| author | wenzelm | 
| Tue, 13 Jan 2009 22:25:04 +0100 | |
| changeset 29477 | b834f95c2532 | 
| parent 29105 | 8f38bf68d42e | 
| child 29505 | c6d2d23909d1 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/HOL.thy | 
| 11750 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 923 | 4 | |
| 11750 | 5 | header {* The basis of Higher-Order Logic *}
 | 
| 923 | 6 | |
| 15131 | 7 | theory HOL | 
| 26957 | 8 | imports Pure | 
| 23163 | 9 | uses | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 10 |   ("Tools/hologic.ML")
 | 
| 23171 | 11 | "~~/src/Tools/IsaPlanner/zipper.ML" | 
| 12 | "~~/src/Tools/IsaPlanner/isand.ML" | |
| 13 | "~~/src/Tools/IsaPlanner/rw_tools.ML" | |
| 14 | "~~/src/Tools/IsaPlanner/rw_inst.ML" | |
| 23263 | 15 | "~~/src/Provers/project_rule.ML" | 
| 16 | "~~/src/Provers/hypsubst.ML" | |
| 17 | "~~/src/Provers/splitter.ML" | |
| 23163 | 18 | "~~/src/Provers/classical.ML" | 
| 19 | "~~/src/Provers/blast.ML" | |
| 20 | "~~/src/Provers/clasimp.ML" | |
| 28325 | 21 | "~~/src/Provers/coherent.ML" | 
| 23263 | 22 | "~~/src/Provers/eqsubst.ML" | 
| 23163 | 23 | "~~/src/Provers/quantifier1.ML" | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 24 |   ("Tools/simpdata.ML")
 | 
| 25741 | 25 | "~~/src/Tools/random_word.ML" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 26 | "~~/src/Tools/atomize_elim.ML" | 
| 24901 
d3cbf79769b9
added first version of user-space type system for class target
 haftmann parents: 
24844diff
changeset | 27 | "~~/src/Tools/induct.ML" | 
| 27326 
d3beec370964
moved src/HOL/Tools/induct_tacs.ML to src/Tools/induct_tacs.ML;
 wenzelm parents: 
27212diff
changeset | 28 |   ("~~/src/Tools/induct_tacs.ML")
 | 
| 29105 | 29 | "~~/src/Tools/value.ML" | 
| 24280 | 30 | "~~/src/Tools/code/code_name.ML" | 
| 31 | "~~/src/Tools/code/code_funcgr.ML" | |
| 32 | "~~/src/Tools/code/code_thingol.ML" | |
| 28054 | 33 | "~~/src/Tools/code/code_printer.ML" | 
| 24280 | 34 | "~~/src/Tools/code/code_target.ML" | 
| 28054 | 35 | "~~/src/Tools/code/code_ml.ML" | 
| 36 | "~~/src/Tools/code/code_haskell.ML" | |
| 24166 | 37 | "~~/src/Tools/nbe.ML" | 
| 28400 | 38 |   ("~~/src/HOL/Tools/recfun_codegen.ML")
 | 
| 15131 | 39 | begin | 
| 2260 | 40 | |
| 11750 | 41 | subsection {* Primitive logic *}
 | 
| 42 | ||
| 43 | subsubsection {* Core syntax *}
 | |
| 2260 | 44 | |
| 14854 | 45 | classes type | 
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12281diff
changeset | 46 | defaultsort type | 
| 25494 
b2484a7912ac
replaced typedecl interpretation by ObjectLogic.typedecl (based on base_sort);
 wenzelm parents: 
25460diff
changeset | 47 | setup {* ObjectLogic.add_base_sort @{sort type} *}
 | 
| 25460 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 48 | |
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 49 | arities | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 50 | "fun" :: (type, type) type | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 51 | itself :: (type) type | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 52 | |
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12281diff
changeset | 53 | global | 
| 923 | 54 | |
| 7357 | 55 | typedecl bool | 
| 923 | 56 | |
| 11750 | 57 | judgment | 
| 58 |   Trueprop      :: "bool => prop"                   ("(_)" 5)
 | |
| 923 | 59 | |
| 11750 | 60 | consts | 
| 7357 | 61 |   Not           :: "bool => bool"                   ("~ _" [40] 40)
 | 
| 62 | True :: bool | |
| 63 | False :: bool | |
| 923 | 64 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 65 |   The           :: "('a => bool) => 'a"
 | 
| 7357 | 66 |   All           :: "('a => bool) => bool"           (binder "ALL " 10)
 | 
| 67 |   Ex            :: "('a => bool) => bool"           (binder "EX " 10)
 | |
| 68 |   Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
 | |
| 69 | Let :: "['a, 'a => 'b] => 'b" | |
| 923 | 70 | |
| 22839 | 71 | "op =" :: "['a, 'a] => bool" (infixl "=" 50) | 
| 72 | "op &" :: "[bool, bool] => bool" (infixr "&" 35) | |
| 73 | "op |" :: "[bool, bool] => bool" (infixr "|" 30) | |
| 74 | "op -->" :: "[bool, bool] => bool" (infixr "-->" 25) | |
| 923 | 75 | |
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 76 | local | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 77 | |
| 16587 | 78 | consts | 
| 79 |   If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
 | |
| 2260 | 80 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 81 | |
| 11750 | 82 | subsubsection {* Additional concrete syntax *}
 | 
| 2260 | 83 | |
| 21210 | 84 | notation (output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 85 | "op =" (infix "=" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 86 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 87 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 88 | not_equal :: "['a, 'a] => bool" (infixl "~=" 50) where | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 89 | "x ~= y == ~ (x = y)" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 90 | |
| 21210 | 91 | notation (output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 92 | not_equal (infix "~=" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 93 | |
| 21210 | 94 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 95 |   Not  ("\<not> _" [40] 40) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 96 | "op &" (infixr "\<and>" 35) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 97 | "op |" (infixr "\<or>" 30) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 98 | "op -->" (infixr "\<longrightarrow>" 25) and | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 99 | not_equal (infix "\<noteq>" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 100 | |
| 21210 | 101 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 102 |   Not  ("\<not> _" [40] 40) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 103 | "op &" (infixr "\<and>" 35) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 104 | "op |" (infixr "\<or>" 30) and | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 105 | not_equal (infix "\<noteq>" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 106 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 107 | abbreviation (iff) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 108 | iff :: "[bool, bool] => bool" (infixr "<->" 25) where | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 109 | "A <-> B == A = B" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 110 | |
| 21210 | 111 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 112 | iff (infixr "\<longleftrightarrow>" 25) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 113 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 114 | |
| 4868 | 115 | nonterminals | 
| 923 | 116 | letbinds letbind | 
| 117 | case_syn cases_syn | |
| 118 | ||
| 119 | syntax | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 120 |   "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
 | 
| 923 | 121 | |
| 7357 | 122 |   "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
 | 
| 123 |   ""            :: "letbind => letbinds"                 ("_")
 | |
| 124 |   "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
 | |
| 125 |   "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
 | |
| 923 | 126 | |
| 9060 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 127 |   "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
 | 
| 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 128 |   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
 | 
| 7357 | 129 |   ""            :: "case_syn => cases_syn"               ("_")
 | 
| 9060 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 130 |   "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
 | 
| 923 | 131 | |
| 132 | translations | |
| 13764 | 133 | "THE x. P" == "The (%x. P)" | 
| 923 | 134 | "_Let (_binds b bs) e" == "_Let b (_Let bs e)" | 
| 1114 | 135 | "let x = a in e" == "Let a (%x. e)" | 
| 923 | 136 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 137 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 138 | (* To avoid eta-contraction of body: *) | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 139 | [("The", fn [Abs abs] =>
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 140 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 141 | in Syntax.const "_The" $ x $ t end)] | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 142 | *} | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 143 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
12023diff
changeset | 144 | syntax (xsymbols) | 
| 11687 | 145 |   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
 | 
| 21524 | 146 | |
| 147 | notation (xsymbols) | |
| 148 | All (binder "\<forall>" 10) and | |
| 149 | Ex (binder "\<exists>" 10) and | |
| 150 | Ex1 (binder "\<exists>!" 10) | |
| 2372 | 151 | |
| 21524 | 152 | notation (HTML output) | 
| 153 | All (binder "\<forall>" 10) and | |
| 154 | Ex (binder "\<exists>" 10) and | |
| 155 | Ex1 (binder "\<exists>!" 10) | |
| 6340 | 156 | |
| 21524 | 157 | notation (HOL) | 
| 158 | All (binder "! " 10) and | |
| 159 | Ex (binder "? " 10) and | |
| 160 | Ex1 (binder "?! " 10) | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 161 | |
| 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 162 | |
| 11750 | 163 | subsubsection {* Axioms and basic definitions *}
 | 
| 2260 | 164 | |
| 7357 | 165 | axioms | 
| 15380 | 166 | refl: "t = (t::'a)" | 
| 28513 | 167 | subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" | 
| 15380 | 168 | ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)" | 
| 169 |     -- {*Extensionality is built into the meta-logic, and this rule expresses
 | |
| 170 | a related property. It is an eta-expanded version of the traditional | |
| 171 | rule, and similar to the ABS rule of HOL*} | |
| 6289 | 172 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 173 | the_eq_trivial: "(THE x. x = a) = (a::'a)" | 
| 923 | 174 | |
| 15380 | 175 | impI: "(P ==> Q) ==> P-->Q" | 
| 176 | mp: "[| P-->Q; P |] ==> Q" | |
| 177 | ||
| 178 | ||
| 923 | 179 | defs | 
| 7357 | 180 | True_def: "True == ((%x::bool. x) = (%x. x))" | 
| 181 | All_def: "All(P) == (P = (%x. True))" | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11438diff
changeset | 182 | Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q" | 
| 7357 | 183 | False_def: "False == (!P. P)" | 
| 184 | not_def: "~ P == P-->False" | |
| 185 | and_def: "P & Q == !R. (P-->Q-->R) --> R" | |
| 186 | or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R" | |
| 187 | Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" | |
| 923 | 188 | |
| 7357 | 189 | axioms | 
| 190 | iff: "(P-->Q) --> (Q-->P) --> (P=Q)" | |
| 191 | True_or_False: "(P=True) | (P=False)" | |
| 923 | 192 | |
| 193 | defs | |
| 24219 | 194 | Let_def: "Let s f == f(s)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11438diff
changeset | 195 | if_def: "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)" | 
| 5069 | 196 | |
| 14223 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 197 | finalconsts | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 198 | "op =" | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 199 | "op -->" | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 200 | The | 
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 201 | |
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 202 | axiomatization | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 203 | undefined :: 'a | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 204 | |
| 28682 | 205 | abbreviation (input) | 
| 206 | "arbitrary \<equiv> undefined" | |
| 3320 | 207 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 208 | |
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 209 | subsubsection {* Generic classes and algebraic operations *}
 | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 210 | |
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 211 | class default = type + | 
| 24901 
d3cbf79769b9
added first version of user-space type system for class target
 haftmann parents: 
24844diff
changeset | 212 | fixes default :: 'a | 
| 4868 | 213 | |
| 22473 | 214 | class zero = type + | 
| 25062 | 215 |   fixes zero :: 'a  ("0")
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 216 | |
| 22473 | 217 | class one = type + | 
| 25062 | 218 |   fixes one  :: 'a  ("1")
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 219 | |
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 220 | hide (open) const zero one | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 221 | |
| 22473 | 222 | class plus = type + | 
| 25062 | 223 | fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) | 
| 11750 | 224 | |
| 22473 | 225 | class minus = type + | 
| 25762 | 226 | fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) | 
| 227 | ||
| 228 | class uminus = type + | |
| 25062 | 229 |   fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
 | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 230 | |
| 22473 | 231 | class times = type + | 
| 25062 | 232 | fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 233 | |
| 22473 | 234 | class inverse = type + | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 235 | fixes inverse :: "'a \<Rightarrow> 'a" | 
| 25062 | 236 | and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "'/" 70) | 
| 21524 | 237 | |
| 23878 | 238 | class abs = type + | 
| 239 | fixes abs :: "'a \<Rightarrow> 'a" | |
| 25388 | 240 | begin | 
| 23878 | 241 | |
| 21524 | 242 | notation (xsymbols) | 
| 243 |   abs  ("\<bar>_\<bar>")
 | |
| 25388 | 244 | |
| 21524 | 245 | notation (HTML output) | 
| 246 |   abs  ("\<bar>_\<bar>")
 | |
| 11750 | 247 | |
| 25388 | 248 | end | 
| 249 | ||
| 25062 | 250 | class sgn = type + | 
| 251 | fixes sgn :: "'a \<Rightarrow> 'a" | |
| 252 | ||
| 23878 | 253 | class ord = type + | 
| 24748 | 254 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 255 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 23878 | 256 | begin | 
| 257 | ||
| 258 | notation | |
| 259 |   less_eq  ("op <=") and
 | |
| 260 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | |
| 261 |   less  ("op <") and
 | |
| 262 |   less  ("(_/ < _)"  [51, 51] 50)
 | |
| 263 | ||
| 264 | notation (xsymbols) | |
| 265 |   less_eq  ("op \<le>") and
 | |
| 266 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | |
| 267 | ||
| 268 | notation (HTML output) | |
| 269 |   less_eq  ("op \<le>") and
 | |
| 270 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | |
| 271 | ||
| 25388 | 272 | abbreviation (input) | 
| 273 | greater_eq (infix ">=" 50) where | |
| 274 | "x >= y \<equiv> y <= x" | |
| 275 | ||
| 24842 | 276 | notation (input) | 
| 23878 | 277 | greater_eq (infix "\<ge>" 50) | 
| 278 | ||
| 25388 | 279 | abbreviation (input) | 
| 280 | greater (infix ">" 50) where | |
| 281 | "x > y \<equiv> y < x" | |
| 282 | ||
| 283 | end | |
| 284 | ||
| 13456 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 285 | syntax | 
| 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 286 |   "_index1"  :: index    ("\<^sub>1")
 | 
| 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 287 | translations | 
| 14690 | 288 | (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>" | 
| 13456 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 289 | |
| 11750 | 290 | typed_print_translation {*
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 291 | let | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 292 | fun tr' c = (c, fn show_sorts => fn T => fn ts => | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 293 | if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 294 | else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T); | 
| 22993 | 295 | in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end;
 | 
| 11750 | 296 | *} -- {* show types that are presumably too general *}
 | 
| 297 | ||
| 298 | ||
| 20944 | 299 | subsection {* Fundamental rules *}
 | 
| 300 | ||
| 20973 | 301 | subsubsection {* Equality *}
 | 
| 20944 | 302 | |
| 18457 | 303 | lemma sym: "s = t ==> t = s" | 
| 304 | by (erule subst) (rule refl) | |
| 15411 | 305 | |
| 18457 | 306 | lemma ssubst: "t = s ==> P s ==> P t" | 
| 307 | by (drule sym) (erule subst) | |
| 15411 | 308 | |
| 309 | lemma trans: "[| r=s; s=t |] ==> r=t" | |
| 18457 | 310 | by (erule subst) | 
| 15411 | 311 | |
| 20944 | 312 | lemma meta_eq_to_obj_eq: | 
| 313 | assumes meq: "A == B" | |
| 314 | shows "A = B" | |
| 315 | by (unfold meq) (rule refl) | |
| 15411 | 316 | |
| 21502 | 317 | text {* Useful with @{text erule} for proving equalities from known equalities. *}
 | 
| 20944 | 318 | (* a = b | 
| 15411 | 319 | | | | 
| 320 | c = d *) | |
| 321 | lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d" | |
| 322 | apply (rule trans) | |
| 323 | apply (rule trans) | |
| 324 | apply (rule sym) | |
| 325 | apply assumption+ | |
| 326 | done | |
| 327 | ||
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 328 | text {* For calculational reasoning: *}
 | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 329 | |
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 330 | lemma forw_subst: "a = b ==> P b ==> P a" | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 331 | by (rule ssubst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 332 | |
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 333 | lemma back_subst: "P a ==> a = b ==> P b" | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 334 | by (rule subst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 335 | |
| 15411 | 336 | |
| 20944 | 337 | subsubsection {*Congruence rules for application*}
 | 
| 15411 | 338 | |
| 339 | (*similar to AP_THM in Gordon's HOL*) | |
| 340 | lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)" | |
| 341 | apply (erule subst) | |
| 342 | apply (rule refl) | |
| 343 | done | |
| 344 | ||
| 345 | (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) | |
| 346 | lemma arg_cong: "x=y ==> f(x)=f(y)" | |
| 347 | apply (erule subst) | |
| 348 | apply (rule refl) | |
| 349 | done | |
| 350 | ||
| 15655 | 351 | lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d" | 
| 352 | apply (erule ssubst)+ | |
| 353 | apply (rule refl) | |
| 354 | done | |
| 355 | ||
| 15411 | 356 | lemma cong: "[| f = g; (x::'a) = y |] ==> f(x) = g(y)" | 
| 357 | apply (erule subst)+ | |
| 358 | apply (rule refl) | |
| 359 | done | |
| 360 | ||
| 361 | ||
| 20944 | 362 | subsubsection {*Equality of booleans -- iff*}
 | 
| 15411 | 363 | |
| 21504 | 364 | lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q" | 
| 365 | by (iprover intro: iff [THEN mp, THEN mp] impI assms) | |
| 15411 | 366 | |
| 367 | lemma iffD2: "[| P=Q; Q |] ==> P" | |
| 18457 | 368 | by (erule ssubst) | 
| 15411 | 369 | |
| 370 | lemma rev_iffD2: "[| Q; P=Q |] ==> P" | |
| 18457 | 371 | by (erule iffD2) | 
| 15411 | 372 | |
| 21504 | 373 | lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" | 
| 374 | by (drule sym) (rule iffD2) | |
| 375 | ||
| 376 | lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" | |
| 377 | by (drule sym) (rule rev_iffD2) | |
| 15411 | 378 | |
| 379 | lemma iffE: | |
| 380 | assumes major: "P=Q" | |
| 21504 | 381 | and minor: "[| P --> Q; Q --> P |] ==> R" | 
| 18457 | 382 | shows R | 
| 383 | by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) | |
| 15411 | 384 | |
| 385 | ||
| 20944 | 386 | subsubsection {*True*}
 | 
| 15411 | 387 | |
| 388 | lemma TrueI: "True" | |
| 21504 | 389 | unfolding True_def by (rule refl) | 
| 15411 | 390 | |
| 21504 | 391 | lemma eqTrueI: "P ==> P = True" | 
| 18457 | 392 | by (iprover intro: iffI TrueI) | 
| 15411 | 393 | |
| 21504 | 394 | lemma eqTrueE: "P = True ==> P" | 
| 395 | by (erule iffD2) (rule TrueI) | |
| 15411 | 396 | |
| 397 | ||
| 20944 | 398 | subsubsection {*Universal quantifier*}
 | 
| 15411 | 399 | |
| 21504 | 400 | lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)" | 
| 401 | unfolding All_def by (iprover intro: ext eqTrueI assms) | |
| 15411 | 402 | |
| 403 | lemma spec: "ALL x::'a. P(x) ==> P(x)" | |
| 404 | apply (unfold All_def) | |
| 405 | apply (rule eqTrueE) | |
| 406 | apply (erule fun_cong) | |
| 407 | done | |
| 408 | ||
| 409 | lemma allE: | |
| 410 | assumes major: "ALL x. P(x)" | |
| 21504 | 411 | and minor: "P(x) ==> R" | 
| 412 | shows R | |
| 413 | by (iprover intro: minor major [THEN spec]) | |
| 15411 | 414 | |
| 415 | lemma all_dupE: | |
| 416 | assumes major: "ALL x. P(x)" | |
| 21504 | 417 | and minor: "[| P(x); ALL x. P(x) |] ==> R" | 
| 418 | shows R | |
| 419 | by (iprover intro: minor major major [THEN spec]) | |
| 15411 | 420 | |
| 421 | ||
| 21504 | 422 | subsubsection {* False *}
 | 
| 423 | ||
| 424 | text {*
 | |
| 425 |   Depends upon @{text spec}; it is impossible to do propositional
 | |
| 426 | logic before quantifiers! | |
| 427 | *} | |
| 15411 | 428 | |
| 429 | lemma FalseE: "False ==> P" | |
| 21504 | 430 | apply (unfold False_def) | 
| 431 | apply (erule spec) | |
| 432 | done | |
| 15411 | 433 | |
| 21504 | 434 | lemma False_neq_True: "False = True ==> P" | 
| 435 | by (erule eqTrueE [THEN FalseE]) | |
| 15411 | 436 | |
| 437 | ||
| 21504 | 438 | subsubsection {* Negation *}
 | 
| 15411 | 439 | |
| 440 | lemma notI: | |
| 21504 | 441 | assumes "P ==> False" | 
| 15411 | 442 | shows "~P" | 
| 21504 | 443 | apply (unfold not_def) | 
| 444 | apply (iprover intro: impI assms) | |
| 445 | done | |
| 15411 | 446 | |
| 447 | lemma False_not_True: "False ~= True" | |
| 21504 | 448 | apply (rule notI) | 
| 449 | apply (erule False_neq_True) | |
| 450 | done | |
| 15411 | 451 | |
| 452 | lemma True_not_False: "True ~= False" | |
| 21504 | 453 | apply (rule notI) | 
| 454 | apply (drule sym) | |
| 455 | apply (erule False_neq_True) | |
| 456 | done | |
| 15411 | 457 | |
| 458 | lemma notE: "[| ~P; P |] ==> R" | |
| 21504 | 459 | apply (unfold not_def) | 
| 460 | apply (erule mp [THEN FalseE]) | |
| 461 | apply assumption | |
| 462 | done | |
| 15411 | 463 | |
| 21504 | 464 | lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P" | 
| 465 | by (erule notE [THEN notI]) (erule meta_mp) | |
| 15411 | 466 | |
| 467 | ||
| 20944 | 468 | subsubsection {*Implication*}
 | 
| 15411 | 469 | |
| 470 | lemma impE: | |
| 471 | assumes "P-->Q" "P" "Q ==> R" | |
| 472 | shows "R" | |
| 23553 | 473 | by (iprover intro: assms mp) | 
| 15411 | 474 | |
| 475 | (* Reduces Q to P-->Q, allowing substitution in P. *) | |
| 476 | lemma rev_mp: "[| P; P --> Q |] ==> Q" | |
| 17589 | 477 | by (iprover intro: mp) | 
| 15411 | 478 | |
| 479 | lemma contrapos_nn: | |
| 480 | assumes major: "~Q" | |
| 481 | and minor: "P==>Q" | |
| 482 | shows "~P" | |
| 17589 | 483 | by (iprover intro: notI minor major [THEN notE]) | 
| 15411 | 484 | |
| 485 | (*not used at all, but we already have the other 3 combinations *) | |
| 486 | lemma contrapos_pn: | |
| 487 | assumes major: "Q" | |
| 488 | and minor: "P ==> ~Q" | |
| 489 | shows "~P" | |
| 17589 | 490 | by (iprover intro: notI minor major notE) | 
| 15411 | 491 | |
| 492 | lemma not_sym: "t ~= s ==> s ~= t" | |
| 21250 | 493 | by (erule contrapos_nn) (erule sym) | 
| 494 | ||
| 495 | lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y" | |
| 496 | by (erule subst, erule ssubst, assumption) | |
| 15411 | 497 | |
| 498 | (*still used in HOLCF*) | |
| 499 | lemma rev_contrapos: | |
| 500 | assumes pq: "P ==> Q" | |
| 501 | and nq: "~Q" | |
| 502 | shows "~P" | |
| 503 | apply (rule nq [THEN contrapos_nn]) | |
| 504 | apply (erule pq) | |
| 505 | done | |
| 506 | ||
| 20944 | 507 | subsubsection {*Existential quantifier*}
 | 
| 15411 | 508 | |
| 509 | lemma exI: "P x ==> EX x::'a. P x" | |
| 510 | apply (unfold Ex_def) | |
| 17589 | 511 | apply (iprover intro: allI allE impI mp) | 
| 15411 | 512 | done | 
| 513 | ||
| 514 | lemma exE: | |
| 515 | assumes major: "EX x::'a. P(x)" | |
| 516 | and minor: "!!x. P(x) ==> Q" | |
| 517 | shows "Q" | |
| 518 | apply (rule major [unfolded Ex_def, THEN spec, THEN mp]) | |
| 17589 | 519 | apply (iprover intro: impI [THEN allI] minor) | 
| 15411 | 520 | done | 
| 521 | ||
| 522 | ||
| 20944 | 523 | subsubsection {*Conjunction*}
 | 
| 15411 | 524 | |
| 525 | lemma conjI: "[| P; Q |] ==> P&Q" | |
| 526 | apply (unfold and_def) | |
| 17589 | 527 | apply (iprover intro: impI [THEN allI] mp) | 
| 15411 | 528 | done | 
| 529 | ||
| 530 | lemma conjunct1: "[| P & Q |] ==> P" | |
| 531 | apply (unfold and_def) | |
| 17589 | 532 | apply (iprover intro: impI dest: spec mp) | 
| 15411 | 533 | done | 
| 534 | ||
| 535 | lemma conjunct2: "[| P & Q |] ==> Q" | |
| 536 | apply (unfold and_def) | |
| 17589 | 537 | apply (iprover intro: impI dest: spec mp) | 
| 15411 | 538 | done | 
| 539 | ||
| 540 | lemma conjE: | |
| 541 | assumes major: "P&Q" | |
| 542 | and minor: "[| P; Q |] ==> R" | |
| 543 | shows "R" | |
| 544 | apply (rule minor) | |
| 545 | apply (rule major [THEN conjunct1]) | |
| 546 | apply (rule major [THEN conjunct2]) | |
| 547 | done | |
| 548 | ||
| 549 | lemma context_conjI: | |
| 23553 | 550 | assumes "P" "P ==> Q" shows "P & Q" | 
| 551 | by (iprover intro: conjI assms) | |
| 15411 | 552 | |
| 553 | ||
| 20944 | 554 | subsubsection {*Disjunction*}
 | 
| 15411 | 555 | |
| 556 | lemma disjI1: "P ==> P|Q" | |
| 557 | apply (unfold or_def) | |
| 17589 | 558 | apply (iprover intro: allI impI mp) | 
| 15411 | 559 | done | 
| 560 | ||
| 561 | lemma disjI2: "Q ==> P|Q" | |
| 562 | apply (unfold or_def) | |
| 17589 | 563 | apply (iprover intro: allI impI mp) | 
| 15411 | 564 | done | 
| 565 | ||
| 566 | lemma disjE: | |
| 567 | assumes major: "P|Q" | |
| 568 | and minorP: "P ==> R" | |
| 569 | and minorQ: "Q ==> R" | |
| 570 | shows "R" | |
| 17589 | 571 | by (iprover intro: minorP minorQ impI | 
| 15411 | 572 | major [unfolded or_def, THEN spec, THEN mp, THEN mp]) | 
| 573 | ||
| 574 | ||
| 20944 | 575 | subsubsection {*Classical logic*}
 | 
| 15411 | 576 | |
| 577 | lemma classical: | |
| 578 | assumes prem: "~P ==> P" | |
| 579 | shows "P" | |
| 580 | apply (rule True_or_False [THEN disjE, THEN eqTrueE]) | |
| 581 | apply assumption | |
| 582 | apply (rule notI [THEN prem, THEN eqTrueI]) | |
| 583 | apply (erule subst) | |
| 584 | apply assumption | |
| 585 | done | |
| 586 | ||
| 587 | lemmas ccontr = FalseE [THEN classical, standard] | |
| 588 | ||
| 589 | (*notE with premises exchanged; it discharges ~R so that it can be used to | |
| 590 | make elimination rules*) | |
| 591 | lemma rev_notE: | |
| 592 | assumes premp: "P" | |
| 593 | and premnot: "~R ==> ~P" | |
| 594 | shows "R" | |
| 595 | apply (rule ccontr) | |
| 596 | apply (erule notE [OF premnot premp]) | |
| 597 | done | |
| 598 | ||
| 599 | (*Double negation law*) | |
| 600 | lemma notnotD: "~~P ==> P" | |
| 601 | apply (rule classical) | |
| 602 | apply (erule notE) | |
| 603 | apply assumption | |
| 604 | done | |
| 605 | ||
| 606 | lemma contrapos_pp: | |
| 607 | assumes p1: "Q" | |
| 608 | and p2: "~P ==> ~Q" | |
| 609 | shows "P" | |
| 17589 | 610 | by (iprover intro: classical p1 p2 notE) | 
| 15411 | 611 | |
| 612 | ||
| 20944 | 613 | subsubsection {*Unique existence*}
 | 
| 15411 | 614 | |
| 615 | lemma ex1I: | |
| 23553 | 616 | assumes "P a" "!!x. P(x) ==> x=a" | 
| 15411 | 617 | shows "EX! x. P(x)" | 
| 23553 | 618 | by (unfold Ex1_def, iprover intro: assms exI conjI allI impI) | 
| 15411 | 619 | |
| 620 | text{*Sometimes easier to use: the premises have no shared variables.  Safe!*}
 | |
| 621 | lemma ex_ex1I: | |
| 622 | assumes ex_prem: "EX x. P(x)" | |
| 623 | and eq: "!!x y. [| P(x); P(y) |] ==> x=y" | |
| 624 | shows "EX! x. P(x)" | |
| 17589 | 625 | by (iprover intro: ex_prem [THEN exE] ex1I eq) | 
| 15411 | 626 | |
| 627 | lemma ex1E: | |
| 628 | assumes major: "EX! x. P(x)" | |
| 629 | and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R" | |
| 630 | shows "R" | |
| 631 | apply (rule major [unfolded Ex1_def, THEN exE]) | |
| 632 | apply (erule conjE) | |
| 17589 | 633 | apply (iprover intro: minor) | 
| 15411 | 634 | done | 
| 635 | ||
| 636 | lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x" | |
| 637 | apply (erule ex1E) | |
| 638 | apply (rule exI) | |
| 639 | apply assumption | |
| 640 | done | |
| 641 | ||
| 642 | ||
| 20944 | 643 | subsubsection {*THE: definite description operator*}
 | 
| 15411 | 644 | |
| 645 | lemma the_equality: | |
| 646 | assumes prema: "P a" | |
| 647 | and premx: "!!x. P x ==> x=a" | |
| 648 | shows "(THE x. P x) = a" | |
| 649 | apply (rule trans [OF _ the_eq_trivial]) | |
| 650 | apply (rule_tac f = "The" in arg_cong) | |
| 651 | apply (rule ext) | |
| 652 | apply (rule iffI) | |
| 653 | apply (erule premx) | |
| 654 | apply (erule ssubst, rule prema) | |
| 655 | done | |
| 656 | ||
| 657 | lemma theI: | |
| 658 | assumes "P a" and "!!x. P x ==> x=a" | |
| 659 | shows "P (THE x. P x)" | |
| 23553 | 660 | by (iprover intro: assms the_equality [THEN ssubst]) | 
| 15411 | 661 | |
| 662 | lemma theI': "EX! x. P x ==> P (THE x. P x)" | |
| 663 | apply (erule ex1E) | |
| 664 | apply (erule theI) | |
| 665 | apply (erule allE) | |
| 666 | apply (erule mp) | |
| 667 | apply assumption | |
| 668 | done | |
| 669 | ||
| 670 | (*Easier to apply than theI: only one occurrence of P*) | |
| 671 | lemma theI2: | |
| 672 | assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x" | |
| 673 | shows "Q (THE x. P x)" | |
| 23553 | 674 | by (iprover intro: assms theI) | 
| 15411 | 675 | |
| 24553 | 676 | lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)" | 
| 677 | by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] | |
| 678 | elim:allE impE) | |
| 679 | ||
| 18697 | 680 | lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a" | 
| 15411 | 681 | apply (rule the_equality) | 
| 682 | apply assumption | |
| 683 | apply (erule ex1E) | |
| 684 | apply (erule all_dupE) | |
| 685 | apply (drule mp) | |
| 686 | apply assumption | |
| 687 | apply (erule ssubst) | |
| 688 | apply (erule allE) | |
| 689 | apply (erule mp) | |
| 690 | apply assumption | |
| 691 | done | |
| 692 | ||
| 693 | lemma the_sym_eq_trivial: "(THE y. x=y) = x" | |
| 694 | apply (rule the_equality) | |
| 695 | apply (rule refl) | |
| 696 | apply (erule sym) | |
| 697 | done | |
| 698 | ||
| 699 | ||
| 20944 | 700 | subsubsection {*Classical intro rules for disjunction and existential quantifiers*}
 | 
| 15411 | 701 | |
| 702 | lemma disjCI: | |
| 703 | assumes "~Q ==> P" shows "P|Q" | |
| 704 | apply (rule classical) | |
| 23553 | 705 | apply (iprover intro: assms disjI1 disjI2 notI elim: notE) | 
| 15411 | 706 | done | 
| 707 | ||
| 708 | lemma excluded_middle: "~P | P" | |
| 17589 | 709 | by (iprover intro: disjCI) | 
| 15411 | 710 | |
| 20944 | 711 | text {*
 | 
| 712 | case distinction as a natural deduction rule. | |
| 713 |   Note that @{term "~P"} is the second case, not the first
 | |
| 714 | *} | |
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 715 | lemma case_split [case_names True False]: | 
| 15411 | 716 | assumes prem1: "P ==> Q" | 
| 717 | and prem2: "~P ==> Q" | |
| 718 | shows "Q" | |
| 719 | apply (rule excluded_middle [THEN disjE]) | |
| 720 | apply (erule prem2) | |
| 721 | apply (erule prem1) | |
| 722 | done | |
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 723 | |
| 15411 | 724 | (*Classical implies (-->) elimination. *) | 
| 725 | lemma impCE: | |
| 726 | assumes major: "P-->Q" | |
| 727 | and minor: "~P ==> R" "Q ==> R" | |
| 728 | shows "R" | |
| 729 | apply (rule excluded_middle [of P, THEN disjE]) | |
| 17589 | 730 | apply (iprover intro: minor major [THEN mp])+ | 
| 15411 | 731 | done | 
| 732 | ||
| 733 | (*This version of --> elimination works on Q before P. It works best for | |
| 734 | those cases in which P holds "almost everywhere". Can't install as | |
| 735 | default: would break old proofs.*) | |
| 736 | lemma impCE': | |
| 737 | assumes major: "P-->Q" | |
| 738 | and minor: "Q ==> R" "~P ==> R" | |
| 739 | shows "R" | |
| 740 | apply (rule excluded_middle [of P, THEN disjE]) | |
| 17589 | 741 | apply (iprover intro: minor major [THEN mp])+ | 
| 15411 | 742 | done | 
| 743 | ||
| 744 | (*Classical <-> elimination. *) | |
| 745 | lemma iffCE: | |
| 746 | assumes major: "P=Q" | |
| 747 | and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R" | |
| 748 | shows "R" | |
| 749 | apply (rule major [THEN iffE]) | |
| 17589 | 750 | apply (iprover intro: minor elim: impCE notE) | 
| 15411 | 751 | done | 
| 752 | ||
| 753 | lemma exCI: | |
| 754 | assumes "ALL x. ~P(x) ==> P(a)" | |
| 755 | shows "EX x. P(x)" | |
| 756 | apply (rule ccontr) | |
| 23553 | 757 | apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) | 
| 15411 | 758 | done | 
| 759 | ||
| 760 | ||
| 12386 | 761 | subsubsection {* Intuitionistic Reasoning *}
 | 
| 762 | ||
| 763 | lemma impE': | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 764 | assumes 1: "P --> Q" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 765 | and 2: "Q ==> R" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 766 | and 3: "P --> Q ==> P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 767 | shows R | 
| 12386 | 768 | proof - | 
| 769 | from 3 and 1 have P . | |
| 770 | with 1 have Q by (rule impE) | |
| 771 | with 2 show R . | |
| 772 | qed | |
| 773 | ||
| 774 | lemma allE': | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 775 | assumes 1: "ALL x. P x" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 776 | and 2: "P x ==> ALL x. P x ==> Q" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 777 | shows Q | 
| 12386 | 778 | proof - | 
| 779 | from 1 have "P x" by (rule spec) | |
| 780 | from this and 1 show Q by (rule 2) | |
| 781 | qed | |
| 782 | ||
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 783 | lemma notE': | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 784 | assumes 1: "~ P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 785 | and 2: "~ P ==> P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 786 | shows R | 
| 12386 | 787 | proof - | 
| 788 | from 2 and 1 have P . | |
| 789 | with 1 show R by (rule notE) | |
| 790 | qed | |
| 791 | ||
| 22444 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 792 | lemma TrueE: "True ==> P ==> P" . | 
| 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 793 | lemma notFalseE: "~ False ==> P ==> P" . | 
| 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 794 | |
| 22467 
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
 dixon parents: 
22445diff
changeset | 795 | lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE | 
| 15801 | 796 | and [Pure.intro!] = iffI conjI impI TrueI notI allI refl | 
| 797 | and [Pure.elim 2] = allE notE' impE' | |
| 798 | and [Pure.intro] = exI disjI2 disjI1 | |
| 12386 | 799 | |
| 800 | lemmas [trans] = trans | |
| 801 | and [sym] = sym not_sym | |
| 15801 | 802 | and [Pure.elim?] = iffD1 iffD2 impE | 
| 11750 | 803 | |
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 804 | use "Tools/hologic.ML" | 
| 23553 | 805 | |
| 11438 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 wenzelm parents: 
11432diff
changeset | 806 | |
| 11750 | 807 | subsubsection {* Atomizing meta-level connectives *}
 | 
| 808 | ||
| 28513 | 809 | axiomatization where | 
| 810 | eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*) | |
| 811 | ||
| 11750 | 812 | lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)" | 
| 12003 | 813 | proof | 
| 9488 | 814 | assume "!!x. P x" | 
| 23389 | 815 | then show "ALL x. P x" .. | 
| 9488 | 816 | next | 
| 817 | assume "ALL x. P x" | |
| 23553 | 818 | then show "!!x. P x" by (rule allE) | 
| 9488 | 819 | qed | 
| 820 | ||
| 11750 | 821 | lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)" | 
| 12003 | 822 | proof | 
| 9488 | 823 | assume r: "A ==> B" | 
| 10383 | 824 | show "A --> B" by (rule impI) (rule r) | 
| 9488 | 825 | next | 
| 826 | assume "A --> B" and A | |
| 23553 | 827 | then show B by (rule mp) | 
| 9488 | 828 | qed | 
| 829 | ||
| 14749 | 830 | lemma atomize_not: "(A ==> False) == Trueprop (~A)" | 
| 831 | proof | |
| 832 | assume r: "A ==> False" | |
| 833 | show "~A" by (rule notI) (rule r) | |
| 834 | next | |
| 835 | assume "~A" and A | |
| 23553 | 836 | then show False by (rule notE) | 
| 14749 | 837 | qed | 
| 838 | ||
| 11750 | 839 | lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)" | 
| 12003 | 840 | proof | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 841 | assume "x == y" | 
| 23553 | 842 | show "x = y" by (unfold `x == y`) (rule refl) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 843 | next | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 844 | assume "x = y" | 
| 23553 | 845 | then show "x == y" by (rule eq_reflection) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 846 | qed | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 847 | |
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 848 | lemma atomize_conj [atomize]: "(A &&& B) == Trueprop (A & B)" | 
| 12003 | 849 | proof | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 850 | assume conj: "A &&& B" | 
| 19121 | 851 | show "A & B" | 
| 852 | proof (rule conjI) | |
| 853 | from conj show A by (rule conjunctionD1) | |
| 854 | from conj show B by (rule conjunctionD2) | |
| 855 | qed | |
| 11953 | 856 | next | 
| 19121 | 857 | assume conj: "A & B" | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 858 | show "A &&& B" | 
| 19121 | 859 | proof - | 
| 860 | from conj show A .. | |
| 861 | from conj show B .. | |
| 11953 | 862 | qed | 
| 863 | qed | |
| 864 | ||
| 12386 | 865 | lemmas [symmetric, rulify] = atomize_all atomize_imp | 
| 18832 | 866 | and [symmetric, defn] = atomize_all atomize_imp atomize_eq | 
| 12386 | 867 | |
| 11750 | 868 | |
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 869 | subsubsection {* Atomizing elimination rules *}
 | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 870 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 871 | setup AtomizeElim.setup | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 872 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 873 | lemma atomize_exL[atomize_elim]: "(!!x. P x ==> Q) == ((EX x. P x) ==> Q)" | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 874 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 875 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 876 | lemma atomize_conjL[atomize_elim]: "(A ==> B ==> C) == (A & B ==> C)" | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 877 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 878 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 879 | lemma atomize_disjL[atomize_elim]: "((A ==> C) ==> (B ==> C) ==> C) == ((A | B ==> C) ==> C)" | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 880 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 881 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 882 | lemma atomize_elimL[atomize_elim]: "(!!B. (A ==> B) ==> B) == Trueprop A" .. | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 883 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 884 | |
| 20944 | 885 | subsection {* Package setup *}
 | 
| 886 | ||
| 11750 | 887 | subsubsection {* Classical Reasoner setup *}
 | 
| 9529 | 888 | |
| 26411 | 889 | lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R" | 
| 890 | by (rule classical) iprover | |
| 891 | ||
| 892 | lemma swap: "~ P ==> (~ R ==> P) ==> R" | |
| 893 | by (rule classical) iprover | |
| 894 | ||
| 20944 | 895 | lemma thin_refl: | 
| 896 | "\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" . | |
| 897 | ||
| 21151 | 898 | ML {*
 | 
| 899 | structure Hypsubst = HypsubstFun( | |
| 900 | struct | |
| 901 | structure Simplifier = Simplifier | |
| 21218 | 902 | val dest_eq = HOLogic.dest_eq | 
| 21151 | 903 | val dest_Trueprop = HOLogic.dest_Trueprop | 
| 904 | val dest_imp = HOLogic.dest_imp | |
| 26411 | 905 |   val eq_reflection = @{thm eq_reflection}
 | 
| 906 |   val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
 | |
| 907 |   val imp_intr = @{thm impI}
 | |
| 908 |   val rev_mp = @{thm rev_mp}
 | |
| 909 |   val subst = @{thm subst}
 | |
| 910 |   val sym = @{thm sym}
 | |
| 22129 | 911 |   val thin_refl = @{thm thin_refl};
 | 
| 27572 
67cd6ed76446
single_hyp(_meta)_subst_tac: Controlled substitution of a single hyp
 krauss parents: 
27338diff
changeset | 912 |   val prop_subst = @{lemma "PROP P t ==> PROP prop (x = t ==> PROP P x)"
 | 
| 
67cd6ed76446
single_hyp(_meta)_subst_tac: Controlled substitution of a single hyp
 krauss parents: 
27338diff
changeset | 913 | by (unfold prop_def) (drule eq_reflection, unfold)} | 
| 21151 | 914 | end); | 
| 21671 | 915 | open Hypsubst; | 
| 21151 | 916 | |
| 917 | structure Classical = ClassicalFun( | |
| 918 | struct | |
| 26411 | 919 |   val imp_elim = @{thm imp_elim}
 | 
| 920 |   val not_elim = @{thm notE}
 | |
| 921 |   val swap = @{thm swap}
 | |
| 922 |   val classical = @{thm classical}
 | |
| 21151 | 923 | val sizef = Drule.size_of_thm | 
| 924 | val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] | |
| 925 | end); | |
| 926 | ||
| 927 | structure BasicClassical: BASIC_CLASSICAL = Classical; | |
| 21671 | 928 | open BasicClassical; | 
| 22129 | 929 | |
| 27338 | 930 | ML_Antiquote.value "claset" | 
| 931 | (Scan.succeed "Classical.local_claset_of (ML_Context.the_local_context ())"); | |
| 24035 | 932 | |
| 933 | structure ResAtpset = NamedThmsFun(val name = "atp" val description = "ATP rules"); | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 934 | |
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 935 | structure ResBlacklist = NamedThmsFun(val name = "noatp" val description = "Theorems blacklisted for ATP"); | 
| 21151 | 936 | *} | 
| 937 | ||
| 25388 | 938 | text {*ResBlacklist holds theorems blacklisted to sledgehammer. 
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 939 | These theorems typically produce clauses that are prolific (match too many equality or | 
| 25388 | 940 | membership literals) and relate to seldom-used facts. Some duplicate other rules.*} | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 941 | |
| 21009 | 942 | setup {*
 | 
| 943 | let | |
| 944 | (*prevent substitution on bool*) | |
| 945 | fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso | |
| 946 |     Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false)
 | |
| 947 | (nth (Thm.prems_of thm) (i - 1)) then Hypsubst.hyp_subst_tac i thm else no_tac thm; | |
| 948 | in | |
| 21151 | 949 | Hypsubst.hypsubst_setup | 
| 950 | #> ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac) | |
| 951 | #> Classical.setup | |
| 952 | #> ResAtpset.setup | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 953 | #> ResBlacklist.setup | 
| 21009 | 954 | end | 
| 955 | *} | |
| 956 | ||
| 957 | declare iffI [intro!] | |
| 958 | and notI [intro!] | |
| 959 | and impI [intro!] | |
| 960 | and disjCI [intro!] | |
| 961 | and conjI [intro!] | |
| 962 | and TrueI [intro!] | |
| 963 | and refl [intro!] | |
| 964 | ||
| 965 | declare iffCE [elim!] | |
| 966 | and FalseE [elim!] | |
| 967 | and impCE [elim!] | |
| 968 | and disjE [elim!] | |
| 969 | and conjE [elim!] | |
| 970 | and conjE [elim!] | |
| 971 | ||
| 972 | declare ex_ex1I [intro!] | |
| 973 | and allI [intro!] | |
| 974 | and the_equality [intro] | |
| 975 | and exI [intro] | |
| 976 | ||
| 977 | declare exE [elim!] | |
| 978 | allE [elim] | |
| 979 | ||
| 22377 | 980 | ML {* val HOL_cs = @{claset} *}
 | 
| 19162 | 981 | |
| 20223 | 982 | lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P" | 
| 983 | apply (erule swap) | |
| 984 | apply (erule (1) meta_mp) | |
| 985 | done | |
| 10383 | 986 | |
| 18689 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 987 | declare ex_ex1I [rule del, intro! 2] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 988 | and ex1I [intro] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 989 | |
| 12386 | 990 | lemmas [intro?] = ext | 
| 991 | and [elim?] = ex1_implies_ex | |
| 11977 | 992 | |
| 20944 | 993 | (*Better then ex1E for classical reasoner: needs no quantifier duplication!*) | 
| 20973 | 994 | lemma alt_ex1E [elim!]: | 
| 20944 | 995 | assumes major: "\<exists>!x. P x" | 
| 996 | and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R" | |
| 997 | shows R | |
| 998 | apply (rule ex1E [OF major]) | |
| 999 | apply (rule prem) | |
| 22129 | 1000 | apply (tactic {* ares_tac @{thms allI} 1 *})+
 | 
| 1001 | apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *})
 | |
| 1002 | apply iprover | |
| 1003 | done | |
| 20944 | 1004 | |
| 21151 | 1005 | ML {*
 | 
| 25388 | 1006 | structure Blast = BlastFun | 
| 1007 | ( | |
| 21151 | 1008 | type claset = Classical.claset | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22481diff
changeset | 1009 |   val equality_name = @{const_name "op ="}
 | 
| 22993 | 1010 |   val not_name = @{const_name Not}
 | 
| 26411 | 1011 |   val notE = @{thm notE}
 | 
| 1012 |   val ccontr = @{thm ccontr}
 | |
| 21151 | 1013 | val contr_tac = Classical.contr_tac | 
| 1014 | val dup_intr = Classical.dup_intr | |
| 1015 | val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac | |
| 21671 | 1016 | val claset = Classical.claset | 
| 21151 | 1017 | val rep_cs = Classical.rep_cs | 
| 1018 | val cla_modifiers = Classical.cla_modifiers | |
| 1019 | val cla_meth' = Classical.cla_meth' | |
| 25388 | 1020 | ); | 
| 21671 | 1021 | val Blast_tac = Blast.Blast_tac; | 
| 1022 | val blast_tac = Blast.blast_tac; | |
| 20944 | 1023 | *} | 
| 1024 | ||
| 21151 | 1025 | setup Blast.setup | 
| 1026 | ||
| 20944 | 1027 | |
| 1028 | subsubsection {* Simplifier *}
 | |
| 12281 | 1029 | |
| 1030 | lemma eta_contract_eq: "(%s. f s) = f" .. | |
| 1031 | ||
| 1032 | lemma simp_thms: | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1033 | shows not_not: "(~ ~ P) = P" | 
| 15354 | 1034 | and Not_eq_iff: "((~P) = (~Q)) = (P = Q)" | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1035 | and | 
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1036 | "(P ~= Q) = (P = (~Q))" | 
| 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1037 | "(P | ~P) = True" "(~P | P) = True" | 
| 12281 | 1038 | "(x = x) = True" | 
| 20944 | 1039 | and not_True_eq_False: "(\<not> True) = False" | 
| 1040 | and not_False_eq_True: "(\<not> False) = True" | |
| 1041 | and | |
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1042 | "(~P) ~= P" "P ~= (~P)" | 
| 20944 | 1043 | "(True=P) = P" | 
| 1044 | and eq_True: "(P = True) = P" | |
| 1045 | and "(False=P) = (~P)" | |
| 1046 | and eq_False: "(P = False) = (\<not> P)" | |
| 1047 | and | |
| 12281 | 1048 | "(True --> P) = P" "(False --> P) = True" | 
| 1049 | "(P --> True) = True" "(P --> P) = True" | |
| 1050 | "(P --> False) = (~P)" "(P --> ~P) = (~P)" | |
| 1051 | "(P & True) = P" "(True & P) = P" | |
| 1052 | "(P & False) = False" "(False & P) = False" | |
| 1053 | "(P & P) = P" "(P & (P & Q)) = (P & Q)" | |
| 1054 | "(P & ~P) = False" "(~P & P) = False" | |
| 1055 | "(P | True) = True" "(True | P) = True" | |
| 1056 | "(P | False) = P" "(False | P) = P" | |
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1057 | "(P | P) = P" "(P | (P | Q)) = (P | Q)" and | 
| 12281 | 1058 | "(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x" | 
| 1059 |     -- {* needed for the one-point-rule quantifier simplification procs *}
 | |
| 1060 |     -- {* essential for termination!! *} and
 | |
| 1061 | "!!P. (EX x. x=t & P(x)) = P(t)" | |
| 1062 | "!!P. (EX x. t=x & P(x)) = P(t)" | |
| 1063 | "!!P. (ALL x. x=t --> P(x)) = P(t)" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1064 | "!!P. (ALL x. t=x --> P(x)) = P(t)" | 
| 17589 | 1065 | by (blast, blast, blast, blast, blast, iprover+) | 
| 13421 | 1066 | |
| 14201 | 1067 | lemma disj_absorb: "(A | A) = A" | 
| 1068 | by blast | |
| 1069 | ||
| 1070 | lemma disj_left_absorb: "(A | (A | B)) = (A | B)" | |
| 1071 | by blast | |
| 1072 | ||
| 1073 | lemma conj_absorb: "(A & A) = A" | |
| 1074 | by blast | |
| 1075 | ||
| 1076 | lemma conj_left_absorb: "(A & (A & B)) = (A & B)" | |
| 1077 | by blast | |
| 1078 | ||
| 12281 | 1079 | lemma eq_ac: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1080 | shows eq_commute: "(a=b) = (b=a)" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1081 | and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))" | 
| 17589 | 1082 | and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+) | 
| 1083 | lemma neq_commute: "(a~=b) = (b~=a)" by iprover | |
| 12281 | 1084 | |
| 1085 | lemma conj_comms: | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1086 | shows conj_commute: "(P&Q) = (Q&P)" | 
| 17589 | 1087 | and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+ | 
| 1088 | lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover | |
| 12281 | 1089 | |
| 19174 | 1090 | lemmas conj_ac = conj_commute conj_left_commute conj_assoc | 
| 1091 | ||
| 12281 | 1092 | lemma disj_comms: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1093 | shows disj_commute: "(P|Q) = (Q|P)" | 
| 17589 | 1094 | and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+ | 
| 1095 | lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover | |
| 12281 | 1096 | |
| 19174 | 1097 | lemmas disj_ac = disj_commute disj_left_commute disj_assoc | 
| 1098 | ||
| 17589 | 1099 | lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover | 
| 1100 | lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover | |
| 12281 | 1101 | |
| 17589 | 1102 | lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover | 
| 1103 | lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover | |
| 12281 | 1104 | |
| 17589 | 1105 | lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover | 
| 1106 | lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by iprover | |
| 1107 | lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover | |
| 12281 | 1108 | |
| 1109 | text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
 | |
| 1110 | lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast | |
| 1111 | lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast | |
| 1112 | ||
| 1113 | lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast | |
| 1114 | lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast | |
| 1115 | ||
| 21151 | 1116 | lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))" | 
| 1117 | by iprover | |
| 1118 | ||
| 17589 | 1119 | lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover | 
| 12281 | 1120 | lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast | 
| 1121 | lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast | |
| 1122 | lemma not_iff: "(P~=Q) = (P = (~Q))" by blast | |
| 1123 | lemma disj_not1: "(~P | Q) = (P --> Q)" by blast | |
| 1124 | lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
 | |
| 1125 | by blast | |
| 1126 | lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast | |
| 1127 | ||
| 17589 | 1128 | lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover | 
| 12281 | 1129 | |
| 1130 | ||
| 1131 | lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q" | |
| 1132 |   -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
 | |
| 1133 |   -- {* cases boil down to the same thing. *}
 | |
| 1134 | by blast | |
| 1135 | ||
| 1136 | lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast | |
| 1137 | lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast | |
| 17589 | 1138 | lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover | 
| 1139 | lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover | |
| 23403 | 1140 | lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast | 
| 12281 | 1141 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1142 | declare All_def [noatp] | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1143 | |
| 17589 | 1144 | lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover | 
| 1145 | lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover | |
| 12281 | 1146 | |
| 1147 | text {*
 | |
| 1148 |   \medskip The @{text "&"} congruence rule: not included by default!
 | |
| 1149 | May slow rewrite proofs down by as much as 50\% *} | |
| 1150 | ||
| 1151 | lemma conj_cong: | |
| 1152 | "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))" | |
| 17589 | 1153 | by iprover | 
| 12281 | 1154 | |
| 1155 | lemma rev_conj_cong: | |
| 1156 | "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))" | |
| 17589 | 1157 | by iprover | 
| 12281 | 1158 | |
| 1159 | text {* The @{text "|"} congruence rule: not included by default! *}
 | |
| 1160 | ||
| 1161 | lemma disj_cong: | |
| 1162 | "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))" | |
| 1163 | by blast | |
| 1164 | ||
| 1165 | ||
| 1166 | text {* \medskip if-then-else rules *}
 | |
| 1167 | ||
| 1168 | lemma if_True: "(if True then x else y) = x" | |
| 1169 | by (unfold if_def) blast | |
| 1170 | ||
| 1171 | lemma if_False: "(if False then x else y) = y" | |
| 1172 | by (unfold if_def) blast | |
| 1173 | ||
| 1174 | lemma if_P: "P ==> (if P then x else y) = x" | |
| 1175 | by (unfold if_def) blast | |
| 1176 | ||
| 1177 | lemma if_not_P: "~P ==> (if P then x else y) = y" | |
| 1178 | by (unfold if_def) blast | |
| 1179 | ||
| 1180 | lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" | |
| 1181 | apply (rule case_split [of Q]) | |
| 15481 | 1182 | apply (simplesubst if_P) | 
| 1183 | prefer 3 apply (simplesubst if_not_P, blast+) | |
| 12281 | 1184 | done | 
| 1185 | ||
| 1186 | lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))" | |
| 15481 | 1187 | by (simplesubst split_if, blast) | 
| 12281 | 1188 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1189 | lemmas if_splits [noatp] = split_if split_if_asm | 
| 12281 | 1190 | |
| 1191 | lemma if_cancel: "(if c then x else x) = x" | |
| 15481 | 1192 | by (simplesubst split_if, blast) | 
| 12281 | 1193 | |
| 1194 | lemma if_eq_cancel: "(if x = y then y else x) = x" | |
| 15481 | 1195 | by (simplesubst split_if, blast) | 
| 12281 | 1196 | |
| 1197 | lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))" | |
| 19796 | 1198 |   -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *}
 | 
| 12281 | 1199 | by (rule split_if) | 
| 1200 | ||
| 1201 | lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))" | |
| 19796 | 1202 |   -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *}
 | 
| 15481 | 1203 | apply (simplesubst split_if, blast) | 
| 12281 | 1204 | done | 
| 1205 | ||
| 17589 | 1206 | lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover | 
| 1207 | lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover | |
| 12281 | 1208 | |
| 15423 | 1209 | text {* \medskip let rules for simproc *}
 | 
| 1210 | ||
| 1211 | lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" | |
| 1212 | by (unfold Let_def) | |
| 1213 | ||
| 1214 | lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" | |
| 1215 | by (unfold Let_def) | |
| 1216 | ||
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1217 | text {*
 | 
| 16999 | 1218 | The following copy of the implication operator is useful for | 
| 1219 | fine-tuning congruence rules. It instructs the simplifier to simplify | |
| 1220 | its premise. | |
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1221 | *} | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1222 | |
| 17197 | 1223 | constdefs | 
| 1224 | simp_implies :: "[prop, prop] => prop" (infixr "=simp=>" 1) | |
| 28562 | 1225 | [code del]: "simp_implies \<equiv> op ==>" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1226 | |
| 18457 | 1227 | lemma simp_impliesI: | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1228 | assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1229 | shows "PROP P =simp=> PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1230 | apply (unfold simp_implies_def) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1231 | apply (rule PQ) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1232 | apply assumption | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1233 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1234 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1235 | lemma simp_impliesE: | 
| 25388 | 1236 | assumes PQ: "PROP P =simp=> PROP Q" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1237 | and P: "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1238 | and QR: "PROP Q \<Longrightarrow> PROP R" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1239 | shows "PROP R" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1240 | apply (rule QR) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1241 | apply (rule PQ [unfolded simp_implies_def]) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1242 | apply (rule P) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1243 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1244 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1245 | lemma simp_implies_cong: | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1246 | assumes PP' :"PROP P == PROP P'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1247 | and P'QQ': "PROP P' ==> (PROP Q == PROP Q')" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1248 | shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1249 | proof (unfold simp_implies_def, rule equal_intr_rule) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1250 | assume PQ: "PROP P \<Longrightarrow> PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1251 | and P': "PROP P'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1252 | from PP' [symmetric] and P' have "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1253 | by (rule equal_elim_rule1) | 
| 23553 | 1254 | then have "PROP Q" by (rule PQ) | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1255 | with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1256 | next | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1257 | assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1258 | and P: "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1259 | from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) | 
| 23553 | 1260 | then have "PROP Q'" by (rule P'Q') | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1261 | with P'QQ' [OF P', symmetric] show "PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1262 | by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1263 | qed | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1264 | |
| 20944 | 1265 | lemma uncurry: | 
| 1266 | assumes "P \<longrightarrow> Q \<longrightarrow> R" | |
| 1267 | shows "P \<and> Q \<longrightarrow> R" | |
| 23553 | 1268 | using assms by blast | 
| 20944 | 1269 | |
| 1270 | lemma iff_allI: | |
| 1271 | assumes "\<And>x. P x = Q x" | |
| 1272 | shows "(\<forall>x. P x) = (\<forall>x. Q x)" | |
| 23553 | 1273 | using assms by blast | 
| 20944 | 1274 | |
| 1275 | lemma iff_exI: | |
| 1276 | assumes "\<And>x. P x = Q x" | |
| 1277 | shows "(\<exists>x. P x) = (\<exists>x. Q x)" | |
| 23553 | 1278 | using assms by blast | 
| 20944 | 1279 | |
| 1280 | lemma all_comm: | |
| 1281 | "(\<forall>x y. P x y) = (\<forall>y x. P x y)" | |
| 1282 | by blast | |
| 1283 | ||
| 1284 | lemma ex_comm: | |
| 1285 | "(\<exists>x y. P x y) = (\<exists>y x. P x y)" | |
| 1286 | by blast | |
| 1287 | ||
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28856diff
changeset | 1288 | use "Tools/simpdata.ML" | 
| 21671 | 1289 | ML {* open Simpdata *}
 | 
| 1290 | ||
| 21151 | 1291 | setup {*
 | 
| 1292 | Simplifier.method_setup Splitter.split_modifiers | |
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26411diff
changeset | 1293 | #> Simplifier.map_simpset (K Simpdata.simpset_simprocs) | 
| 21151 | 1294 | #> Splitter.setup | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26411diff
changeset | 1295 | #> clasimp_setup | 
| 21151 | 1296 | #> EqSubst.setup | 
| 1297 | *} | |
| 1298 | ||
| 24035 | 1299 | text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *}
 | 
| 1300 | ||
| 1301 | simproc_setup neq ("x = y") = {* fn _ =>
 | |
| 1302 | let | |
| 1303 |   val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | |
| 1304 | fun is_neq eq lhs rhs thm = | |
| 1305 | (case Thm.prop_of thm of | |
| 1306 | _ $ (Not $ (eq' $ l' $ r')) => | |
| 1307 | Not = HOLogic.Not andalso eq' = eq andalso | |
| 1308 | r' aconv lhs andalso l' aconv rhs | |
| 1309 | | _ => false); | |
| 1310 | fun proc ss ct = | |
| 1311 | (case Thm.term_of ct of | |
| 1312 | eq $ lhs $ rhs => | |
| 1313 | (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of | |
| 1314 | SOME thm => SOME (thm RS neq_to_EQ_False) | |
| 1315 | | NONE => NONE) | |
| 1316 | | _ => NONE); | |
| 1317 | in proc end; | |
| 1318 | *} | |
| 1319 | ||
| 1320 | simproc_setup let_simp ("Let x f") = {*
 | |
| 1321 | let | |
| 1322 | val (f_Let_unfold, x_Let_unfold) = | |
| 28741 | 1323 |     let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_unfold}
 | 
| 24035 | 1324 |     in (cterm_of @{theory} f, cterm_of @{theory} x) end
 | 
| 1325 | val (f_Let_folded, x_Let_folded) = | |
| 28741 | 1326 |     let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_folded}
 | 
| 24035 | 1327 |     in (cterm_of @{theory} f, cterm_of @{theory} x) end;
 | 
| 1328 | val g_Let_folded = | |
| 28741 | 1329 |     let val [(_ $ _ $ (g $ _))] = prems_of @{thm Let_folded}
 | 
| 1330 |     in cterm_of @{theory} g end;
 | |
| 1331 | fun count_loose (Bound i) k = if i >= k then 1 else 0 | |
| 1332 | | count_loose (s $ t) k = count_loose s k + count_loose t k | |
| 1333 | | count_loose (Abs (_, _, t)) k = count_loose t (k + 1) | |
| 1334 | | count_loose _ _ = 0; | |
| 1335 |   fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) =
 | |
| 1336 | case t | |
| 1337 | of Abs (_, _, t') => count_loose t' 0 <= 1 | |
| 1338 | | _ => true; | |
| 1339 | in fn _ => fn ss => fn ct => if is_trivial_let (Thm.term_of ct) | |
| 1340 |   then SOME @{thm Let_def} (*no or one ocurrenc of bound variable*)
 | |
| 1341 | else let (*Norbert Schirmer's case*) | |
| 1342 | val ctxt = Simplifier.the_context ss; | |
| 1343 | val thy = ProofContext.theory_of ctxt; | |
| 1344 | val t = Thm.term_of ct; | |
| 1345 | val ([t'], ctxt') = Variable.import_terms false [t] ctxt; | |
| 1346 | in Option.map (hd o Variable.export ctxt' ctxt o single) | |
| 1347 |     (case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *)
 | |
| 1348 | if is_Free x orelse is_Bound x orelse is_Const x | |
| 1349 |       then SOME @{thm Let_def}
 | |
| 1350 | else | |
| 1351 | let | |
| 1352 | val n = case f of (Abs (x, _, _)) => x | _ => "x"; | |
| 1353 | val cx = cterm_of thy x; | |
| 1354 |           val {T = xT, ...} = rep_cterm cx;
 | |
| 1355 | val cf = cterm_of thy f; | |
| 1356 | val fx_g = Simplifier.rewrite ss (Thm.capply cf cx); | |
| 1357 | val (_ $ _ $ g) = prop_of fx_g; | |
| 1358 | val g' = abstract_over (x,g); | |
| 1359 | in (if (g aconv g') | |
| 1360 | then | |
| 1361 | let | |
| 1362 | val rl = | |
| 1363 |                     cterm_instantiate [(f_Let_unfold, cf), (x_Let_unfold, cx)] @{thm Let_unfold};
 | |
| 1364 | in SOME (rl OF [fx_g]) end | |
| 1365 | else if Term.betapply (f, x) aconv g then NONE (*avoid identity conversion*) | |
| 1366 | else let | |
| 1367 | val abs_g'= Abs (n,xT,g'); | |
| 1368 | val g'x = abs_g'$x; | |
| 1369 | val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x)); | |
| 1370 | val rl = cterm_instantiate | |
| 1371 | [(f_Let_folded, cterm_of thy f), (x_Let_folded, cx), | |
| 1372 | (g_Let_folded, cterm_of thy abs_g')] | |
| 1373 |                              @{thm Let_folded};
 | |
| 1374 | in SOME (rl OF [transitive fx_g g_g'x]) | |
| 1375 | end) | |
| 1376 | end | |
| 1377 | | _ => NONE) | |
| 1378 | end | |
| 1379 | end *} | |
| 24035 | 1380 | |
| 21151 | 1381 | lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 1382 | proof | |
| 23389 | 1383 | assume "True \<Longrightarrow> PROP P" | 
| 1384 | from this [OF TrueI] show "PROP P" . | |
| 21151 | 1385 | next | 
| 1386 | assume "PROP P" | |
| 23389 | 1387 | then show "PROP P" . | 
| 21151 | 1388 | qed | 
| 1389 | ||
| 1390 | lemma ex_simps: | |
| 1391 | "!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)" | |
| 1392 | "!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))" | |
| 1393 | "!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)" | |
| 1394 | "!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))" | |
| 1395 | "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)" | |
| 1396 | "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))" | |
| 1397 |   -- {* Miniscoping: pushing in existential quantifiers. *}
 | |
| 1398 | by (iprover | blast)+ | |
| 1399 | ||
| 1400 | lemma all_simps: | |
| 1401 | "!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)" | |
| 1402 | "!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))" | |
| 1403 | "!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)" | |
| 1404 | "!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))" | |
| 1405 | "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)" | |
| 1406 | "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))" | |
| 1407 |   -- {* Miniscoping: pushing in universal quantifiers. *}
 | |
| 1408 | by (iprover | blast)+ | |
| 15481 | 1409 | |
| 21671 | 1410 | lemmas [simp] = | 
| 1411 | triv_forall_equality (*prunes params*) | |
| 1412 | True_implies_equals (*prune asms `True'*) | |
| 1413 | if_True | |
| 1414 | if_False | |
| 1415 | if_cancel | |
| 1416 | if_eq_cancel | |
| 1417 | imp_disjL | |
| 20973 | 1418 | (*In general it seems wrong to add distributive laws by default: they | 
| 1419 | might cause exponential blow-up. But imp_disjL has been in for a while | |
| 1420 | and cannot be removed without affecting existing proofs. Moreover, | |
| 1421 | rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the | |
| 1422 | grounds that it allows simplification of R in the two cases.*) | |
| 21671 | 1423 | conj_assoc | 
| 1424 | disj_assoc | |
| 1425 | de_Morgan_conj | |
| 1426 | de_Morgan_disj | |
| 1427 | imp_disj1 | |
| 1428 | imp_disj2 | |
| 1429 | not_imp | |
| 1430 | disj_not1 | |
| 1431 | not_all | |
| 1432 | not_ex | |
| 1433 | cases_simp | |
| 1434 | the_eq_trivial | |
| 1435 | the_sym_eq_trivial | |
| 1436 | ex_simps | |
| 1437 | all_simps | |
| 1438 | simp_thms | |
| 1439 | ||
| 1440 | lemmas [cong] = imp_cong simp_implies_cong | |
| 1441 | lemmas [split] = split_if | |
| 20973 | 1442 | |
| 22377 | 1443 | ML {* val HOL_ss = @{simpset} *}
 | 
| 20973 | 1444 | |
| 20944 | 1445 | text {* Simplifies x assuming c and y assuming ~c *}
 | 
| 1446 | lemma if_cong: | |
| 1447 | assumes "b = c" | |
| 1448 | and "c \<Longrightarrow> x = u" | |
| 1449 | and "\<not> c \<Longrightarrow> y = v" | |
| 1450 | shows "(if b then x else y) = (if c then u else v)" | |
| 23553 | 1451 | unfolding if_def using assms by simp | 
| 20944 | 1452 | |
| 1453 | text {* Prevents simplification of x and y:
 | |
| 1454 | faster and allows the execution of functional programs. *} | |
| 1455 | lemma if_weak_cong [cong]: | |
| 1456 | assumes "b = c" | |
| 1457 | shows "(if b then x else y) = (if c then x else y)" | |
| 23553 | 1458 | using assms by (rule arg_cong) | 
| 20944 | 1459 | |
| 1460 | text {* Prevents simplification of t: much faster *}
 | |
| 1461 | lemma let_weak_cong: | |
| 1462 | assumes "a = b" | |
| 1463 | shows "(let x = a in t x) = (let x = b in t x)" | |
| 23553 | 1464 | using assms by (rule arg_cong) | 
| 20944 | 1465 | |
| 1466 | text {* To tidy up the result of a simproc.  Only the RHS will be simplified. *}
 | |
| 1467 | lemma eq_cong2: | |
| 1468 | assumes "u = u'" | |
| 1469 | shows "(t \<equiv> u) \<equiv> (t \<equiv> u')" | |
| 23553 | 1470 | using assms by simp | 
| 20944 | 1471 | |
| 1472 | lemma if_distrib: | |
| 1473 | "f (if c then x else y) = (if c then f x else f y)" | |
| 1474 | by simp | |
| 1475 | ||
| 1476 | text {* This lemma restricts the effect of the rewrite rule u=v to the left-hand
 | |
| 21502 | 1477 |   side of an equality.  Used in @{text "{Integ,Real}/simproc.ML"} *}
 | 
| 20944 | 1478 | lemma restrict_to_left: | 
| 1479 | assumes "x = y" | |
| 1480 | shows "(x = z) = (y = z)" | |
| 23553 | 1481 | using assms by simp | 
| 20944 | 1482 | |
| 17459 | 1483 | |
| 20944 | 1484 | subsubsection {* Generic cases and induction *}
 | 
| 17459 | 1485 | |
| 20944 | 1486 | text {* Rule projections: *}
 | 
| 18887 | 1487 | |
| 20944 | 1488 | ML {*
 | 
| 1489 | structure ProjectRule = ProjectRuleFun | |
| 25388 | 1490 | ( | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1491 |   val conjunct1 = @{thm conjunct1}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1492 |   val conjunct2 = @{thm conjunct2}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1493 |   val mp = @{thm mp}
 | 
| 25388 | 1494 | ) | 
| 17459 | 1495 | *} | 
| 1496 | ||
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1497 | constdefs | 
| 18457 | 1498 | induct_forall where "induct_forall P == \<forall>x. P x" | 
| 1499 | induct_implies where "induct_implies A B == A \<longrightarrow> B" | |
| 1500 | induct_equal where "induct_equal x y == x = y" | |
| 1501 | induct_conj where "induct_conj A B == A \<and> B" | |
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1502 | |
| 11989 | 1503 | lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))" | 
| 18457 | 1504 | by (unfold atomize_all induct_forall_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1505 | |
| 11989 | 1506 | lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)" | 
| 18457 | 1507 | by (unfold atomize_imp induct_implies_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1508 | |
| 11989 | 1509 | lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)" | 
| 18457 | 1510 | by (unfold atomize_eq induct_equal_def) | 
| 1511 | ||
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 1512 | lemma induct_conj_eq: "(A &&& B) == Trueprop (induct_conj A B)" | 
| 18457 | 1513 | by (unfold atomize_conj induct_conj_def) | 
| 1514 | ||
| 1515 | lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq | |
| 1516 | lemmas induct_rulify [symmetric, standard] = induct_atomize | |
| 1517 | lemmas induct_rulify_fallback = | |
| 1518 | induct_forall_def induct_implies_def induct_equal_def induct_conj_def | |
| 1519 | ||
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1520 | |
| 11989 | 1521 | lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) = | 
| 1522 | induct_conj (induct_forall A) (induct_forall B)" | |
| 17589 | 1523 | by (unfold induct_forall_def induct_conj_def) iprover | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1524 | |
| 11989 | 1525 | lemma induct_implies_conj: "induct_implies C (induct_conj A B) = | 
| 1526 | induct_conj (induct_implies C A) (induct_implies C B)" | |
| 17589 | 1527 | by (unfold induct_implies_def induct_conj_def) iprover | 
| 11989 | 1528 | |
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1529 | lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)" | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1530 | proof | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1531 | assume r: "induct_conj A B ==> PROP C" and A B | 
| 18457 | 1532 | show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`) | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1533 | next | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1534 | assume r: "A ==> B ==> PROP C" and "induct_conj A B" | 
| 18457 | 1535 | show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def]) | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1536 | qed | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1537 | |
| 11989 | 1538 | lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1539 | |
| 11989 | 1540 | hide const induct_forall induct_implies induct_equal induct_conj | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1541 | |
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1542 | text {* Method setup. *}
 | 
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1543 | |
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1544 | ML {*
 | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1545 | structure Induct = InductFun | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1546 | ( | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1547 |   val cases_default = @{thm case_split}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1548 |   val atomize = @{thms induct_atomize}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1549 |   val rulify = @{thms induct_rulify}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1550 |   val rulify_fallback = @{thms induct_rulify_fallback}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1551 | ) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1552 | *} | 
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1553 | |
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1554 | setup Induct.setup | 
| 18457 | 1555 | |
| 27326 
d3beec370964
moved src/HOL/Tools/induct_tacs.ML to src/Tools/induct_tacs.ML;
 wenzelm parents: 
27212diff
changeset | 1556 | use "~~/src/Tools/induct_tacs.ML" | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1557 | setup InductTacs.setup | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1558 | |
| 20944 | 1559 | |
| 28325 | 1560 | subsubsection {* Coherent logic *}
 | 
| 1561 | ||
| 1562 | ML {*
 | |
| 1563 | structure Coherent = CoherentFun | |
| 1564 | ( | |
| 1565 |   val atomize_elimL = @{thm atomize_elimL}
 | |
| 1566 |   val atomize_exL = @{thm atomize_exL}
 | |
| 1567 |   val atomize_conjL = @{thm atomize_conjL}
 | |
| 1568 |   val atomize_disjL = @{thm atomize_disjL}
 | |
| 1569 | val operator_names = | |
| 1570 |     [@{const_name "op |"}, @{const_name "op &"}, @{const_name "Ex"}]
 | |
| 1571 | ); | |
| 1572 | *} | |
| 1573 | ||
| 1574 | setup Coherent.setup | |
| 1575 | ||
| 1576 | ||
| 20944 | 1577 | subsection {* Other simple lemmas and lemma duplicates *}
 | 
| 1578 | ||
| 24166 | 1579 | lemma Let_0 [simp]: "Let 0 f = f 0" | 
| 1580 | unfolding Let_def .. | |
| 1581 | ||
| 1582 | lemma Let_1 [simp]: "Let 1 f = f 1" | |
| 1583 | unfolding Let_def .. | |
| 1584 | ||
| 20944 | 1585 | lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x" | 
| 1586 | by blast+ | |
| 1587 | ||
| 1588 | lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))" | |
| 1589 | apply (rule iffI) | |
| 1590 | apply (rule_tac a = "%x. THE y. P x y" in ex1I) | |
| 1591 | apply (fast dest!: theI') | |
| 1592 | apply (fast intro: ext the1_equality [symmetric]) | |
| 1593 | apply (erule ex1E) | |
| 1594 | apply (rule allI) | |
| 1595 | apply (rule ex1I) | |
| 1596 | apply (erule spec) | |
| 1597 | apply (erule_tac x = "%z. if z = x then y else f z" in allE) | |
| 1598 | apply (erule impE) | |
| 1599 | apply (rule allI) | |
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1600 | apply (case_tac "xa = x") | 
| 20944 | 1601 | apply (drule_tac [3] x = x in fun_cong, simp_all) | 
| 1602 | done | |
| 1603 | ||
| 1604 | lemma mk_left_commute: | |
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1605 | fixes f (infix "\<otimes>" 60) | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1606 | assumes a: "\<And>x y z. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" and | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1607 | c: "\<And>x y. x \<otimes> y = y \<otimes> x" | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1608 | shows "x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)" | 
| 20944 | 1609 | by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]]) | 
| 1610 | ||
| 22218 | 1611 | lemmas eq_sym_conv = eq_commute | 
| 1612 | ||
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1613 | lemma nnf_simps: | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1614 | "(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1615 | "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1616 | "(\<not> \<not>(P)) = P" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1617 | by blast+ | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1618 | |
| 21671 | 1619 | |
| 1620 | subsection {* Basic ML bindings *}
 | |
| 1621 | ||
| 1622 | ML {*
 | |
| 22129 | 1623 | val FalseE = @{thm FalseE}
 | 
| 1624 | val Let_def = @{thm Let_def}
 | |
| 1625 | val TrueI = @{thm TrueI}
 | |
| 1626 | val allE = @{thm allE}
 | |
| 1627 | val allI = @{thm allI}
 | |
| 1628 | val all_dupE = @{thm all_dupE}
 | |
| 1629 | val arg_cong = @{thm arg_cong}
 | |
| 1630 | val box_equals = @{thm box_equals}
 | |
| 1631 | val ccontr = @{thm ccontr}
 | |
| 1632 | val classical = @{thm classical}
 | |
| 1633 | val conjE = @{thm conjE}
 | |
| 1634 | val conjI = @{thm conjI}
 | |
| 1635 | val conjunct1 = @{thm conjunct1}
 | |
| 1636 | val conjunct2 = @{thm conjunct2}
 | |
| 1637 | val disjCI = @{thm disjCI}
 | |
| 1638 | val disjE = @{thm disjE}
 | |
| 1639 | val disjI1 = @{thm disjI1}
 | |
| 1640 | val disjI2 = @{thm disjI2}
 | |
| 1641 | val eq_reflection = @{thm eq_reflection}
 | |
| 1642 | val ex1E = @{thm ex1E}
 | |
| 1643 | val ex1I = @{thm ex1I}
 | |
| 1644 | val ex1_implies_ex = @{thm ex1_implies_ex}
 | |
| 1645 | val exE = @{thm exE}
 | |
| 1646 | val exI = @{thm exI}
 | |
| 1647 | val excluded_middle = @{thm excluded_middle}
 | |
| 1648 | val ext = @{thm ext}
 | |
| 1649 | val fun_cong = @{thm fun_cong}
 | |
| 1650 | val iffD1 = @{thm iffD1}
 | |
| 1651 | val iffD2 = @{thm iffD2}
 | |
| 1652 | val iffI = @{thm iffI}
 | |
| 1653 | val impE = @{thm impE}
 | |
| 1654 | val impI = @{thm impI}
 | |
| 1655 | val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
 | |
| 1656 | val mp = @{thm mp}
 | |
| 1657 | val notE = @{thm notE}
 | |
| 1658 | val notI = @{thm notI}
 | |
| 1659 | val not_all = @{thm not_all}
 | |
| 1660 | val not_ex = @{thm not_ex}
 | |
| 1661 | val not_iff = @{thm not_iff}
 | |
| 1662 | val not_not = @{thm not_not}
 | |
| 1663 | val not_sym = @{thm not_sym}
 | |
| 1664 | val refl = @{thm refl}
 | |
| 1665 | val rev_mp = @{thm rev_mp}
 | |
| 1666 | val spec = @{thm spec}
 | |
| 1667 | val ssubst = @{thm ssubst}
 | |
| 1668 | val subst = @{thm subst}
 | |
| 1669 | val sym = @{thm sym}
 | |
| 1670 | val trans = @{thm trans}
 | |
| 21671 | 1671 | *} | 
| 1672 | ||
| 1673 | ||
| 28400 | 1674 | subsection {* Code generator basics -- see further theory @{text "Code_Setup"} *}
 | 
| 1675 | ||
| 1676 | text {* Equality *}
 | |
| 24844 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1677 | |
| 26513 | 1678 | class eq = type + | 
| 1679 | fixes eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 28400 | 1680 | assumes eq_equals: "eq x y \<longleftrightarrow> x = y" | 
| 26513 | 1681 | begin | 
| 1682 | ||
| 28346 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1683 | lemma eq: "eq = (op =)" | 
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1684 | by (rule ext eq_equals)+ | 
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1685 | |
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1686 | lemma eq_refl: "eq x x \<longleftrightarrow> True" | 
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1687 | unfolding eq by rule+ | 
| 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1688 | |
| 26513 | 1689 | end | 
| 1690 | ||
| 28513 | 1691 | text {* Module setup *}
 | 
| 1692 | ||
| 1693 | use "~~/src/HOL/Tools/recfun_codegen.ML" | |
| 1694 | ||
| 1695 | setup {*
 | |
| 28663 
bd8438543bf2
code identifier namings are no longer imperative
 haftmann parents: 
28562diff
changeset | 1696 | Code_ML.setup | 
| 28513 | 1697 | #> Code_Haskell.setup | 
| 1698 | #> Nbe.setup | |
| 1699 | #> Codegen.setup | |
| 1700 | #> RecfunCodegen.setup | |
| 1701 | *} | |
| 1702 | ||
| 23247 | 1703 | |
| 22839 | 1704 | subsection {* Legacy tactics and ML bindings *}
 | 
| 21671 | 1705 | |
| 1706 | ML {*
 | |
| 1707 | fun strip_tac i = REPEAT (resolve_tac [impI, allI] i); | |
| 1708 | ||
| 1709 | (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *) | |
| 1710 | local | |
| 1711 |   fun wrong_prem (Const ("All", _) $ (Abs (_, _, t))) = wrong_prem t
 | |
| 1712 | | wrong_prem (Bound _) = true | |
| 1713 | | wrong_prem _ = false; | |
| 1714 | val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of); | |
| 1715 | in | |
| 1716 | fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]); | |
| 1717 | fun smp_tac j = EVERY'[dresolve_tac (smp j), atac]; | |
| 1718 | end; | |
| 22839 | 1719 | |
| 1720 | val all_conj_distrib = thm "all_conj_distrib"; | |
| 1721 | val all_simps = thms "all_simps"; | |
| 1722 | val atomize_not = thm "atomize_not"; | |
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1723 | val case_split = thm "case_split"; | 
| 22839 | 1724 | val cases_simp = thm "cases_simp"; | 
| 1725 | val choice_eq = thm "choice_eq" | |
| 1726 | val cong = thm "cong" | |
| 1727 | val conj_comms = thms "conj_comms"; | |
| 1728 | val conj_cong = thm "conj_cong"; | |
| 1729 | val de_Morgan_conj = thm "de_Morgan_conj"; | |
| 1730 | val de_Morgan_disj = thm "de_Morgan_disj"; | |
| 1731 | val disj_assoc = thm "disj_assoc"; | |
| 1732 | val disj_comms = thms "disj_comms"; | |
| 1733 | val disj_cong = thm "disj_cong"; | |
| 1734 | val eq_ac = thms "eq_ac"; | |
| 1735 | val eq_cong2 = thm "eq_cong2" | |
| 1736 | val Eq_FalseI = thm "Eq_FalseI"; | |
| 1737 | val Eq_TrueI = thm "Eq_TrueI"; | |
| 1738 | val Ex1_def = thm "Ex1_def" | |
| 1739 | val ex_disj_distrib = thm "ex_disj_distrib"; | |
| 1740 | val ex_simps = thms "ex_simps"; | |
| 1741 | val if_cancel = thm "if_cancel"; | |
| 1742 | val if_eq_cancel = thm "if_eq_cancel"; | |
| 1743 | val if_False = thm "if_False"; | |
| 1744 | val iff_conv_conj_imp = thm "iff_conv_conj_imp"; | |
| 1745 | val iff = thm "iff" | |
| 1746 | val if_splits = thms "if_splits"; | |
| 1747 | val if_True = thm "if_True"; | |
| 1748 | val if_weak_cong = thm "if_weak_cong" | |
| 1749 | val imp_all = thm "imp_all"; | |
| 1750 | val imp_cong = thm "imp_cong"; | |
| 1751 | val imp_conjL = thm "imp_conjL"; | |
| 1752 | val imp_conjR = thm "imp_conjR"; | |
| 1753 | val imp_conv_disj = thm "imp_conv_disj"; | |
| 1754 | val simp_implies_def = thm "simp_implies_def"; | |
| 1755 | val simp_thms = thms "simp_thms"; | |
| 1756 | val split_if = thm "split_if"; | |
| 1757 | val the1_equality = thm "the1_equality" | |
| 1758 | val theI = thm "theI" | |
| 1759 | val theI' = thm "theI'" | |
| 1760 | val True_implies_equals = thm "True_implies_equals"; | |
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1761 | val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"})
 | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1762 | |
| 21671 | 1763 | *} | 
| 1764 | ||
| 14357 | 1765 | end |