author | wenzelm |
Mon, 19 Jan 2015 20:39:01 +0100 | |
changeset 59409 | b7cfe12acf2e |
parent 59092 | d469103c0737 |
child 60172 | 423273355b55 |
permissions | -rw-r--r-- |
58606 | 1 |
(* Title: HOL/Probability/Stream_Space.thy |
2 |
Author: Johannes Hölzl, TU München *) |
|
3 |
||
58588 | 4 |
theory Stream_Space |
5 |
imports |
|
6 |
Infinite_Product_Measure |
|
58607
1f90ea1b4010
move Stream theory from Datatype_Examples to Library
hoelzl
parents:
58606
diff
changeset
|
7 |
"~~/src/HOL/Library/Stream" |
59000 | 8 |
"~~/src/HOL/Library/Linear_Temporal_Logic_on_Streams" |
58588 | 9 |
begin |
10 |
||
11 |
lemma stream_eq_Stream_iff: "s = x ## t \<longleftrightarrow> (shd s = x \<and> stl s = t)" |
|
12 |
by (cases s) simp |
|
13 |
||
14 |
lemma Stream_snth: "(x ## s) !! n = (case n of 0 \<Rightarrow> x | Suc n \<Rightarrow> s !! n)" |
|
15 |
by (cases n) simp_all |
|
16 |
||
17 |
definition to_stream :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a stream" where |
|
18 |
"to_stream X = smap X nats" |
|
19 |
||
20 |
lemma to_stream_nat_case: "to_stream (case_nat x X) = x ## to_stream X" |
|
21 |
unfolding to_stream_def |
|
22 |
by (subst siterate.ctr) (simp add: smap_siterate[symmetric] stream.map_comp comp_def) |
|
23 |
||
59000 | 24 |
lemma to_stream_in_streams: "to_stream X \<in> streams S \<longleftrightarrow> (\<forall>n. X n \<in> S)" |
25 |
by (simp add: to_stream_def streams_iff_snth) |
|
26 |
||
58588 | 27 |
definition stream_space :: "'a measure \<Rightarrow> 'a stream measure" where |
28 |
"stream_space M = |
|
29 |
distr (\<Pi>\<^sub>M i\<in>UNIV. M) (vimage_algebra (streams (space M)) snth (\<Pi>\<^sub>M i\<in>UNIV. M)) to_stream" |
|
30 |
||
31 |
lemma space_stream_space: "space (stream_space M) = streams (space M)" |
|
32 |
by (simp add: stream_space_def) |
|
33 |
||
34 |
lemma streams_stream_space[intro]: "streams (space M) \<in> sets (stream_space M)" |
|
35 |
using sets.top[of "stream_space M"] by (simp add: space_stream_space) |
|
36 |
||
37 |
lemma stream_space_Stream: |
|
38 |
"x ## \<omega> \<in> space (stream_space M) \<longleftrightarrow> x \<in> space M \<and> \<omega> \<in> space (stream_space M)" |
|
39 |
by (simp add: space_stream_space streams_Stream) |
|
40 |
||
41 |
lemma stream_space_eq_distr: "stream_space M = distr (\<Pi>\<^sub>M i\<in>UNIV. M) (stream_space M) to_stream" |
|
42 |
unfolding stream_space_def by (rule distr_cong) auto |
|
43 |
||
59048 | 44 |
lemma sets_stream_space_cong[measurable_cong]: |
45 |
"sets M = sets N \<Longrightarrow> sets (stream_space M) = sets (stream_space N)" |
|
58588 | 46 |
using sets_eq_imp_space_eq[of M N] by (simp add: stream_space_def vimage_algebra_def cong: sets_PiM_cong) |
47 |
||
48 |
lemma measurable_snth_PiM: "(\<lambda>\<omega> n. \<omega> !! n) \<in> measurable (stream_space M) (\<Pi>\<^sub>M i\<in>UNIV. M)" |
|
49 |
by (auto intro!: measurable_vimage_algebra1 |
|
50 |
simp: space_PiM streams_iff_sset sset_range image_subset_iff stream_space_def) |
|
51 |
||
52 |
lemma measurable_snth[measurable]: "(\<lambda>\<omega>. \<omega> !! n) \<in> measurable (stream_space M) M" |
|
53 |
using measurable_snth_PiM measurable_component_singleton by (rule measurable_compose) simp |
|
54 |
||
55 |
lemma measurable_shd[measurable]: "shd \<in> measurable (stream_space M) M" |
|
56 |
using measurable_snth[of 0] by simp |
|
57 |
||
58 |
lemma measurable_stream_space2: |
|
59 |
assumes f_snth: "\<And>n. (\<lambda>x. f x !! n) \<in> measurable N M" |
|
60 |
shows "f \<in> measurable N (stream_space M)" |
|
61 |
unfolding stream_space_def measurable_distr_eq2 |
|
62 |
proof (rule measurable_vimage_algebra2) |
|
63 |
show "f \<in> space N \<rightarrow> streams (space M)" |
|
64 |
using f_snth[THEN measurable_space] by (auto simp add: streams_iff_sset sset_range) |
|
65 |
show "(\<lambda>x. op !! (f x)) \<in> measurable N (Pi\<^sub>M UNIV (\<lambda>i. M))" |
|
66 |
proof (rule measurable_PiM_single') |
|
67 |
show "(\<lambda>x. op !! (f x)) \<in> space N \<rightarrow> UNIV \<rightarrow>\<^sub>E space M" |
|
68 |
using f_snth[THEN measurable_space] by auto |
|
69 |
qed (rule f_snth) |
|
70 |
qed |
|
71 |
||
72 |
lemma measurable_stream_coinduct[consumes 1, case_names shd stl, coinduct set: measurable]: |
|
73 |
assumes "F f" |
|
74 |
assumes h: "\<And>f. F f \<Longrightarrow> (\<lambda>x. shd (f x)) \<in> measurable N M" |
|
75 |
assumes t: "\<And>f. F f \<Longrightarrow> F (\<lambda>x. stl (f x))" |
|
76 |
shows "f \<in> measurable N (stream_space M)" |
|
77 |
proof (rule measurable_stream_space2) |
|
78 |
fix n show "(\<lambda>x. f x !! n) \<in> measurable N M" |
|
79 |
using `F f` by (induction n arbitrary: f) (auto intro: h t) |
|
80 |
qed |
|
81 |
||
82 |
lemma measurable_sdrop[measurable]: "sdrop n \<in> measurable (stream_space M) (stream_space M)" |
|
83 |
by (rule measurable_stream_space2) (simp add: sdrop_snth) |
|
84 |
||
85 |
lemma measurable_stl[measurable]: "(\<lambda>\<omega>. stl \<omega>) \<in> measurable (stream_space M) (stream_space M)" |
|
86 |
by (rule measurable_stream_space2) (simp del: snth.simps add: snth.simps[symmetric]) |
|
87 |
||
88 |
lemma measurable_to_stream[measurable]: "to_stream \<in> measurable (\<Pi>\<^sub>M i\<in>UNIV. M) (stream_space M)" |
|
89 |
by (rule measurable_stream_space2) (simp add: to_stream_def) |
|
90 |
||
91 |
lemma measurable_Stream[measurable (raw)]: |
|
92 |
assumes f[measurable]: "f \<in> measurable N M" |
|
93 |
assumes g[measurable]: "g \<in> measurable N (stream_space M)" |
|
94 |
shows "(\<lambda>x. f x ## g x) \<in> measurable N (stream_space M)" |
|
95 |
by (rule measurable_stream_space2) (simp add: Stream_snth) |
|
96 |
||
97 |
lemma measurable_smap[measurable]: |
|
98 |
assumes X[measurable]: "X \<in> measurable N M" |
|
99 |
shows "smap X \<in> measurable (stream_space N) (stream_space M)" |
|
100 |
by (rule measurable_stream_space2) simp |
|
101 |
||
102 |
lemma measurable_stake[measurable]: |
|
103 |
"stake i \<in> measurable (stream_space (count_space UNIV)) (count_space (UNIV :: 'a::countable list set))" |
|
104 |
by (induct i) auto |
|
105 |
||
59000 | 106 |
lemma measurable_shift[measurable]: |
107 |
assumes f: "f \<in> measurable N (stream_space M)" |
|
108 |
assumes [measurable]: "g \<in> measurable N (stream_space M)" |
|
109 |
shows "(\<lambda>x. stake n (f x) @- g x) \<in> measurable N (stream_space M)" |
|
110 |
using f by (induction n arbitrary: f) simp_all |
|
111 |
||
112 |
lemma measurable_ev_at[measurable]: |
|
113 |
assumes [measurable]: "Measurable.pred (stream_space M) P" |
|
114 |
shows "Measurable.pred (stream_space M) (ev_at P n)" |
|
115 |
by (induction n) auto |
|
116 |
||
117 |
lemma measurable_alw[measurable]: |
|
118 |
"Measurable.pred (stream_space M) P \<Longrightarrow> Measurable.pred (stream_space M) (alw P)" |
|
119 |
unfolding alw_def |
|
120 |
by (coinduction rule: measurable_gfp_coinduct) (auto simp: Order_Continuity.down_continuous_def) |
|
121 |
||
122 |
lemma measurable_ev[measurable]: |
|
123 |
"Measurable.pred (stream_space M) P \<Longrightarrow> Measurable.pred (stream_space M) (ev P)" |
|
124 |
unfolding ev_def |
|
125 |
by (coinduction rule: measurable_lfp_coinduct) (auto simp: Order_Continuity.continuous_def) |
|
126 |
||
127 |
lemma measurable_until: |
|
128 |
assumes [measurable]: "Measurable.pred (stream_space M) \<phi>" "Measurable.pred (stream_space M) \<psi>" |
|
129 |
shows "Measurable.pred (stream_space M) (\<phi> until \<psi>)" |
|
130 |
unfolding UNTIL_def |
|
131 |
by (coinduction rule: measurable_gfp_coinduct) (simp_all add: down_continuous_def fun_eq_iff) |
|
132 |
||
133 |
lemma measurable_holds [measurable]: "Measurable.pred M P \<Longrightarrow> Measurable.pred (stream_space M) (holds P)" |
|
134 |
unfolding holds.simps[abs_def] |
|
135 |
by (rule measurable_compose[OF measurable_shd]) simp |
|
136 |
||
137 |
lemma measurable_hld[measurable]: assumes [measurable]: "t \<in> sets M" shows "Measurable.pred (stream_space M) (HLD t)" |
|
138 |
unfolding HLD_def by measurable |
|
139 |
||
140 |
lemma measurable_nxt[measurable (raw)]: |
|
141 |
"Measurable.pred (stream_space M) P \<Longrightarrow> Measurable.pred (stream_space M) (nxt P)" |
|
142 |
unfolding nxt.simps[abs_def] by simp |
|
143 |
||
144 |
lemma measurable_suntil[measurable]: |
|
145 |
assumes [measurable]: "Measurable.pred (stream_space M) Q" "Measurable.pred (stream_space M) P" |
|
146 |
shows "Measurable.pred (stream_space M) (Q suntil P)" |
|
147 |
unfolding suntil_def by (coinduction rule: measurable_lfp_coinduct) (auto simp: Order_Continuity.continuous_def) |
|
148 |
||
149 |
lemma measurable_szip: |
|
150 |
"(\<lambda>(\<omega>1, \<omega>2). szip \<omega>1 \<omega>2) \<in> measurable (stream_space M \<Otimes>\<^sub>M stream_space N) (stream_space (M \<Otimes>\<^sub>M N))" |
|
151 |
proof (rule measurable_stream_space2) |
|
152 |
fix n |
|
153 |
have "(\<lambda>x. (case x of (\<omega>1, \<omega>2) \<Rightarrow> szip \<omega>1 \<omega>2) !! n) = (\<lambda>(\<omega>1, \<omega>2). (\<omega>1 !! n, \<omega>2 !! n))" |
|
154 |
by auto |
|
155 |
also have "\<dots> \<in> measurable (stream_space M \<Otimes>\<^sub>M stream_space N) (M \<Otimes>\<^sub>M N)" |
|
156 |
by measurable |
|
157 |
finally show "(\<lambda>x. (case x of (\<omega>1, \<omega>2) \<Rightarrow> szip \<omega>1 \<omega>2) !! n) \<in> measurable (stream_space M \<Otimes>\<^sub>M stream_space N) (M \<Otimes>\<^sub>M N)" |
|
158 |
. |
|
159 |
qed |
|
160 |
||
58588 | 161 |
lemma (in prob_space) prob_space_stream_space: "prob_space (stream_space M)" |
162 |
proof - |
|
163 |
interpret product_prob_space "\<lambda>_. M" UNIV by default |
|
164 |
show ?thesis |
|
165 |
by (subst stream_space_eq_distr) (auto intro!: P.prob_space_distr) |
|
166 |
qed |
|
167 |
||
168 |
lemma (in prob_space) nn_integral_stream_space: |
|
169 |
assumes [measurable]: "f \<in> borel_measurable (stream_space M)" |
|
170 |
shows "(\<integral>\<^sup>+X. f X \<partial>stream_space M) = (\<integral>\<^sup>+x. (\<integral>\<^sup>+X. f (x ## X) \<partial>stream_space M) \<partial>M)" |
|
171 |
proof - |
|
172 |
interpret S: sequence_space M |
|
173 |
by default |
|
174 |
interpret P: pair_sigma_finite M "\<Pi>\<^sub>M i::nat\<in>UNIV. M" |
|
175 |
by default |
|
176 |
||
177 |
have "(\<integral>\<^sup>+X. f X \<partial>stream_space M) = (\<integral>\<^sup>+X. f (to_stream X) \<partial>S.S)" |
|
178 |
by (subst stream_space_eq_distr) (simp add: nn_integral_distr) |
|
179 |
also have "\<dots> = (\<integral>\<^sup>+X. f (to_stream ((\<lambda>(s, \<omega>). case_nat s \<omega>) X)) \<partial>(M \<Otimes>\<^sub>M S.S))" |
|
180 |
by (subst S.PiM_iter[symmetric]) (simp add: nn_integral_distr) |
|
181 |
also have "\<dots> = (\<integral>\<^sup>+x. \<integral>\<^sup>+X. f (to_stream ((\<lambda>(s, \<omega>). case_nat s \<omega>) (x, X))) \<partial>S.S \<partial>M)" |
|
182 |
by (subst S.nn_integral_fst) simp_all |
|
183 |
also have "\<dots> = (\<integral>\<^sup>+x. \<integral>\<^sup>+X. f (x ## to_stream X) \<partial>S.S \<partial>M)" |
|
184 |
by (auto intro!: nn_integral_cong simp: to_stream_nat_case) |
|
185 |
also have "\<dots> = (\<integral>\<^sup>+x. \<integral>\<^sup>+X. f (x ## X) \<partial>stream_space M \<partial>M)" |
|
186 |
by (subst stream_space_eq_distr) |
|
187 |
(simp add: nn_integral_distr cong: nn_integral_cong) |
|
188 |
finally show ?thesis . |
|
189 |
qed |
|
190 |
||
191 |
lemma (in prob_space) emeasure_stream_space: |
|
192 |
assumes X[measurable]: "X \<in> sets (stream_space M)" |
|
193 |
shows "emeasure (stream_space M) X = (\<integral>\<^sup>+t. emeasure (stream_space M) {x\<in>space (stream_space M). t ## x \<in> X } \<partial>M)" |
|
194 |
proof - |
|
195 |
have eq: "\<And>x xs. xs \<in> space (stream_space M) \<Longrightarrow> x \<in> space M \<Longrightarrow> |
|
196 |
indicator X (x ## xs) = indicator {xs\<in>space (stream_space M). x ## xs \<in> X } xs" |
|
197 |
by (auto split: split_indicator) |
|
198 |
show ?thesis |
|
199 |
using nn_integral_stream_space[of "indicator X"] |
|
200 |
apply (auto intro!: nn_integral_cong) |
|
201 |
apply (subst nn_integral_cong) |
|
202 |
apply (rule eq) |
|
203 |
apply simp_all |
|
204 |
done |
|
205 |
qed |
|
206 |
||
207 |
lemma (in prob_space) prob_stream_space: |
|
208 |
assumes P[measurable]: "{x\<in>space (stream_space M). P x} \<in> sets (stream_space M)" |
|
209 |
shows "\<P>(x in stream_space M. P x) = (\<integral>\<^sup>+t. \<P>(x in stream_space M. P (t ## x)) \<partial>M)" |
|
210 |
proof - |
|
211 |
interpret S: prob_space "stream_space M" |
|
212 |
by (rule prob_space_stream_space) |
|
213 |
show ?thesis |
|
214 |
unfolding S.emeasure_eq_measure[symmetric] |
|
215 |
by (subst emeasure_stream_space) (auto simp: stream_space_Stream intro!: nn_integral_cong) |
|
216 |
qed |
|
217 |
||
218 |
lemma (in prob_space) AE_stream_space: |
|
219 |
assumes [measurable]: "Measurable.pred (stream_space M) P" |
|
220 |
shows "(AE X in stream_space M. P X) = (AE x in M. AE X in stream_space M. P (x ## X))" |
|
221 |
proof - |
|
222 |
interpret stream: prob_space "stream_space M" |
|
223 |
by (rule prob_space_stream_space) |
|
224 |
||
225 |
have eq: "\<And>x X. indicator {x. \<not> P x} (x ## X) = indicator {X. \<not> P (x ## X)} X" |
|
226 |
by (auto split: split_indicator) |
|
227 |
show ?thesis |
|
228 |
apply (subst AE_iff_nn_integral, simp) |
|
229 |
apply (subst nn_integral_stream_space, simp) |
|
230 |
apply (subst eq) |
|
231 |
apply (subst nn_integral_0_iff_AE, simp) |
|
232 |
apply (simp add: AE_iff_nn_integral[symmetric]) |
|
233 |
done |
|
234 |
qed |
|
235 |
||
236 |
lemma (in prob_space) AE_stream_all: |
|
237 |
assumes [measurable]: "Measurable.pred M P" and P: "AE x in M. P x" |
|
238 |
shows "AE x in stream_space M. stream_all P x" |
|
239 |
proof - |
|
240 |
{ fix n have "AE x in stream_space M. P (x !! n)" |
|
241 |
proof (induct n) |
|
242 |
case 0 with P show ?case |
|
243 |
by (subst AE_stream_space) (auto elim!: eventually_elim1) |
|
244 |
next |
|
245 |
case (Suc n) then show ?case |
|
246 |
by (subst AE_stream_space) auto |
|
247 |
qed } |
|
248 |
then show ?thesis |
|
249 |
unfolding stream_all_def by (simp add: AE_all_countable) |
|
250 |
qed |
|
251 |
||
59000 | 252 |
lemma streams_sets: |
253 |
assumes X[measurable]: "X \<in> sets M" shows "streams X \<in> sets (stream_space M)" |
|
254 |
proof - |
|
255 |
have "streams X = {x\<in>space (stream_space M). x \<in> streams X}" |
|
256 |
using streams_mono[OF _ sets.sets_into_space[OF X]] by (auto simp: space_stream_space) |
|
257 |
also have "\<dots> = {x\<in>space (stream_space M). gfp (\<lambda>p x. shd x \<in> X \<and> p (stl x)) x}" |
|
258 |
apply (simp add: set_eq_iff streams_def streamsp_def) |
|
259 |
apply (intro allI conj_cong refl arg_cong2[where f=gfp] ext) |
|
260 |
apply (case_tac xa) |
|
261 |
apply auto |
|
262 |
done |
|
263 |
also have "\<dots> \<in> sets (stream_space M)" |
|
264 |
apply (intro predE) |
|
265 |
apply (coinduction rule: measurable_gfp_coinduct) |
|
266 |
apply (auto simp: down_continuous_def) |
|
267 |
done |
|
268 |
finally show ?thesis . |
|
269 |
qed |
|
270 |
||
271 |
lemma sets_stream_space_in_sets: |
|
272 |
assumes space: "space N = streams (space M)" |
|
273 |
assumes sets: "\<And>i. (\<lambda>x. x !! i) \<in> measurable N M" |
|
274 |
shows "sets (stream_space M) \<subseteq> sets N" |
|
275 |
unfolding stream_space_def sets_distr |
|
276 |
by (auto intro!: sets_image_in_sets measurable_Sup_sigma2 measurable_vimage_algebra2 del: subsetI equalityI |
|
277 |
simp add: sets_PiM_eq_proj snth_in space sets cong: measurable_cong_sets) |
|
278 |
||
279 |
lemma sets_stream_space_eq: "sets (stream_space M) = |
|
280 |
sets (\<Squnion>\<^sub>\<sigma> i\<in>UNIV. vimage_algebra (streams (space M)) (\<lambda>s. s !! i) M)" |
|
281 |
by (auto intro!: sets_stream_space_in_sets sets_Sup_in_sets sets_image_in_sets |
|
282 |
measurable_Sup_sigma1 snth_in measurable_vimage_algebra1 del: subsetI |
|
283 |
simp: space_Sup_sigma space_stream_space) |
|
284 |
||
285 |
lemma sets_restrict_stream_space: |
|
286 |
assumes S[measurable]: "S \<in> sets M" |
|
287 |
shows "sets (restrict_space (stream_space M) (streams S)) = sets (stream_space (restrict_space M S))" |
|
288 |
using S[THEN sets.sets_into_space] |
|
289 |
apply (subst restrict_space_eq_vimage_algebra) |
|
290 |
apply (simp add: space_stream_space streams_mono2) |
|
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
291 |
apply (subst vimage_algebra_cong[OF refl refl sets_stream_space_eq]) |
59000 | 292 |
apply (subst sets_stream_space_eq) |
293 |
apply (subst sets_vimage_Sup_eq) |
|
294 |
apply simp |
|
295 |
apply (auto intro: streams_mono) [] |
|
296 |
apply (simp add: image_image space_restrict_space) |
|
297 |
apply (intro SUP_sigma_cong) |
|
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
298 |
apply (simp add: vimage_algebra_cong[OF refl refl restrict_space_eq_vimage_algebra]) |
59000 | 299 |
apply (subst (1 2) vimage_algebra_vimage_algebra_eq) |
300 |
apply (auto simp: streams_mono snth_in) |
|
301 |
done |
|
302 |
||
303 |
||
304 |
primrec sstart :: "'a set \<Rightarrow> 'a list \<Rightarrow> 'a stream set" where |
|
305 |
"sstart S [] = streams S" |
|
306 |
| [simp del]: "sstart S (x # xs) = op ## x ` sstart S xs" |
|
307 |
||
308 |
lemma in_sstart[simp]: "s \<in> sstart S (x # xs) \<longleftrightarrow> shd s = x \<and> stl s \<in> sstart S xs" |
|
309 |
by (cases s) (auto simp: sstart.simps(2)) |
|
310 |
||
311 |
lemma sstart_in_streams: "xs \<in> lists S \<Longrightarrow> sstart S xs \<subseteq> streams S" |
|
312 |
by (induction xs) (auto simp: sstart.simps(2)) |
|
313 |
||
314 |
lemma sstart_eq: "x \<in> streams S \<Longrightarrow> x \<in> sstart S xs = (\<forall>i<length xs. x !! i = xs ! i)" |
|
315 |
by (induction xs arbitrary: x) (auto simp: nth_Cons streams_stl split: nat.splits) |
|
316 |
||
317 |
lemma sstart_sets: "sstart S xs \<in> sets (stream_space (count_space UNIV))" |
|
318 |
proof (induction xs) |
|
319 |
case (Cons x xs) |
|
320 |
note Cons[measurable] |
|
321 |
have "sstart S (x # xs) = |
|
322 |
{s\<in>space (stream_space (count_space UNIV)). shd s = x \<and> stl s \<in> sstart S xs}" |
|
323 |
by (simp add: set_eq_iff space_stream_space) |
|
324 |
also have "\<dots> \<in> sets (stream_space (count_space UNIV))" |
|
325 |
by measurable |
|
326 |
finally show ?case . |
|
327 |
qed (simp add: streams_sets) |
|
328 |
||
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
329 |
lemma sigma_sets_singletons: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
330 |
assumes "countable S" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
331 |
shows "sigma_sets S ((\<lambda>s. {s})`S) = Pow S" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
332 |
proof safe |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
333 |
interpret sigma_algebra S "sigma_sets S ((\<lambda>s. {s})`S)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
334 |
by (rule sigma_algebra_sigma_sets) auto |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
335 |
fix A assume "A \<subseteq> S" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
336 |
with assms have "(\<Union>a\<in>A. {a}) \<in> sigma_sets S ((\<lambda>s. {s})`S)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
337 |
by (intro countable_UN') (auto dest: countable_subset) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
338 |
then show "A \<in> sigma_sets S ((\<lambda>s. {s})`S)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
339 |
by simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
340 |
qed (auto dest: sigma_sets_into_sp[rotated]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
341 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
342 |
lemma sets_count_space_eq_sigma: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
343 |
"countable S \<Longrightarrow> sets (count_space S) = sets (sigma S ((\<lambda>s. {s})`S))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
344 |
by (subst sets_measure_of) (auto simp: sigma_sets_singletons) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
345 |
|
59000 | 346 |
lemma sets_stream_space_sstart: |
347 |
assumes S[simp]: "countable S" |
|
348 |
shows "sets (stream_space (count_space S)) = sets (sigma (streams S) (sstart S`lists S \<union> {{}}))" |
|
349 |
proof |
|
350 |
have [simp]: "sstart S ` lists S \<subseteq> Pow (streams S)" |
|
351 |
by (simp add: image_subset_iff sstart_in_streams) |
|
352 |
||
353 |
let ?S = "sigma (streams S) (sstart S ` lists S \<union> {{}})" |
|
354 |
{ fix i a assume "a \<in> S" |
|
355 |
{ fix x have "(x !! i = a \<and> x \<in> streams S) \<longleftrightarrow> (\<exists>xs\<in>lists S. length xs = i \<and> x \<in> sstart S (xs @ [a]))" |
|
356 |
proof (induction i arbitrary: x) |
|
357 |
case (Suc i) from this[of "stl x"] show ?case |
|
358 |
by (simp add: length_Suc_conv Bex_def ex_simps[symmetric] del: ex_simps) |
|
359 |
(metis stream.collapse streams_Stream) |
|
360 |
qed (insert `a \<in> S`, auto intro: streams_stl in_streams) } |
|
361 |
then have "(\<lambda>x. x !! i) -` {a} \<inter> streams S = (\<Union>xs\<in>{xs\<in>lists S. length xs = i}. sstart S (xs @ [a]))" |
|
362 |
by (auto simp add: set_eq_iff) |
|
363 |
also have "\<dots> \<in> sets ?S" |
|
364 |
using `a\<in>S` by (intro sets.countable_UN') (auto intro!: sigma_sets.Basic image_eqI) |
|
365 |
finally have " (\<lambda>x. x !! i) -` {a} \<inter> streams S \<in> sets ?S" . } |
|
366 |
then show "sets (stream_space (count_space S)) \<subseteq> sets (sigma (streams S) (sstart S`lists S \<union> {{}}))" |
|
367 |
by (intro sets_stream_space_in_sets) (auto simp: measurable_count_space_eq_countable snth_in) |
|
368 |
||
369 |
have "sigma_sets (space (stream_space (count_space S))) (sstart S`lists S \<union> {{}}) \<subseteq> sets (stream_space (count_space S))" |
|
370 |
proof (safe intro!: sets.sigma_sets_subset) |
|
371 |
fix xs assume "\<forall>x\<in>set xs. x \<in> S" |
|
372 |
then have "sstart S xs = {x\<in>space (stream_space (count_space S)). \<forall>i<length xs. x !! i = xs ! i}" |
|
373 |
by (induction xs) |
|
374 |
(auto simp: space_stream_space nth_Cons split: nat.split intro: in_streams streams_stl) |
|
375 |
also have "\<dots> \<in> sets (stream_space (count_space S))" |
|
376 |
by measurable |
|
377 |
finally show "sstart S xs \<in> sets (stream_space (count_space S))" . |
|
378 |
qed |
|
379 |
then show "sets (sigma (streams S) (sstart S`lists S \<union> {{}})) \<subseteq> sets (stream_space (count_space S))" |
|
380 |
by (simp add: space_stream_space) |
|
381 |
qed |
|
382 |
||
383 |
lemma Int_stable_sstart: "Int_stable (sstart S`lists S \<union> {{}})" |
|
384 |
proof - |
|
385 |
{ fix xs ys assume "xs \<in> lists S" "ys \<in> lists S" |
|
386 |
then have "sstart S xs \<inter> sstart S ys \<in> sstart S ` lists S \<union> {{}}" |
|
387 |
proof (induction xs ys rule: list_induct2') |
|
388 |
case (4 x xs y ys) |
|
389 |
show ?case |
|
390 |
proof cases |
|
391 |
assume "x = y" |
|
392 |
then have "sstart S (x # xs) \<inter> sstart S (y # ys) = op ## x ` (sstart S xs \<inter> sstart S ys)" |
|
393 |
by (auto simp: image_iff intro!: stream.collapse[symmetric]) |
|
394 |
also have "\<dots> \<in> sstart S ` lists S \<union> {{}}" |
|
395 |
using 4 by (auto simp: sstart.simps(2)[symmetric] del: in_listsD) |
|
396 |
finally show ?case . |
|
397 |
qed auto |
|
398 |
qed (simp_all add: sstart_in_streams inf.absorb1 inf.absorb2 image_eqI[where x="[]"]) } |
|
399 |
then show ?thesis |
|
400 |
by (auto simp: Int_stable_def) |
|
401 |
qed |
|
402 |
||
403 |
lemma stream_space_eq_sstart: |
|
404 |
assumes S[simp]: "countable S" |
|
405 |
assumes P: "prob_space M" "prob_space N" |
|
406 |
assumes ae: "AE x in M. x \<in> streams S" "AE x in N. x \<in> streams S" |
|
407 |
assumes sets_M: "sets M = sets (stream_space (count_space UNIV))" |
|
408 |
assumes sets_N: "sets N = sets (stream_space (count_space UNIV))" |
|
409 |
assumes *: "\<And>xs. xs \<noteq> [] \<Longrightarrow> xs \<in> lists S \<Longrightarrow> emeasure M (sstart S xs) = emeasure N (sstart S xs)" |
|
410 |
shows "M = N" |
|
411 |
proof (rule measure_eqI_restrict_generator[OF Int_stable_sstart]) |
|
412 |
have [simp]: "sstart S ` lists S \<subseteq> Pow (streams S)" |
|
413 |
by (simp add: image_subset_iff sstart_in_streams) |
|
414 |
||
415 |
interpret M: prob_space M by fact |
|
416 |
||
417 |
show "sstart S ` lists S \<union> {{}} \<subseteq> Pow (streams S)" |
|
418 |
by (auto dest: sstart_in_streams del: in_listsD) |
|
419 |
||
420 |
{ fix M :: "'a stream measure" assume M: "sets M = sets (stream_space (count_space UNIV))" |
|
421 |
have "sets (restrict_space M (streams S)) = sigma_sets (streams S) (sstart S ` lists S \<union> {{}})" |
|
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
422 |
by (subst sets_restrict_space_cong[OF M]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
59048
diff
changeset
|
423 |
(simp add: sets_restrict_stream_space restrict_count_space sets_stream_space_sstart) } |
59000 | 424 |
from this[OF sets_M] this[OF sets_N] |
425 |
show "sets (restrict_space M (streams S)) = sigma_sets (streams S) (sstart S ` lists S \<union> {{}})" |
|
426 |
"sets (restrict_space N (streams S)) = sigma_sets (streams S) (sstart S ` lists S \<union> {{}})" |
|
427 |
by auto |
|
428 |
show "{streams S} \<subseteq> sstart S ` lists S \<union> {{}}" |
|
429 |
"\<Union>{streams S} = streams S" "\<And>s. s \<in> {streams S} \<Longrightarrow> emeasure M s \<noteq> \<infinity>" |
|
430 |
using M.emeasure_space_1 space_stream_space[of "count_space S"] sets_eq_imp_space_eq[OF sets_M] |
|
431 |
by (auto simp add: image_eqI[where x="[]"]) |
|
432 |
show "sets M = sets N" |
|
433 |
by (simp add: sets_M sets_N) |
|
434 |
next |
|
435 |
fix X assume "X \<in> sstart S ` lists S \<union> {{}}" |
|
436 |
then obtain xs where "X = {} \<or> (xs \<in> lists S \<and> X = sstart S xs)" |
|
437 |
by auto |
|
438 |
moreover have "emeasure M (streams S) = 1" |
|
439 |
using ae by (intro prob_space.emeasure_eq_1_AE[OF P(1)]) (auto simp: sets_M streams_sets) |
|
440 |
moreover have "emeasure N (streams S) = 1" |
|
441 |
using ae by (intro prob_space.emeasure_eq_1_AE[OF P(2)]) (auto simp: sets_N streams_sets) |
|
442 |
ultimately show "emeasure M X = emeasure N X" |
|
443 |
using P[THEN prob_space.emeasure_space_1] |
|
444 |
by (cases "xs = []") (auto simp: * space_stream_space del: in_listsD) |
|
445 |
qed (auto simp: * ae sets_M del: in_listsD intro!: streams_sets) |
|
446 |
||
58588 | 447 |
end |