
368 |
apply (unfold isLub_def) |
|
369 |
apply (rule conjI) |
|
370 |
apply (fold A_def r_def) |
|
371 |
apply (rule lub_in_lattice, assumption) |
|
372 |
apply (simp add: lub_upper lub_least) |
|
373 |
done |
|
13115 | 374 |
|
64916 | 375 |
lemma lubIa: "\<lbrakk>S \<subseteq> A; isLub S cl L\<rbrakk> \<Longrightarrow> L = lub S cl" |
64915 | 376 |
by (simp add: lubI isLub_def A_def r_def) |
13115 | 377 |
|
64916 | 378 |
lemma isLub_in_lattice: "isLub S cl L \<Longrightarrow> L \<in> A" |
64915 | 379 |
by (simp add: isLub_def A_def) |
13115 | 380 |
|
64916 | 381 |
lemma isLub_upper: "\<lbrakk>isLub S cl L; y \<in> S\<rbrakk> \<Longrightarrow> (y, L) \<in> r" |
64915 | 382 |
by (simp add: isLub_def r_def) |
13115 | 383 |
|
64916 | 384 |
lemma isLub_least: "\<lbrakk>isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r\<rbrakk> \<Longrightarrow> (L, z) \<in> r" |
64915 | 385 |
by (simp add: isLub_def A_def r_def) |
13115 | 386 |
|
64916 | 387 |
lemma isLubI: |
388 |
"\<lbrakk>L \<in> A; \<forall>y \<in> S. (y, L) \<in> r; (\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) \<longrightarrow> (L, z) \<in> r)\<rbrakk> \<Longrightarrow> isLub S cl L" |
|
64915 | 389 |
by (simp add: isLub_def A_def r_def) |
13115 | 390 |
|
64916 | 391 |
end |
392 |
||
13383 | 393 |
|
61343 | 394 |
subsection \<open>glb\<close> |
13383 | 395 |
|
64916 | 396 |
context CL |
397 |
begin |
|
398 |
||
399 |
lemma glb_in_lattice: "S \<subseteq> A \<Longrightarrow> glb S cl \<in> A" |
|
64915 | 400 |
apply (subst glb_dual_lub) |
401 |
apply (simp add: A_def) |
|
402 |
apply (rule dualA_iff [THEN subst]) |
|
403 |
apply (rule CL.lub_in_lattice) |
|
404 |
apply (rule dual) |
|
405 |
apply (simp add: dualA_iff) |
|
406 |
done |
|
13115 | 407 |
|
64916 | 408 |
lemma glb_lower: "\<lbrakk>S \<subseteq> A; x \<in> S\<rbrakk> \<Longrightarrow> (glb S cl, x) \<in> r" |
64915 | 409 |
apply (subst glb_dual_lub) |
410 |
apply (simp add: r_def) |
|
411 |
apply (rule dualr_iff [THEN subst]) |
|
412 |
apply (rule CL.lub_upper) |
|
413 |
apply (rule dual) |
|
414 |
apply (simp add: dualA_iff A_def, assumption) |
|
415 |
done |
|
13115 | 416 |
|
64916 | 417 |
end |
418 |
||
61343 | 419 |
text \<open> |
13383 | 420 |
Reduce the sublattice property by using substructural properties; |
61933 | 421 |
abandoned see \<open>Tarski_4.ML\<close>. |
61343 | 422 |
\<close> |
13115 | 423 |
|
64916 | 424 |
context CLF |
425 |
begin |
|
426 |
||
427 |
lemma [simp]: "f \<in> pset cl \<rightarrow> pset cl \<and> monotone f (pset cl) (order cl)" |
|
64915 | 428 |
using f_cl by (simp add: CLF_set_def) |
13115 | 429 |
|
64916 | 430 |
declare f_cl [simp] |
13115 | 431 |
|
432 |
||
64916 | 433 |
lemma f_in_funcset: "f \<in> A \<rightarrow> A" |
64915 | 434 |
by (simp add: A_def) |
13115 | 435 |
|
64916 | 436 |
lemma monotone_f: "monotone f A r" |
64915 | 437 |
by (simp add: A_def r_def) |
13115 | 438 |
|
64916 | 439 |
lemma CLF_dual: "(dual cl, f) \<in> CLF_set" |
64915 | 440 |
by (simp add: CLF_set_def CL_dualCL monotone_dual) (simp add: dualA_iff) |
13115 | 441 |
|
64916 | 442 |
lemma dual: "CLF (dual cl) f" |
64915 | 443 |
by (rule CLF.intro) (rule CLF_dual) |
27681 | 444 |
|
64916 | 445 |
end |
446 |
||
13383 | 447 |
|
61343 | 448 |
subsection \<open>fixed points\<close> |
13383 | 449 |
|
17841 | 450 |
lemma fix_subset: "fix f A \<subseteq> A" |
64915 | 451 |
by (auto simp: fix_def) |
13115 | 452 |
|
64915 | 453 |
lemma fix_imp_eq: "x \<in> fix f A \<Longrightarrow> f x = x" |
454 |
by (simp add: fix_def) |
|
13115 | 455 |
|
64915 | 456 |
lemma fixf_subset: "\<lbrakk>A \<subseteq> B; x \<in> fix (\<lambda>y \<in> A. f y) A\<rbrakk> \<Longrightarrow> x \<in> fix f B" |
457 |
by (auto simp: fix_def) |
|
13115 | 458 |
|
13383 | 459 |
|
61343 | 460 |
subsection \<open>lemmas for Tarski, lub\<close> |
64915 | 461 |
|
64916 | 462 |
context CLF |
463 |
begin |
|
464 |
||
465 |
lemma lubH_le_flubH: "H = {x. (x, f x) \<in> r \<and> x \<in> A} \<Longrightarrow> (lub H cl, f (lub H cl)) \<in> r" |
|
64915 | 466 |
apply (rule lub_least, fast) |
467 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
468 |
apply (rule lub_in_lattice, fast) |
|
469 |
\<comment> \<open>\<open>\<forall>x:H. (x, f (lub H r)) \<in> r\<close>\<close> |
|
470 |
apply (rule ballI) |
|
471 |
apply (rule transE) |
|
472 |
\<comment> \<open>instantiates \<open>(x, ???z) \<in> order cl to (x, f x)\<close>,\<close> |
|
473 |
\<comment> \<open>because of the def of \<open>H\<close>\<close> |
|
474 |
apply fast |
|
475 |
\<comment> \<open>so it remains to show \<open>(f x, f (lub H cl)) \<in> r\<close>\<close> |
|
476 |
apply (rule_tac f = "f" in monotoneE) |
|
477 |
apply (rule monotone_f, fast) |
|
478 |
apply (rule lub_in_lattice, fast) |
|
479 |
apply (rule lub_upper, fast) |
|
480 |
apply assumption |
|
481 |
done |
|
13115 | 482 |
|
64916 | 483 |
lemma flubH_le_lubH: "\<lbrakk>H = {x. (x, f x) \<in> r \<and> x \<in> A}\<rbrakk> \<Longrightarrow> (f (lub H cl), lub H cl) \<in> r" |
64915 | 484 |
apply (rule lub_upper, fast) |
485 |
apply (rule_tac t = "H" in ssubst, assumption) |
|
486 |
apply (rule CollectI) |
|
487 |
apply (rule conjI) |
|
488 |
apply (rule_tac [2] f_in_funcset [THEN funcset_mem]) |
|
489 |
apply (rule_tac [2] lub_in_lattice) |
|
490 |
prefer 2 apply fast |
|
491 |
apply (rule_tac f = f in monotoneE) |
|
492 |
apply (rule monotone_f) |
|
493 |
apply (blast intro: lub_in_lattice) |
|
494 |
apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem]) |
|
495 |
apply (simp add: lubH_le_flubH) |
|
496 |
done |
|
13115 | 497 |
|
64916 | 498 |
lemma lubH_is_fixp: "H = {x. (x, f x) \<in> r \<and> x \<in> A} \<Longrightarrow> lub H cl \<in> fix f A" |
64915 | 499 |
apply (simp add: fix_def) |
500 |
apply (rule conjI) |
|
501 |
apply (rule lub_in_lattice, fast) |
|
502 |
apply (rule antisymE) |
|
503 |
apply (simp add: flubH_le_lubH) |
|
504 |
apply (simp add: lubH_le_flubH) |
|
505 |
done |
|
13115 | 506 |
|
64916 | 507 |
lemma fix_in_H: "\<lbrakk>H = {x. (x, f x) \<in> r \<and> x \<in> A}; x \<in> P\<rbrakk> \<Longrightarrow> x \<in> H" |
64915 | 508 |
by (simp add: P_def fix_imp_eq [of _ f A] reflE fix_subset [of f A, THEN subsetD]) |
13115 | 509 |
|
64916 | 510 |
lemma fixf_le_lubH: "H = {x. (x, f x) \<in> r \<and> x \<in> A} \<Longrightarrow> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r" |
64915 | 511 |
apply (rule ballI) |
512 |
apply (rule lub_upper) |
|
513 |
apply fast |
|
514 |
apply (rule fix_in_H) |
|
515 |
apply (simp_all add: P_def) |
|
516 |
done |
|
13115 | 517 |
|
64916 | 518 |
lemma lubH_least_fixf: |
64915 | 519 |
"H = {x. (x, f x) \<in> r \<and> x \<in> A} \<Longrightarrow> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) \<longrightarrow> (lub H cl, L) \<in> r" |
520 |
apply (rule allI) |
|
521 |
apply (rule impI) |
|
522 |
apply (erule bspec) |
|
523 |
apply (rule lubH_is_fixp, assumption) |
|
524 |
done |
|
13115 | 525 |
|
64916 | 526 |
|
61343 | 527 |
subsection \<open>Tarski fixpoint theorem 1, first part\<close> |
64916 | 528 |
|
529 |
lemma T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r \<and> x \<in> A} cl" |
|
64915 | 530 |
apply (rule sym) |
531 |
apply (simp add: P_def) |
|
532 |
apply (rule lubI) |
|
533 |
apply (rule fix_subset) |
|
534 |
apply (rule lub_in_lattice, fast) |
|
535 |
apply (simp add: fixf_le_lubH) |
|
536 |
apply (simp add: lubH_least_fixf) |
|
537 |
done |
|
13115 | 538 |
|
64916 | 539 |
lemma glbH_is_fixp: "H = {x. (f x, x) \<in> r \<and> x \<in> A} \<Longrightarrow> glb H cl \<in> P" |
61933 | 540 |
\<comment> \<open>Tarski for glb\<close> |
64915 | 541 |
apply (simp add: glb_dual_lub P_def A_def r_def) |
542 |
apply (rule dualA_iff [THEN subst]) |
|
543 |
apply (rule CLF.lubH_is_fixp) |
|
544 |
apply (rule dual) |
|
545 |
apply (simp add: dualr_iff dualA_iff) |
|
546 |
done |
|
13115 | 547 |
|
64916 | 548 |
lemma T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r \<and> x \<in> A} cl" |
64915 | 549 |
apply (simp add: glb_dual_lub P_def A_def r_def) |
550 |
apply (rule dualA_iff [THEN subst]) |
|
551 |
apply (simp add: CLF.T_thm_1_lub [of _ f, OF dual] dualPO CL_dualCL CLF_dual dualr_iff) |
|
552 |
done |
|
553 |
||
13115 | 554 |
|
61343 | 555 |
subsection \<open>interval\<close> |
13383 | 556 |
|
64916 | 557 |
lemma rel_imp_elem: "(x, y) \<in> r \<Longrightarrow> x \<in> A" |
64915 | 558 |
using CO_refl_on by (auto simp: refl_on_def) |
559 |
||
64916 | 560 |
lemma interval_subset: "\<lbrakk>a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> interval r a b \<subseteq> A" |
64915 | 561 |
by (simp add: interval_def) (blast intro: rel_imp_elem) |
13115 | 562 |
|
64916 | 563 |
lemma intervalI: "\<lbrakk>(a, x) \<in> r; (x, b) \<in> r\<rbrakk> \<Longrightarrow> x \<in> interval r a b" |
64915 | 564 |
by (simp add: interval_def) |
13115 | 565 |
|
64916 | 566 |
lemma interval_lemma1: "\<lbrakk>S \<subseteq> interval r a b; x \<in> S\<rbrakk> \<Longrightarrow> (a, x) \<in> r" |
64915 | 567 |
unfolding interval_def by fast |
13115 | 568 |
|
64916 | 569 |
lemma interval_lemma2: "\<lbrakk>S \<subseteq> interval r a b; x \<in> S\<rbrakk> \<Longrightarrow> (x, b) \<in> r" |
64915 | 570 |
unfolding interval_def by fast |
13115 | 571 |
|
64916 | 572 |
lemma a_less_lub: "\<lbrakk>S \<subseteq> A; S \<noteq> {}; \<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r\<rbrakk> \<Longrightarrow> (a, L) \<in> r" |
64915 | 573 |
by (blast intro: transE) |
13115 | 574 |
|
64916 | 575 |
lemma glb_less_b: "\<lbrakk>S \<subseteq> A; S \<noteq> {}; \<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r\<rbrakk> \<Longrightarrow> (G, b) \<in> r" |
64915 | 576 |
by (blast intro: transE) |
13115 | 577 |
|
64916 | 578 |
lemma S_intv_cl: "\<lbrakk>a \<in> A; b \<in> A; S \<subseteq> interval r a b\<rbrakk> \<Longrightarrow> S \<subseteq> A" |
64915 | 579 |
by (simp add: subset_trans [OF _ interval_subset]) |
13115 | 580 |
|
64916 | 581 |
lemma L_in_interval: |
64915 | 582 |
"\<lbrakk>a \<in> A; b \<in> A; S \<subseteq> interval r a b; |
583 |
S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {}\<rbrakk> \<Longrightarrow> L \<in> interval r a b" |
|
584 |
apply (rule intervalI) |
|
585 |
apply (rule a_less_lub) |
|
586 |
prefer 2 apply assumption |
|
587 |
apply (simp add: S_intv_cl) |
|
588 |
apply (rule ballI) |
|
589 |
apply (simp add: interval_lemma1) |
|
590 |
apply (simp add: isLub_upper) |
|
591 |
\<comment> \<open>\<open>(L, b) \<in> r\<close>\<close> |
|
592 |
apply (simp add: isLub_least interval_lemma2) |
|
593 |
done |
|
13115 | 594 |
|
64916 | 595 |
lemma G_in_interval: |
64915 | 596 |
"\<lbrakk>a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G; S \<noteq> {}\<rbrakk> |
597 |
\<Longrightarrow> G \<in> interval r a b" |
|
598 |
by (simp add: interval_dual) |
|
599 |
(simp add: CLF.L_in_interval [of _ f, OF dual] dualA_iff A_def isGlb_dual_isLub) |
|
13115 | 600 |
|
64916 | 601 |
lemma intervalPO: |
64915 | 602 |
"\<lbrakk>a \<in> A; b \<in> A; interval r a b \<noteq> {}\<rbrakk> |
603 |
\<Longrightarrow> \<lparr>pset = interval r a b, order = induced (interval r a b) r\<rparr> \<in> PartialOrder" |
|
604 |
by (rule po_subset_po) (simp add: interval_subset) |
|
13115 | 605 |
|
64916 | 606 |
lemma intv_CL_lub: |
64915 | 607 |
"\<lbrakk>a \<in> A; b \<in> A; interval r a b \<noteq> {}\<rbrakk> \<Longrightarrow> |
608 |
\<forall>S. S \<subseteq> interval r a b \<longrightarrow> |
|
609 |
(\<exists>L. isLub S \<lparr>pset = interval r a b, order = induced (interval r a b) r\<rparr> L)" |
|
610 |
apply (intro strip) |
|
611 |
apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) |
|
612 |
prefer 2 apply assumption |
|
613 |
apply assumption |
|
614 |
apply (erule exE) |
|
615 |
\<comment> \<open>define the lub for the interval as\<close> |
|
616 |
apply (rule_tac x = "if S = {} then a else L" in exI) |
|
617 |
apply (simp (no_asm_simp) add: isLub_def split del: if_split) |
|
618 |
apply (intro impI conjI) |
|
619 |
\<comment> \<open>\<open>(if S = {} then a else L) \<in> interval r a b\<close>\<close> |
|
620 |
apply (simp add: CL_imp_PO L_in_interval) |
|
621 |
apply (simp add: left_in_interval) |
|
622 |
\<comment> \<open>lub prop 1\<close> |
|
623 |
apply (case_tac "S = {}") |
|
624 |
\<comment> \<open>\<open>S = {}, y \<in> S = False \<Longrightarrow> everything\<close>\<close> |
|
625 |
apply fast |
|
626 |
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close> |
|
627 |
apply simp |
|
628 |
\<comment> \<open>\<open>\<forall>y\<in>S. (y, L) \<in> induced (interval r a b) r\<close>\<close> |
|
629 |
apply (rule ballI) |
|
630 |
apply (simp add: induced_def L_in_interval) |
|
631 |
apply (rule conjI) |
|
632 |
apply (rule subsetD) |
|
633 |
apply (simp add: S_intv_cl, assumption) |
|
634 |
apply (simp add: isLub_upper) |
|
635 |
\<comment> \<open>\<open>\<forall>z\<in>interval r a b. |
|
636 |
(\<forall>y\<in>S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> |
|
637 |
(if S = {} then a else L, z) \<in> induced (interval r a b) r\<close>\<close> |
|
638 |
apply (rule ballI) |
|
639 |
apply (rule impI) |
|
640 |
apply (case_tac "S = {}") |
|
641 |
\<comment> \<open>\<open>S = {}\<close>\<close> |
|
642 |
apply simp |
|
643 |
apply (simp add: induced_def interval_def) |
|
644 |
apply (rule conjI) |
|
645 |
apply (rule reflE, assumption) |
|
646 |
apply (rule interval_not_empty) |
|
647 |
apply (simp add: interval_def) |
|
648 |
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close> |
|
649 |
apply simp |
|
650 |
apply (simp add: induced_def L_in_interval) |
|
651 |
apply (rule isLub_least, assumption) |
|
652 |
apply (rule subsetD) |
|
653 |
prefer 2 apply assumption |
|
654 |
apply (simp add: S_intv_cl, fast) |
|
655 |
done |
|
13115 | 656 |
|
64916 | 657 |
lemmas intv_CL_glb = intv_CL_lub [THEN Rdual] |
13115 | 658 |
|
64916 | 659 |
lemma interval_is_sublattice: "\<lbrakk>a \<in> A; b \<in> A; interval r a b \<noteq> {}\<rbrakk> \<Longrightarrow> interval r a b <<= cl" |
64915 | 660 |
apply (rule sublatticeI) |
661 |
apply (simp add: interval_subset) |
|
662 |
apply (rule CompleteLatticeI) |
|
663 |
apply (simp add: intervalPO) |
|
664 |
apply (simp add: intv_CL_lub) |
|
665 |
apply (simp add: intv_CL_glb) |
|
666 |
done |
|
13115 | 667 |
|
64916 | 668 |
lemmas interv_is_compl_latt = interval_is_sublattice [THEN sublattice_imp_CL] |
13115 | 669 |
|
13383 | 670 |
|
61343 | 671 |
subsection \<open>Top and Bottom\<close> |
64915 | 672 |
|
64916 | 673 |
lemma Top_dual_Bot: "Top cl = Bot (dual cl)" |
64915 | 674 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) |
13115 | 675 |
|
64916 | 676 |
lemma Bot_dual_Top: "Bot cl = Top (dual cl)" |
64915 | 677 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) |
13115 | 678 |
|
64916 | 679 |
lemma Bot_in_lattice: "Bot cl \<in> A" |
64915 | 680 |
apply (simp add: Bot_def least_def) |
681 |
apply (rule_tac a = "glb A cl" in someI2) |
|
682 |
apply (simp_all add: glb_in_lattice glb_lower r_def [symmetric] A_def [symmetric]) |
|
683 |
done |
|
13115 | 684 |
|
64916 | 685 |
lemma Top_in_lattice: "Top cl \<in> A" |
64915 | 686 |
apply (simp add: Top_dual_Bot A_def) |
687 |
apply (rule dualA_iff [THEN subst]) |
|
688 |
apply (rule CLF.Bot_in_lattice [OF dual]) |
|
689 |
done |
|
13115 | 690 |
|
64916 | 691 |
lemma Top_prop: "x \<in> A \<Longrightarrow> (x, Top cl) \<in> r" |
64915 | 692 |
apply (simp add: Top_def greatest_def) |
693 |
apply (rule_tac a = "lub A cl" in someI2) |
|
694 |
apply (rule someI2) |
|
695 |
apply (simp_all add: lub_in_lattice lub_upper |
|
696 |
r_def [symmetric] A_def [symmetric]) |
|
697 |
done |
|
13115 | 698 |
|
64916 | 699 |
lemma Bot_prop: "x \<in> A \<Longrightarrow> (Bot cl, x) \<in> r" |
64915 | 700 |
apply (simp add: Bot_dual_Top r_def) |
701 |
apply (rule dualr_iff [THEN subst]) |
|
702 |
apply (rule CLF.Top_prop [OF dual]) |
|
703 |
apply (simp add: dualA_iff A_def) |
|
704 |
done |
|
13115 | 705 |
|
64916 | 706 |
lemma Top_intv_not_empty: "x \<in> A \<Longrightarrow> interval r x (Top cl) \<noteq> {}" |
64915 | 707 |
apply (rule notI) |
708 |
apply (drule_tac a = "Top cl" in equals0D) |
|
709 |
apply (simp add: interval_def) |
|
710 |
apply (simp add: refl_on_def Top_in_lattice Top_prop) |
|
711 |
done |
|
13115 | 712 |
|
64916 | 713 |
lemma Bot_intv_not_empty: "x \<in> A \<Longrightarrow> interval r (Bot cl) x \<noteq> {}" |
64915 | 714 |
apply (simp add: Bot_dual_Top) |
715 |
apply (subst interval_dual) |
|
716 |
prefer 2 apply assumption |
|
717 |
apply (simp add: A_def) |
|
718 |
apply (rule dualA_iff [THEN subst]) |
|
719 |
apply (rule CLF.Top_in_lattice [OF dual]) |
|
720 |
apply (rule CLF.Top_intv_not_empty [OF dual]) |
|
721 |
apply (simp add: dualA_iff A_def) |
|
722 |
done |
|
723 |
||
13115 | 724 |
|
61343 | 725 |
subsection \<open>fixed points form a partial order\<close> |
13383 | 726 |
|
64916 | 727 |
lemma fixf_po: "\<lparr>pset = P, order = induced P r\<rparr> \<in> PartialOrder" |
64915 | 728 |
by (simp add: P_def fix_subset po_subset_po) |
13115 | 729 |
|
64916 | 730 |
end |
731 |
||
732 |
context Tarski |
|
733 |
begin |
|
734 |
||
735 |
lemma Y_subset_A: "Y \<subseteq> A" |
|
64915 | 736 |
by (rule subset_trans [OF _ fix_subset]) (rule Y_ss [simplified P_def]) |
13115 | 737 |
|
64916 | 738 |
lemma lubY_in_A: "lub Y cl \<in> A" |
18750 | 739 |
by (rule Y_subset_A [THEN lub_in_lattice]) |
13115 | 740 |
|
64916 | 741 |
lemma lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r" |
64915 | 742 |
apply (rule lub_least) |
743 |
apply (rule Y_subset_A) |
|
744 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
745 |
apply (rule lubY_in_A) |
|
746 |
\<comment> \<open>\<open>Y \<subseteq> P \<Longrightarrow> f x = x\<close>\<close> |
|
747 |
apply (rule ballI) |
|
748 |
apply (rule_tac t = x in fix_imp_eq [THEN subst]) |
|
749 |
apply (erule Y_ss [simplified P_def, THEN subsetD]) |
|
750 |
\<comment> \<open>\<open>reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r\<close> by monotonicity\<close> |
|
751 |
apply (rule_tac f = "f" in monotoneE) |
|
752 |
apply (rule monotone_f) |
|
753 |
apply (simp add: Y_subset_A [THEN subsetD]) |
|
754 |
apply (rule lubY_in_A) |
|
755 |
apply (simp add: lub_upper Y_subset_A) |
|
756 |
done |
|
13115 | 757 |
|
64916 | 758 |
lemma intY1_subset: "intY1 \<subseteq> A" |
64915 | 759 |
apply (unfold intY1_def) |
760 |
apply (rule interval_subset) |
|
761 |
apply (rule lubY_in_A) |
|
762 |
apply (rule Top_in_lattice) |
|
763 |
done |
|
13115 | 764 |
|
64916 | 765 |
lemmas intY1_elem = intY1_subset [THEN subsetD] |
13115 | 766 |
|
64916 | 767 |
lemma intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1" |
64915 | 768 |
apply (simp add: intY1_def interval_def) |
769 |
apply (rule conjI) |
|
770 |
apply (rule transE) |
|
771 |
apply (rule lubY_le_flubY) |
|
772 |
\<comment> \<open>\<open>(f (lub Y cl), f x) \<in> r\<close>\<close> |
|
773 |
apply (rule_tac f=f in monotoneE) |
|
774 |
apply (rule monotone_f) |
|
775 |
apply (rule lubY_in_A) |
|
776 |
apply (simp add: intY1_def interval_def intY1_elem) |
|
777 |
apply (simp add: intY1_def interval_def) |
|
778 |
\<comment> \<open>\<open>(f x, Top cl) \<in> r\<close>\<close> |
|
779 |
apply (rule Top_prop) |
|
780 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
781 |
apply (simp add: intY1_def interval_def intY1_elem) |
|
782 |
done |
|
13115 | 783 |
|
64916 | 784 |
lemma intY1_mono: "monotone (\<lambda> x \<in> intY1. f x) intY1 (induced intY1 r)" |
64915 | 785 |
apply (auto simp add: monotone_def induced_def intY1_f_closed) |
786 |
apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) |
|
787 |
done |
|
13115 | 788 |
|
64916 | 789 |
lemma intY1_is_cl: "\<lparr>pset = intY1, order = induced intY1 r\<rparr> \<in> CompleteLattice" |
64915 | 790 |
apply (unfold intY1_def) |
791 |
apply (rule interv_is_compl_latt) |
|
792 |
apply (rule lubY_in_A) |
|
793 |
apply (rule Top_in_lattice) |
|
794 |
apply (rule Top_intv_not_empty) |
|
795 |
apply (rule lubY_in_A) |
|
796 |
done |
|
13115 | 797 |
|
64916 | 798 |
lemma v_in_P: "v \<in> P" |
64915 | 799 |
apply (unfold P_def) |
800 |
apply (rule_tac A = intY1 in fixf_subset) |
|
801 |
apply (rule intY1_subset) |
|
802 |
unfolding v_def |
|
803 |
apply (rule CLF.glbH_is_fixp |
|
804 |
[OF CLF.intro, unfolded CLF_set_def, of "\<lparr>pset = intY1, order = induced intY1 r\<rparr>", simplified]) |
|
805 |
apply auto |
|
806 |
apply (rule intY1_is_cl) |
|
807 |
apply (erule intY1_f_closed) |
|
808 |
apply (rule intY1_mono) |
|
809 |
done |
|
13115 | 810 |
|
64916 | 811 |
lemma z_in_interval: "\<lbrakk>z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r\<rbrakk> \<Longrightarrow> z \<in> intY1" |
64915 | 812 |
apply (unfold intY1_def P_def) |
813 |
apply (rule intervalI) |
|
814 |
prefer 2 |
|
815 |
apply (erule fix_subset [THEN subsetD, THEN Top_prop]) |
|
816 |
apply (rule lub_least) |
|
817 |
apply (rule Y_subset_A) |
|
818 |
apply (fast elim!: fix_subset [THEN subsetD]) |
|
819 |
apply (simp add: induced_def) |
|
820 |
done |
|
13115 | 821 |
|
64916 | 822 |
lemma f'z_in_int_rel: "\<lbrakk>z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r\<rbrakk> |
64915 | 823 |
\<Longrightarrow> ((\<lambda>x \<in> intY1. f x) z, z) \<in> induced intY1 r" |
824 |
by (simp add: induced_def intY1_f_closed z_in_interval P_def) |
|
825 |
(simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD] reflE) |
|
13115 | 826 |
|
64916 | 827 |
lemma tarski_full_lemma: "\<exists>L. isLub Y \<lparr>pset = P, order = induced P r\<rparr> L" |
64915 | 828 |
apply (rule_tac x = "v" in exI) |
829 |
apply (simp add: isLub_def) |
|
830 |
\<comment> \<open>\<open>v \<in> P\<close>\<close> |
|
831 |
apply (simp add: v_in_P) |
|
832 |
apply (rule conjI) |
|
833 |
\<comment> \<open>\<open>v\<close> is lub\<close> |
|
834 |
\<comment> \<open>\<open>1. \<forall>y:Y. (y, v) \<in> induced P r\<close>\<close> |
|
835 |
apply (rule ballI) |
|
836 |
apply (simp add: induced_def subsetD v_in_P) |
|
837 |
apply (rule conjI) |
|
838 |
apply (erule Y_ss [THEN subsetD]) |
|
839 |
apply (rule_tac b = "lub Y cl" in transE) |
|
840 |
apply (rule lub_upper) |
|
841 |
apply (rule Y_subset_A, assumption) |
|
842 |
apply (rule_tac b = "Top cl" in interval_imp_mem) |
|
843 |
apply (simp add: v_def) |
|
844 |
apply (fold intY1_def) |
|
845 |
apply (rule CL.glb_in_lattice [OF CL.intro [OF intY1_is_cl], simplified]) |
|
846 |
apply auto |
|
847 |
apply (rule indI) |
|
848 |
prefer 3 apply assumption |
|
849 |
prefer 2 apply (simp add: v_in_P) |
|
850 |
apply (unfold v_def) |
|
851 |
apply (rule indE) |
|
852 |
apply (rule_tac [2] intY1_subset) |
|
853 |
apply (rule CL.glb_lower [OF CL.intro [OF intY1_is_cl], simplified]) |
|
854 |
apply (simp add: CL_imp_PO intY1_is_cl) |
|
855 |
apply force |
|
856 |
apply (simp add: induced_def intY1_f_closed z_in_interval) |
|
857 |
apply (simp add: P_def fix_imp_eq [of _ f A] reflE fix_subset [of f A, THEN subsetD]) |
|
858 |
done |
|
13115 | 859 |
|
64916 | 860 |
end |
861 |
||
13115 | 862 |
lemma CompleteLatticeI_simp: |
64915 | 863 |
"\<lbrakk>\<lparr>pset = A, order = r\<rparr> \<in> PartialOrder; |
864 |
\<forall>S. S \<subseteq> A \<longrightarrow> (\<exists>L. isLub S \<lparr>pset = A, order = r\<rparr> L)\<rbrakk> |
|
865 |
\<Longrightarrow> \<lparr>pset = A, order = r\<rparr> \<in> CompleteLattice" |
|
866 |
by (simp add: CompleteLatticeI Rdual) |
|
13115 | 867 |
|
64915 | 868 |
theorem (in CLF) Tarski_full: "\<lparr>pset = P, order = induced P r\<rparr> \<in> CompleteLattice" |
869 |
apply (rule CompleteLatticeI_simp) |
|
870 |
apply (rule fixf_po) |
|
871 |
apply clarify |
|
872 |
apply (simp add: P_def A_def r_def) |
|
873 |
apply (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]]) |
|
874 |
proof - |
|
875 |
show "CLF cl f" .. |
|
876 |
qed |
|
7112 | 877 |
|
878 |
end |