| author | krauss | 
| Wed, 08 Jun 2011 00:01:20 +0200 | |
| changeset 43257 | b81fd5c8f2dc | 
| parent 42284 | 326f57825e1a | 
| child 44890 | 22f665a2e91c | 
| permissions | -rw-r--r-- | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1 | (* Title: HOL/Hilbert_Choice.thy | 
| 32988 | 2 | Author: Lawrence C Paulson, Tobias Nipkow | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 3 | Copyright 2001 University of Cambridge | 
| 12023 | 4 | *) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 5 | |
| 14760 | 6 | header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 7 | |
| 15131 | 8 | theory Hilbert_Choice | 
| 29655 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 haftmann parents: 
27760diff
changeset | 9 | imports Nat Wellfounded Plain | 
| 39943 | 10 | uses ("Tools/choice_specification.ML")
 | 
| 15131 | 11 | begin | 
| 12298 | 12 | |
| 13 | subsection {* Hilbert's epsilon *}
 | |
| 14 | ||
| 31454 | 15 | axiomatization Eps :: "('a => bool) => 'a" where
 | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 16 | someI: "P x ==> P (Eps P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 17 | |
| 14872 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 18 | syntax (epsilon) | 
| 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 19 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 20 | syntax (HOL) | 
| 12298 | 21 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 22 | syntax | 
| 12298 | 23 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 24 | translations | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 25 | "SOME x. P" == "CONST Eps (%x. P)" | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 26 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 27 | print_translation {*
 | 
| 35115 | 28 |   [(@{const_syntax Eps}, fn [Abs abs] =>
 | 
| 42284 | 29 | let val (x, t) = Syntax_Trans.atomic_abs_tr' abs | 
| 35115 | 30 |       in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
 | 
| 31 | *} -- {* to avoid eta-contraction of body *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 32 | |
| 33057 | 33 | definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
 | 
| 34 | "inv_into A f == %x. SOME y. y : A & f y = x" | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 35 | |
| 32988 | 36 | abbreviation inv :: "('a => 'b) => ('b => 'a)" where
 | 
| 33057 | 37 | "inv == inv_into UNIV" | 
| 14760 | 38 | |
| 39 | ||
| 40 | subsection {*Hilbert's Epsilon-operator*}
 | |
| 41 | ||
| 42 | text{*Easier to apply than @{text someI} if the witness comes from an
 | |
| 43 | existential formula*} | |
| 44 | lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)" | |
| 45 | apply (erule exE) | |
| 46 | apply (erule someI) | |
| 47 | done | |
| 48 | ||
| 49 | text{*Easier to apply than @{text someI} because the conclusion has only one
 | |
| 50 | occurrence of @{term P}.*}
 | |
| 51 | lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 52 | by (blast intro: someI) | |
| 53 | ||
| 54 | text{*Easier to apply than @{text someI2} if the witness comes from an
 | |
| 55 | existential formula*} | |
| 56 | lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 57 | by (blast intro: someI2) | |
| 58 | ||
| 59 | lemma some_equality [intro]: | |
| 60 | "[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a" | |
| 61 | by (blast intro: someI2) | |
| 62 | ||
| 63 | lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a" | |
| 35216 | 64 | by blast | 
| 14760 | 65 | |
| 66 | lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)" | |
| 67 | by (blast intro: someI) | |
| 68 | ||
| 69 | lemma some_eq_trivial [simp]: "(SOME y. y=x) = x" | |
| 70 | apply (rule some_equality) | |
| 71 | apply (rule refl, assumption) | |
| 72 | done | |
| 73 | ||
| 74 | lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x" | |
| 75 | apply (rule some_equality) | |
| 76 | apply (rule refl) | |
| 77 | apply (erule sym) | |
| 78 | done | |
| 79 | ||
| 80 | ||
| 81 | subsection{*Axiom of Choice, Proved Using the Description Operator*}
 | |
| 82 | ||
| 39950 | 83 | lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)" | 
| 14760 | 84 | by (fast elim: someI) | 
| 85 | ||
| 86 | lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)" | |
| 87 | by (fast elim: someI) | |
| 88 | ||
| 89 | ||
| 90 | subsection {*Function Inverse*}
 | |
| 91 | ||
| 33014 | 92 | lemma inv_def: "inv f = (%y. SOME x. f x = y)" | 
| 33057 | 93 | by(simp add: inv_into_def) | 
| 33014 | 94 | |
| 33057 | 95 | lemma inv_into_into: "x : f ` A ==> inv_into A f x : A" | 
| 96 | apply (simp add: inv_into_def) | |
| 32988 | 97 | apply (fast intro: someI2) | 
| 98 | done | |
| 14760 | 99 | |
| 32988 | 100 | lemma inv_id [simp]: "inv id = id" | 
| 33057 | 101 | by (simp add: inv_into_def id_def) | 
| 14760 | 102 | |
| 33057 | 103 | lemma inv_into_f_f [simp]: | 
| 104 | "[| inj_on f A; x : A |] ==> inv_into A f (f x) = x" | |
| 105 | apply (simp add: inv_into_def inj_on_def) | |
| 32988 | 106 | apply (blast intro: someI2) | 
| 14760 | 107 | done | 
| 108 | ||
| 32988 | 109 | lemma inv_f_f: "inj f ==> inv f (f x) = x" | 
| 35216 | 110 | by simp | 
| 32988 | 111 | |
| 33057 | 112 | lemma f_inv_into_f: "y : f`A ==> f (inv_into A f y) = y" | 
| 113 | apply (simp add: inv_into_def) | |
| 32988 | 114 | apply (fast intro: someI2) | 
| 115 | done | |
| 116 | ||
| 33057 | 117 | lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x" | 
| 32988 | 118 | apply (erule subst) | 
| 33057 | 119 | apply (fast intro: inv_into_f_f) | 
| 32988 | 120 | done | 
| 121 | ||
| 122 | lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x" | |
| 33057 | 123 | by (simp add:inv_into_f_eq) | 
| 32988 | 124 | |
| 125 | lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g" | |
| 33057 | 126 | by (blast intro: ext inv_into_f_eq) | 
| 14760 | 127 | |
| 128 | text{*But is it useful?*}
 | |
| 129 | lemma inj_transfer: | |
| 130 | assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)" | |
| 131 | shows "P x" | |
| 132 | proof - | |
| 133 | have "f x \<in> range f" by auto | |
| 134 | hence "P(inv f (f x))" by (rule minor) | |
| 33057 | 135 | thus "P x" by (simp add: inv_into_f_f [OF injf]) | 
| 14760 | 136 | qed | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 137 | |
| 14760 | 138 | lemma inj_iff: "(inj f) = (inv f o f = id)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 139 | apply (simp add: o_def fun_eq_iff) | 
| 33057 | 140 | apply (blast intro: inj_on_inverseI inv_into_f_f) | 
| 14760 | 141 | done | 
| 142 | ||
| 23433 | 143 | lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id" | 
| 144 | by (simp add: inj_iff) | |
| 145 | ||
| 146 | lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g" | |
| 147 | by (simp add: o_assoc[symmetric]) | |
| 148 | ||
| 33057 | 149 | lemma inv_into_image_cancel[simp]: | 
| 150 | "inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S" | |
| 32988 | 151 | by(fastsimp simp: image_def) | 
| 152 | ||
| 14760 | 153 | lemma inj_imp_surj_inv: "inj f ==> surj (inv f)" | 
| 40702 | 154 | by (blast intro!: surjI inv_into_f_f) | 
| 14760 | 155 | |
| 156 | lemma surj_f_inv_f: "surj f ==> f(inv f y) = y" | |
| 40702 | 157 | by (simp add: f_inv_into_f) | 
| 14760 | 158 | |
| 33057 | 159 | lemma inv_into_injective: | 
| 160 | assumes eq: "inv_into A f x = inv_into A f y" | |
| 32988 | 161 | and x: "x: f`A" | 
| 162 | and y: "y: f`A" | |
| 14760 | 163 | shows "x=y" | 
| 164 | proof - | |
| 33057 | 165 | have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp | 
| 166 | thus ?thesis by (simp add: f_inv_into_f x y) | |
| 14760 | 167 | qed | 
| 168 | ||
| 33057 | 169 | lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B" | 
| 170 | by (blast intro: inj_onI dest: inv_into_injective injD) | |
| 32988 | 171 | |
| 33057 | 172 | lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A" | 
| 173 | by (auto simp add: bij_betw_def inj_on_inv_into) | |
| 14760 | 174 | |
| 175 | lemma surj_imp_inj_inv: "surj f ==> inj (inv f)" | |
| 40702 | 176 | by (simp add: inj_on_inv_into) | 
| 14760 | 177 | |
| 178 | lemma surj_iff: "(surj f) = (f o inv f = id)" | |
| 40702 | 179 | by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a]) | 
| 180 | ||
| 181 | lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)" | |
| 182 | unfolding surj_iff by (simp add: o_def fun_eq_iff) | |
| 14760 | 183 | |
| 184 | lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g" | |
| 185 | apply (rule ext) | |
| 186 | apply (drule_tac x = "inv f x" in spec) | |
| 187 | apply (simp add: surj_f_inv_f) | |
| 188 | done | |
| 189 | ||
| 190 | lemma bij_imp_bij_inv: "bij f ==> bij (inv f)" | |
| 191 | by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) | |
| 12372 | 192 | |
| 14760 | 193 | lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g" | 
| 194 | apply (rule ext) | |
| 33057 | 195 | apply (auto simp add: inv_into_def) | 
| 14760 | 196 | done | 
| 197 | ||
| 198 | lemma inv_inv_eq: "bij f ==> inv (inv f) = f" | |
| 199 | apply (rule inv_equality) | |
| 200 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 201 | done | |
| 202 | ||
| 203 | (** bij(inv f) implies little about f. Consider f::bool=>bool such that | |
| 204 | f(True)=f(False)=True. Then it's consistent with axiom someI that | |
| 205 | inv f could be any function at all, including the identity function. | |
| 206 | If inv f=id then inv f is a bijection, but inj f, surj(f) and | |
| 207 | inv(inv f)=f all fail. | |
| 208 | **) | |
| 209 | ||
| 33057 | 210 | lemma inv_into_comp: | 
| 32988 | 211 | "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==> | 
| 33057 | 212 | inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x" | 
| 213 | apply (rule inv_into_f_eq) | |
| 32988 | 214 | apply (fast intro: comp_inj_on) | 
| 33057 | 215 | apply (simp add: inv_into_into) | 
| 216 | apply (simp add: f_inv_into_f inv_into_into) | |
| 32988 | 217 | done | 
| 218 | ||
| 14760 | 219 | lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f" | 
| 220 | apply (rule inv_equality) | |
| 221 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 222 | done | |
| 223 | ||
| 224 | lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A" | |
| 225 | by (simp add: image_eq_UN surj_f_inv_f) | |
| 226 | ||
| 227 | lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A" | |
| 228 | by (simp add: image_eq_UN) | |
| 229 | ||
| 230 | lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X" | |
| 231 | by (auto simp add: image_def) | |
| 232 | ||
| 233 | lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
 | |
| 234 | apply auto | |
| 235 | apply (force simp add: bij_is_inj) | |
| 236 | apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) | |
| 237 | done | |
| 238 | ||
| 239 | lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" | |
| 240 | apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) | |
| 33057 | 241 | apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric]) | 
| 14760 | 242 | done | 
| 243 | ||
| 31380 | 244 | lemma finite_fun_UNIVD1: | 
| 245 |   assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | |
| 246 | and card: "card (UNIV :: 'b set) \<noteq> Suc 0" | |
| 247 | shows "finite (UNIV :: 'a set)" | |
| 248 | proof - | |
| 249 | from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2) | |
| 250 | with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)" | |
| 251 | by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff) | |
| 252 | then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto | |
| 253 | then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq) | |
| 254 | from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI) | |
| 255 | moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" | |
| 256 | proof (rule UNIV_eq_I) | |
| 257 | fix x :: 'a | |
| 33057 | 258 | from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def) | 
| 31380 | 259 | thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast | 
| 260 | qed | |
| 261 | ultimately show "finite (UNIV :: 'a set)" by simp | |
| 262 | qed | |
| 14760 | 263 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 264 | lemma image_inv_into_cancel: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 265 | assumes SURJ: "f`A=A'" and SUB: "B' \<le> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 266 | shows "f `((inv_into A f)`B') = B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 267 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 268 | proof (auto simp add: f_inv_into_f) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 269 | let ?f' = "(inv_into A f)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 270 | fix a' assume *: "a' \<in> B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 271 | then have "a' \<in> A'" using SUB by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 272 | then have "a' = f (?f' a')" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 273 | using SURJ by (auto simp add: f_inv_into_f) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 274 | then show "a' \<in> f ` (?f' ` B')" using * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 275 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 276 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 277 | lemma inv_into_inv_into_eq: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 278 | assumes "bij_betw f A A'" "a \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 279 | shows "inv_into A' (inv_into A f) a = f a" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 280 | proof - | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 281 | let ?f' = "inv_into A f" let ?f'' = "inv_into A' ?f'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 282 | have 1: "bij_betw ?f' A' A" using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 283 | by (auto simp add: bij_betw_inv_into) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 284 | obtain a' where 2: "a' \<in> A'" and 3: "?f' a' = a" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 285 | using 1 `a \<in> A` unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 286 | hence "?f'' a = a'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 287 | using `a \<in> A` 1 3 by (auto simp add: f_inv_into_f bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 288 | moreover have "f a = a'" using assms 2 3 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 289 | by (auto simp add: inv_into_f_f bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 290 | ultimately show "?f'' a = f a" by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 291 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 292 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 293 | lemma inj_on_iff_surj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 294 |   assumes "A \<noteq> {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 295 | shows "(\<exists>f. inj_on f A \<and> f ` A \<le> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 296 | proof safe | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 297 | fix f assume INJ: "inj_on f A" and INCL: "f ` A \<le> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 298 | let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'" let ?csi = "\<lambda>a. a \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 299 | let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 300 | have "?g ` A' = A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 301 | proof | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 302 | show "?g ` A' \<le> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 303 | proof clarify | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 304 | fix a' assume *: "a' \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 305 | show "?g a' \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 306 | proof cases | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 307 | assume Case1: "a' \<in> f ` A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 308 | then obtain a where "?phi a' a" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 309 | hence "?phi a' (SOME a. ?phi a' a)" using someI[of "?phi a'" a] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 310 | with Case1 show ?thesis by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 311 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 312 | assume Case2: "a' \<notin> f ` A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 313 | hence "?csi (SOME a. ?csi a)" using assms someI_ex[of ?csi] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 314 | with Case2 show ?thesis by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 315 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 316 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 317 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 318 | show "A \<le> ?g ` A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 319 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 320 |       {fix a assume *: "a \<in> A"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 321 | let ?b = "SOME aa. ?phi (f a) aa" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 322 | have "?phi (f a) a" using * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 323 | hence 1: "?phi (f a) ?b" using someI[of "?phi(f a)" a] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 324 | hence "?g(f a) = ?b" using * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 325 | moreover have "a = ?b" using 1 INJ * by (auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 326 | ultimately have "?g(f a) = a" by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 327 | with INCL * have "?g(f a) = a \<and> f a \<in> A'" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 328 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 329 | thus ?thesis by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 330 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 331 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 332 | thus "\<exists>g. g ` A' = A" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 333 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 334 | fix g let ?f = "inv_into A' g" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 335 | have "inj_on ?f (g ` A')" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 336 | by (auto simp add: inj_on_inv_into) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 337 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 338 |   {fix a' assume *: "a' \<in> A'"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 339 | let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 340 | have "?phi a'" using * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 341 | hence "?phi(SOME b'. ?phi b')" using someI[of ?phi] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 342 | hence "?f(g a') \<in> A'" unfolding inv_into_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 343 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 344 | ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 345 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 346 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 347 | lemma Ex_inj_on_UNION_Sigma: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 348 | "\<exists>f. (inj_on f (\<Union> i \<in> I. A i) \<and> f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i))" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 349 | proof | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 350 | let ?phi = "\<lambda> a i. i \<in> I \<and> a \<in> A i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 351 | let ?sm = "\<lambda> a. SOME i. ?phi a i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 352 | let ?f = "\<lambda>a. (?sm a, a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 353 | have "inj_on ?f (\<Union> i \<in> I. A i)" unfolding inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 354 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 355 |   { { fix i a assume "i \<in> I" and "a \<in> A i"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 356 | hence "?sm a \<in> I \<and> a \<in> A(?sm a)" using someI[of "?phi a" i] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 357 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 358 | hence "?f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i)" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 359 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 360 | ultimately | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 361 | show "inj_on ?f (\<Union> i \<in> I. A i) \<and> ?f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 362 | by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 363 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 364 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 365 | subsection {* The Cantor-Bernstein Theorem *}
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 366 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 367 | lemma Cantor_Bernstein_aux: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 368 | shows "\<exists>A' h. A' \<le> A \<and> | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 369 | (\<forall>a \<in> A'. a \<notin> g`(B - f ` A')) \<and> | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 370 | (\<forall>a \<in> A'. h a = f a) \<and> | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 371 | (\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a))" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 372 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 373 | obtain H where H_def: "H = (\<lambda> A'. A - (g`(B - (f ` A'))))" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 374 | have 0: "mono H" unfolding mono_def H_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 375 | then obtain A' where 1: "H A' = A'" using lfp_unfold by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 376 | hence 2: "A' = A - (g`(B - (f ` A')))" unfolding H_def by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 377 | hence 3: "A' \<le> A" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 378 | have 4: "\<forall>a \<in> A'. a \<notin> g`(B - f ` A')" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 379 | using 2 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 380 | have 5: "\<forall>a \<in> A - A'. \<exists>b \<in> B - (f ` A'). a = g b" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 381 | using 2 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 382 | (* *) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 383 | obtain h where h_def: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 384 | "h = (\<lambda> a. if a \<in> A' then f a else (SOME b. b \<in> B - (f ` A') \<and> a = g b))" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 385 | hence "\<forall>a \<in> A'. h a = f a" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 386 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 387 | have "\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 388 | proof | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 389 | fix a assume *: "a \<in> A - A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 390 | let ?phi = "\<lambda> b. b \<in> B - (f ` A') \<and> a = g b" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 391 | have "h a = (SOME b. ?phi b)" using h_def * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 392 | moreover have "\<exists>b. ?phi b" using 5 * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 393 | ultimately show "?phi (h a)" using someI_ex[of ?phi] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 394 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 395 | ultimately show ?thesis using 3 4 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 396 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 397 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 398 | theorem Cantor_Bernstein: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 399 | assumes INJ1: "inj_on f A" and SUB1: "f ` A \<le> B" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 400 | INJ2: "inj_on g B" and SUB2: "g ` B \<le> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 401 | shows "\<exists>h. bij_betw h A B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 402 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 403 | obtain A' and h where 0: "A' \<le> A" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 404 | 1: "\<forall>a \<in> A'. a \<notin> g`(B - f ` A')" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 405 | 2: "\<forall>a \<in> A'. h a = f a" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 406 | 3: "\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 407 | using Cantor_Bernstein_aux[of A g B f] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 408 | have "inj_on h A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 409 | proof (intro inj_onI) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 410 | fix a1 a2 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 411 | assume 4: "a1 \<in> A" and 5: "a2 \<in> A" and 6: "h a1 = h a2" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 412 | show "a1 = a2" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 413 | proof(cases "a1 \<in> A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 414 | assume Case1: "a1 \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 415 | show ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 416 | proof(cases "a2 \<in> A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 417 | assume Case11: "a2 \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 418 | hence "f a1 = f a2" using Case1 2 6 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 419 | thus ?thesis using INJ1 Case1 Case11 0 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 420 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 421 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 422 | assume Case12: "a2 \<notin> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 423 | hence False using 3 5 2 6 Case1 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 424 | thus ?thesis by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 425 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 426 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 427 | assume Case2: "a1 \<notin> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 428 | show ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 429 | proof(cases "a2 \<in> A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 430 | assume Case21: "a2 \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 431 | hence False using 3 4 2 6 Case2 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 432 | thus ?thesis by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 433 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 434 | assume Case22: "a2 \<notin> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 435 | hence "a1 = g(h a1) \<and> a2 = g(h a2)" using Case2 4 5 3 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 436 | thus ?thesis using 6 by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 437 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 438 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 439 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 440 | (* *) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 441 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 442 | have "h ` A = B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 443 | proof safe | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 444 | fix a assume "a \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 445 | thus "h a \<in> B" using SUB1 2 3 by (case_tac "a \<in> A'", auto) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 446 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 447 | fix b assume *: "b \<in> B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 448 | show "b \<in> h ` A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 449 | proof(cases "b \<in> f ` A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 450 | assume Case1: "b \<in> f ` A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 451 | then obtain a where "a \<in> A' \<and> b = f a" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 452 | thus ?thesis using 2 0 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 453 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 454 | assume Case2: "b \<notin> f ` A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 455 | hence "g b \<notin> A'" using 1 * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 456 | hence 4: "g b \<in> A - A'" using * SUB2 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 457 | hence "h(g b) \<in> B \<and> g(h(g b)) = g b" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 458 | using 3 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 459 | hence "h(g b) = b" using * INJ2 unfolding inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 460 | thus ?thesis using 4 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 461 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 462 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 463 | (* *) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 464 | ultimately show ?thesis unfolding bij_betw_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 465 | qed | 
| 14760 | 466 | |
| 467 | subsection {*Other Consequences of Hilbert's Epsilon*}
 | |
| 468 | ||
| 469 | text {*Hilbert's Epsilon and the @{term split} Operator*}
 | |
| 470 | ||
| 471 | text{*Looping simprule*}
 | |
| 472 | lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))" | |
| 26347 | 473 | by simp | 
| 14760 | 474 | |
| 475 | lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))" | |
| 26347 | 476 | by (simp add: split_def) | 
| 14760 | 477 | |
| 478 | lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)" | |
| 26347 | 479 | by blast | 
| 14760 | 480 | |
| 481 | ||
| 482 | text{*A relation is wellfounded iff it has no infinite descending chain*}
 | |
| 483 | lemma wf_iff_no_infinite_down_chain: | |
| 484 | "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))" | |
| 485 | apply (simp only: wf_eq_minimal) | |
| 486 | apply (rule iffI) | |
| 487 | apply (rule notI) | |
| 488 | apply (erule exE) | |
| 489 |  apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
 | |
| 490 | apply (erule contrapos_np, simp, clarify) | |
| 491 | apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q") | |
| 492 | apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI) | |
| 493 | apply (rule allI, simp) | |
| 494 | apply (rule someI2_ex, blast, blast) | |
| 495 | apply (rule allI) | |
| 496 | apply (induct_tac "n", simp_all) | |
| 497 | apply (rule someI2_ex, blast+) | |
| 498 | done | |
| 499 | ||
| 27760 | 500 | lemma wf_no_infinite_down_chainE: | 
| 501 | assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r" | |
| 502 | using `wf r` wf_iff_no_infinite_down_chain[of r] by blast | |
| 503 | ||
| 504 | ||
| 14760 | 505 | text{*A dynamically-scoped fact for TFL *}
 | 
| 12298 | 506 | lemma tfl_some: "\<forall>P x. P x --> P (Eps P)" | 
| 507 | by (blast intro: someI) | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 508 | |
| 12298 | 509 | |
| 510 | subsection {* Least value operator *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 511 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 512 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 513 | LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where | 
| 14760 | 514 | "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 515 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 516 | syntax | 
| 12298 | 517 |   "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 518 | translations | 
| 35115 | 519 | "LEAST x WRT m. P" == "CONST LeastM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 520 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 521 | lemma LeastMI2: | 
| 12298 | 522 | "P x ==> (!!y. P y ==> m x <= m y) | 
| 523 | ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x) | |
| 524 | ==> Q (LeastM m P)" | |
| 14760 | 525 | apply (simp add: LeastM_def) | 
| 14208 | 526 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 527 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 528 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 529 | lemma LeastM_equality: | 
| 12298 | 530 | "P k ==> (!!x. P x ==> m k <= m x) | 
| 531 | ==> m (LEAST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 532 | apply (rule LeastMI2, assumption, blast) | 
| 12298 | 533 | apply (blast intro!: order_antisym) | 
| 534 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 535 | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 536 | lemma wf_linord_ex_has_least: | 
| 14760 | 537 | "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k | 
| 538 | ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)" | |
| 12298 | 539 | apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]]) | 
| 14208 | 540 | apply (drule_tac x = "m`Collect P" in spec, force) | 
| 12298 | 541 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 542 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 543 | lemma ex_has_least_nat: | 
| 14760 | 544 | "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))" | 
| 12298 | 545 | apply (simp only: pred_nat_trancl_eq_le [symmetric]) | 
| 546 | apply (rule wf_pred_nat [THEN wf_linord_ex_has_least]) | |
| 16796 | 547 | apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption) | 
| 12298 | 548 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 549 | |
| 12298 | 550 | lemma LeastM_nat_lemma: | 
| 14760 | 551 | "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))" | 
| 552 | apply (simp add: LeastM_def) | |
| 12298 | 553 | apply (rule someI_ex) | 
| 554 | apply (erule ex_has_least_nat) | |
| 555 | done | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 556 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 557 | lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard] | 
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 558 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 559 | lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)" | 
| 14208 | 560 | by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption) | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 561 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 562 | |
| 12298 | 563 | subsection {* Greatest value operator *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 564 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 565 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 566 | GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where | 
| 14760 | 567 | "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)" | 
| 12298 | 568 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 569 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 570 |   Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where
 | 
| 12298 | 571 | "Greatest == GreatestM (%x. x)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 572 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 573 | syntax | 
| 35115 | 574 | "_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a" | 
| 12298 | 575 |       ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 576 | translations | 
| 35115 | 577 | "GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 578 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 579 | lemma GreatestMI2: | 
| 12298 | 580 | "P x ==> (!!y. P y ==> m y <= m x) | 
| 581 | ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x) | |
| 582 | ==> Q (GreatestM m P)" | |
| 14760 | 583 | apply (simp add: GreatestM_def) | 
| 14208 | 584 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 585 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 586 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 587 | lemma GreatestM_equality: | 
| 12298 | 588 | "P k ==> (!!x. P x ==> m x <= m k) | 
| 589 | ==> m (GREATEST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 590 | apply (rule_tac m = m in GreatestMI2, assumption, blast) | 
| 12298 | 591 | apply (blast intro!: order_antisym) | 
| 592 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 593 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 594 | lemma Greatest_equality: | 
| 12298 | 595 | "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k" | 
| 14760 | 596 | apply (simp add: Greatest_def) | 
| 14208 | 597 | apply (erule GreatestM_equality, blast) | 
| 12298 | 598 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 599 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 600 | lemma ex_has_greatest_nat_lemma: | 
| 14760 | 601 | "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x)) | 
| 602 | ==> \<exists>y. P y & ~ (m y < m k + n)" | |
| 15251 | 603 | apply (induct n, force) | 
| 12298 | 604 | apply (force simp add: le_Suc_eq) | 
| 605 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 606 | |
| 12298 | 607 | lemma ex_has_greatest_nat: | 
| 14760 | 608 | "P k ==> \<forall>y. P y --> m y < b | 
| 609 | ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)" | |
| 12298 | 610 | apply (rule ccontr) | 
| 611 | apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma) | |
| 14208 | 612 | apply (subgoal_tac [3] "m k <= b", auto) | 
| 12298 | 613 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 614 | |
| 12298 | 615 | lemma GreatestM_nat_lemma: | 
| 14760 | 616 | "P k ==> \<forall>y. P y --> m y < b | 
| 617 | ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))" | |
| 618 | apply (simp add: GreatestM_def) | |
| 12298 | 619 | apply (rule someI_ex) | 
| 14208 | 620 | apply (erule ex_has_greatest_nat, assumption) | 
| 12298 | 621 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 622 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 623 | lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard] | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 624 | |
| 12298 | 625 | lemma GreatestM_nat_le: | 
| 14760 | 626 | "P x ==> \<forall>y. P y --> m y < b | 
| 12298 | 627 | ==> (m x::nat) <= m (GreatestM m P)" | 
| 21020 | 628 | apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P]) | 
| 12298 | 629 | done | 
| 630 | ||
| 631 | ||
| 632 | text {* \medskip Specialization to @{text GREATEST}. *}
 | |
| 633 | ||
| 14760 | 634 | lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)" | 
| 635 | apply (simp add: Greatest_def) | |
| 14208 | 636 | apply (rule GreatestM_natI, auto) | 
| 12298 | 637 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 638 | |
| 12298 | 639 | lemma Greatest_le: | 
| 14760 | 640 | "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)" | 
| 641 | apply (simp add: Greatest_def) | |
| 14208 | 642 | apply (rule GreatestM_nat_le, auto) | 
| 12298 | 643 | done | 
| 644 | ||
| 645 | ||
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 646 | subsection {* Specification package -- Hilbertized version *}
 | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 647 | |
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 648 | lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c" | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 649 | by (simp only: someI_ex) | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 650 | |
| 31723 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
 haftmann parents: 
31454diff
changeset | 651 | use "Tools/choice_specification.ML" | 
| 14115 | 652 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 653 | end |