| author | wenzelm | 
| Sun, 13 Jan 2013 22:05:47 +0100 | |
| changeset 50870 | b8606dd29783 | 
| parent 50615 | 965d4c108584 | 
| child 51387 | dbc4a77488b2 | 
| permissions | -rw-r--r-- | 
| 21249 | 1 | (* Title: HOL/Lattices.thy | 
| 2 | Author: Tobias Nipkow | |
| 3 | *) | |
| 4 | ||
| 22454 | 5 | header {* Abstract lattices *}
 | 
| 21249 | 6 | |
| 7 | theory Lattices | |
| 35121 | 8 | imports Orderings Groups | 
| 21249 | 9 | begin | 
| 10 | ||
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 11 | subsection {* Abstract semilattice *}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 12 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 13 | text {*
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 14 | This locales provide a basic structure for interpretation into | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 15 | bigger structures; extensions require careful thinking, otherwise | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 16 | undesired effects may occur due to interpretation. | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 17 | *} | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 18 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 19 | locale semilattice = abel_semigroup + | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 20 | assumes idem [simp]: "f a a = a" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 21 | begin | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 22 | |
| 50615 | 23 | lemma left_idem [simp]: "f a (f a b) = f a b" | 
| 24 | by (simp add: assoc [symmetric]) | |
| 25 | ||
| 26 | lemma right_idem [simp]: "f (f a b) b = f a b" | |
| 27 | by (simp add: assoc) | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 28 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 29 | end | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 30 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 31 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 32 | subsection {* Idempotent semigroup *}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 33 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 34 | class ab_semigroup_idem_mult = ab_semigroup_mult + | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 35 | assumes mult_idem: "x * x = x" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 36 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 37 | sublocale ab_semigroup_idem_mult < times!: semilattice times proof | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 38 | qed (fact mult_idem) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 39 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 40 | context ab_semigroup_idem_mult | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 41 | begin | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 42 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 43 | lemmas mult_left_idem = times.left_idem | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 44 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 45 | end | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 46 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 47 | |
| 46691 | 48 | subsection {* Syntactic infimum and supremum operations *}
 | 
| 41082 | 49 | |
| 44845 | 50 | class inf = | 
| 51 | fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) | |
| 25206 | 52 | |
| 44845 | 53 | class sup = | 
| 54 | fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) | |
| 55 | ||
| 46691 | 56 | |
| 57 | subsection {* Concrete lattices *}
 | |
| 58 | ||
| 59 | notation | |
| 60 | less_eq (infix "\<sqsubseteq>" 50) and | |
| 61 | less (infix "\<sqsubset>" 50) | |
| 62 | ||
| 44845 | 63 | class semilattice_inf = order + inf + | 
| 22737 | 64 | assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" | 
| 65 | and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" | |
| 21733 | 66 | and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" | 
| 21249 | 67 | |
| 44845 | 68 | class semilattice_sup = order + sup + | 
| 22737 | 69 | assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" | 
| 70 | and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" | |
| 21733 | 71 | and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" | 
| 26014 | 72 | begin | 
| 73 | ||
| 74 | text {* Dual lattice *}
 | |
| 75 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 76 | lemma dual_semilattice: | 
| 44845 | 77 | "class.semilattice_inf sup greater_eq greater" | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 78 | by (rule class.semilattice_inf.intro, rule dual_order) | 
| 27682 | 79 | (unfold_locales, simp_all add: sup_least) | 
| 26014 | 80 | |
| 81 | end | |
| 21249 | 82 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 83 | class lattice = semilattice_inf + semilattice_sup | 
| 21249 | 84 | |
| 25382 | 85 | |
| 28562 | 86 | subsubsection {* Intro and elim rules*}
 | 
| 21733 | 87 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 88 | context semilattice_inf | 
| 21733 | 89 | begin | 
| 21249 | 90 | |
| 32064 | 91 | lemma le_infI1: | 
| 92 | "a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | |
| 93 | by (rule order_trans) auto | |
| 21249 | 94 | |
| 32064 | 95 | lemma le_infI2: | 
| 96 | "b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | |
| 97 | by (rule order_trans) auto | |
| 21733 | 98 | |
| 32064 | 99 | lemma le_infI: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" | 
| 36008 | 100 | by (rule inf_greatest) (* FIXME: duplicate lemma *) | 
| 21249 | 101 | |
| 32064 | 102 | lemma le_infE: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" | 
| 36008 | 103 | by (blast intro: order_trans inf_le1 inf_le2) | 
| 21249 | 104 | |
| 21734 | 105 | lemma le_inf_iff [simp]: | 
| 32064 | 106 | "x \<sqsubseteq> y \<sqinter> z \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<sqsubseteq> z" | 
| 107 | by (blast intro: le_infI elim: le_infE) | |
| 21733 | 108 | |
| 32064 | 109 | lemma le_iff_inf: | 
| 110 | "x \<sqsubseteq> y \<longleftrightarrow> x \<sqinter> y = x" | |
| 111 | by (auto intro: le_infI1 antisym dest: eq_iff [THEN iffD1]) | |
| 21249 | 112 | |
| 43753 | 113 | lemma inf_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> a \<sqinter> b \<sqsubseteq> c \<sqinter> d" | 
| 36008 | 114 | by (fast intro: inf_greatest le_infI1 le_infI2) | 
| 115 | ||
| 25206 | 116 | lemma mono_inf: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 117 | fixes f :: "'a \<Rightarrow> 'b\<Colon>semilattice_inf" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 118 | shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<sqsubseteq> f A \<sqinter> f B" | 
| 25206 | 119 | by (auto simp add: mono_def intro: Lattices.inf_greatest) | 
| 21733 | 120 | |
| 25206 | 121 | end | 
| 21733 | 122 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 123 | context semilattice_sup | 
| 21733 | 124 | begin | 
| 21249 | 125 | |
| 32064 | 126 | lemma le_supI1: | 
| 127 | "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | |
| 25062 | 128 | by (rule order_trans) auto | 
| 21249 | 129 | |
| 32064 | 130 | lemma le_supI2: | 
| 131 | "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | |
| 25062 | 132 | by (rule order_trans) auto | 
| 21733 | 133 | |
| 32064 | 134 | lemma le_supI: | 
| 135 | "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" | |
| 36008 | 136 | by (rule sup_least) (* FIXME: duplicate lemma *) | 
| 21249 | 137 | |
| 32064 | 138 | lemma le_supE: | 
| 139 | "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 36008 | 140 | by (blast intro: order_trans sup_ge1 sup_ge2) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 141 | |
| 32064 | 142 | lemma le_sup_iff [simp]: | 
| 143 | "x \<squnion> y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<and> y \<sqsubseteq> z" | |
| 144 | by (blast intro: le_supI elim: le_supE) | |
| 21733 | 145 | |
| 32064 | 146 | lemma le_iff_sup: | 
| 147 | "x \<sqsubseteq> y \<longleftrightarrow> x \<squnion> y = y" | |
| 148 | by (auto intro: le_supI2 antisym dest: eq_iff [THEN iffD1]) | |
| 21734 | 149 | |
| 43753 | 150 | lemma sup_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> a \<squnion> b \<sqsubseteq> c \<squnion> d" | 
| 36008 | 151 | by (fast intro: sup_least le_supI1 le_supI2) | 
| 152 | ||
| 25206 | 153 | lemma mono_sup: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 154 | fixes f :: "'a \<Rightarrow> 'b\<Colon>semilattice_sup" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 155 | shows "mono f \<Longrightarrow> f A \<squnion> f B \<sqsubseteq> f (A \<squnion> B)" | 
| 25206 | 156 | by (auto simp add: mono_def intro: Lattices.sup_least) | 
| 21733 | 157 | |
| 25206 | 158 | end | 
| 23878 | 159 | |
| 21733 | 160 | |
| 32064 | 161 | subsubsection {* Equational laws *}
 | 
| 21249 | 162 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 163 | sublocale semilattice_inf < inf!: semilattice inf | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 164 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 165 | fix a b c | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 166 | show "(a \<sqinter> b) \<sqinter> c = a \<sqinter> (b \<sqinter> c)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 167 | by (rule antisym) (auto intro: le_infI1 le_infI2) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 168 | show "a \<sqinter> b = b \<sqinter> a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 169 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 170 | show "a \<sqinter> a = a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 171 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 172 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 173 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 174 | context semilattice_inf | 
| 21733 | 175 | begin | 
| 176 | ||
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 177 | lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 178 | by (fact inf.assoc) | 
| 21733 | 179 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 180 | lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 181 | by (fact inf.commute) | 
| 21733 | 182 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 183 | lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 184 | by (fact inf.left_commute) | 
| 21733 | 185 | |
| 44921 | 186 | lemma inf_idem: "x \<sqinter> x = x" | 
| 187 | by (fact inf.idem) (* already simp *) | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 188 | |
| 50615 | 189 | lemma inf_left_idem: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" | 
| 190 | by (fact inf.left_idem) (* already simp *) | |
| 191 | ||
| 192 | lemma inf_right_idem: "(x \<sqinter> y) \<sqinter> y = x \<sqinter> y" | |
| 193 | by (fact inf.right_idem) (* already simp *) | |
| 21733 | 194 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 195 | lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" | 
| 32064 | 196 | by (rule antisym) auto | 
| 21733 | 197 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 198 | lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" | 
| 32064 | 199 | by (rule antisym) auto | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 200 | |
| 32064 | 201 | lemmas inf_aci = inf_commute inf_assoc inf_left_commute inf_left_idem | 
| 21733 | 202 | |
| 203 | end | |
| 204 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 205 | sublocale semilattice_sup < sup!: semilattice sup | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 206 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 207 | fix a b c | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 208 | show "(a \<squnion> b) \<squnion> c = a \<squnion> (b \<squnion> c)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 209 | by (rule antisym) (auto intro: le_supI1 le_supI2) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 210 | show "a \<squnion> b = b \<squnion> a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 211 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 212 | show "a \<squnion> a = a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 213 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 214 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 215 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 216 | context semilattice_sup | 
| 21733 | 217 | begin | 
| 21249 | 218 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 219 | lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 220 | by (fact sup.assoc) | 
| 21733 | 221 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 222 | lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 223 | by (fact sup.commute) | 
| 21733 | 224 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 225 | lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 226 | by (fact sup.left_commute) | 
| 21733 | 227 | |
| 44921 | 228 | lemma sup_idem: "x \<squnion> x = x" | 
| 229 | by (fact sup.idem) (* already simp *) | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 230 | |
| 44918 | 231 | lemma sup_left_idem [simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 232 | by (fact sup.left_idem) | 
| 21733 | 233 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 234 | lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" | 
| 32064 | 235 | by (rule antisym) auto | 
| 21733 | 236 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 237 | lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" | 
| 32064 | 238 | by (rule antisym) auto | 
| 21249 | 239 | |
| 32064 | 240 | lemmas sup_aci = sup_commute sup_assoc sup_left_commute sup_left_idem | 
| 21733 | 241 | |
| 242 | end | |
| 21249 | 243 | |
| 21733 | 244 | context lattice | 
| 245 | begin | |
| 246 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 247 | lemma dual_lattice: | 
| 44845 | 248 | "class.lattice sup (op \<ge>) (op >) inf" | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 249 | by (rule class.lattice.intro, rule dual_semilattice, rule class.semilattice_sup.intro, rule dual_order) | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 250 | (unfold_locales, auto) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 251 | |
| 44918 | 252 | lemma inf_sup_absorb [simp]: "x \<sqinter> (x \<squnion> y) = x" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 253 | by (blast intro: antisym inf_le1 inf_greatest sup_ge1) | 
| 21733 | 254 | |
| 44918 | 255 | lemma sup_inf_absorb [simp]: "x \<squnion> (x \<sqinter> y) = x" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 256 | by (blast intro: antisym sup_ge1 sup_least inf_le1) | 
| 21733 | 257 | |
| 32064 | 258 | lemmas inf_sup_aci = inf_aci sup_aci | 
| 21734 | 259 | |
| 22454 | 260 | lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 | 
| 261 | ||
| 21734 | 262 | text{* Towards distributivity *}
 | 
| 21249 | 263 | |
| 21734 | 264 | lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 32064 | 265 | by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) | 
| 21734 | 266 | |
| 267 | lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" | |
| 32064 | 268 | by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) | 
| 21734 | 269 | |
| 270 | text{* If you have one of them, you have them all. *}
 | |
| 21249 | 271 | |
| 21733 | 272 | lemma distrib_imp1: | 
| 21249 | 273 | assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 274 | shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | |
| 275 | proof- | |
| 44918 | 276 | have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by simp | 
| 277 | also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" | |
| 278 | by (simp add: D inf_commute sup_assoc del: sup_inf_absorb) | |
| 21249 | 279 | also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" | 
| 44919 | 280 | by(simp add: inf_commute) | 
| 21249 | 281 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) | 
| 282 | finally show ?thesis . | |
| 283 | qed | |
| 284 | ||
| 21733 | 285 | lemma distrib_imp2: | 
| 21249 | 286 | assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 287 | shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | |
| 288 | proof- | |
| 44918 | 289 | have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by simp | 
| 290 | also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" | |
| 291 | by (simp add: D sup_commute inf_assoc del: inf_sup_absorb) | |
| 21249 | 292 | also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" | 
| 44919 | 293 | by(simp add: sup_commute) | 
| 21249 | 294 | also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) | 
| 295 | finally show ?thesis . | |
| 296 | qed | |
| 297 | ||
| 21733 | 298 | end | 
| 21249 | 299 | |
| 32568 | 300 | subsubsection {* Strict order *}
 | 
| 301 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 302 | context semilattice_inf | 
| 32568 | 303 | begin | 
| 304 | ||
| 305 | lemma less_infI1: | |
| 306 | "a \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 307 | by (auto simp add: less_le inf_absorb1 intro: le_infI1) | 
| 32568 | 308 | |
| 309 | lemma less_infI2: | |
| 310 | "b \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 311 | by (auto simp add: less_le inf_absorb2 intro: le_infI2) | 
| 32568 | 312 | |
| 313 | end | |
| 314 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 315 | context semilattice_sup | 
| 32568 | 316 | begin | 
| 317 | ||
| 318 | lemma less_supI1: | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 319 | "x \<sqsubset> a \<Longrightarrow> x \<sqsubset> a \<squnion> b" | 
| 44921 | 320 | using dual_semilattice | 
| 321 | by (rule semilattice_inf.less_infI1) | |
| 32568 | 322 | |
| 323 | lemma less_supI2: | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 324 | "x \<sqsubset> b \<Longrightarrow> x \<sqsubset> a \<squnion> b" | 
| 44921 | 325 | using dual_semilattice | 
| 326 | by (rule semilattice_inf.less_infI2) | |
| 32568 | 327 | |
| 328 | end | |
| 329 | ||
| 21249 | 330 | |
| 24164 | 331 | subsection {* Distributive lattices *}
 | 
| 21249 | 332 | |
| 22454 | 333 | class distrib_lattice = lattice + | 
| 21249 | 334 | assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 335 | ||
| 21733 | 336 | context distrib_lattice | 
| 337 | begin | |
| 338 | ||
| 339 | lemma sup_inf_distrib2: | |
| 44921 | 340 | "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" | 
| 341 | by (simp add: sup_commute sup_inf_distrib1) | |
| 21249 | 342 | |
| 21733 | 343 | lemma inf_sup_distrib1: | 
| 44921 | 344 | "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 345 | by (rule distrib_imp2 [OF sup_inf_distrib1]) | |
| 21249 | 346 | |
| 21733 | 347 | lemma inf_sup_distrib2: | 
| 44921 | 348 | "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" | 
| 349 | by (simp add: inf_commute inf_sup_distrib1) | |
| 21249 | 350 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 351 | lemma dual_distrib_lattice: | 
| 44845 | 352 | "class.distrib_lattice sup (op \<ge>) (op >) inf" | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 353 | by (rule class.distrib_lattice.intro, rule dual_lattice) | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 354 | (unfold_locales, fact inf_sup_distrib1) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 355 | |
| 36008 | 356 | lemmas sup_inf_distrib = | 
| 357 | sup_inf_distrib1 sup_inf_distrib2 | |
| 358 | ||
| 359 | lemmas inf_sup_distrib = | |
| 360 | inf_sup_distrib1 inf_sup_distrib2 | |
| 361 | ||
| 21733 | 362 | lemmas distrib = | 
| 21249 | 363 | sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 | 
| 364 | ||
| 21733 | 365 | end | 
| 366 | ||
| 21249 | 367 | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 368 | subsection {* Bounded lattices and boolean algebras *}
 | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 369 | |
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 370 | class bounded_lattice_bot = lattice + bot | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 371 | begin | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 372 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 373 | lemma inf_bot_left [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 374 | "\<bottom> \<sqinter> x = \<bottom>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 375 | by (rule inf_absorb1) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 376 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 377 | lemma inf_bot_right [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 378 | "x \<sqinter> \<bottom> = \<bottom>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 379 | by (rule inf_absorb2) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 380 | |
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 381 | lemma sup_bot_left [simp]: | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 382 | "\<bottom> \<squnion> x = x" | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 383 | by (rule sup_absorb2) simp | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 384 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 385 | lemma sup_bot_right [simp]: | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 386 | "x \<squnion> \<bottom> = x" | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 387 | by (rule sup_absorb1) simp | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 388 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 389 | lemma sup_eq_bot_iff [simp]: | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 390 | "x \<squnion> y = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 391 | by (simp add: eq_iff) | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 392 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 393 | end | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 394 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 395 | class bounded_lattice_top = lattice + top | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 396 | begin | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 397 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 398 | lemma sup_top_left [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 399 | "\<top> \<squnion> x = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 400 | by (rule sup_absorb1) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 401 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 402 | lemma sup_top_right [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 403 | "x \<squnion> \<top> = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 404 | by (rule sup_absorb2) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 405 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 406 | lemma inf_top_left [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 407 | "\<top> \<sqinter> x = x" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 408 | by (rule inf_absorb2) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 409 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 410 | lemma inf_top_right [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 411 | "x \<sqinter> \<top> = x" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 412 | by (rule inf_absorb1) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 413 | |
| 36008 | 414 | lemma inf_eq_top_iff [simp]: | 
| 415 | "x \<sqinter> y = \<top> \<longleftrightarrow> x = \<top> \<and> y = \<top>" | |
| 416 | by (simp add: eq_iff) | |
| 32568 | 417 | |
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 418 | end | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 419 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 420 | class bounded_lattice = bounded_lattice_bot + bounded_lattice_top | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 421 | begin | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 422 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 423 | lemma dual_bounded_lattice: | 
| 44845 | 424 | "class.bounded_lattice sup greater_eq greater inf \<top> \<bottom>" | 
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 425 | by unfold_locales (auto simp add: less_le_not_le) | 
| 32568 | 426 | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 427 | end | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 428 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 429 | class boolean_algebra = distrib_lattice + bounded_lattice + minus + uminus + | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 430 | assumes inf_compl_bot: "x \<sqinter> - x = \<bottom>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 431 | and sup_compl_top: "x \<squnion> - x = \<top>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 432 | assumes diff_eq: "x - y = x \<sqinter> - y" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 433 | begin | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 434 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 435 | lemma dual_boolean_algebra: | 
| 44845 | 436 | "class.boolean_algebra (\<lambda>x y. x \<squnion> - y) uminus sup greater_eq greater inf \<top> \<bottom>" | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 437 | by (rule class.boolean_algebra.intro, rule dual_bounded_lattice, rule dual_distrib_lattice) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 438 | (unfold_locales, auto simp add: inf_compl_bot sup_compl_top diff_eq) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 439 | |
| 44918 | 440 | lemma compl_inf_bot [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 441 | "- x \<sqinter> x = \<bottom>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 442 | by (simp add: inf_commute inf_compl_bot) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 443 | |
| 44918 | 444 | lemma compl_sup_top [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 445 | "- x \<squnion> x = \<top>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 446 | by (simp add: sup_commute sup_compl_top) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 447 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 448 | lemma compl_unique: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 449 | assumes "x \<sqinter> y = \<bottom>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 450 | and "x \<squnion> y = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 451 | shows "- x = y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 452 | proof - | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 453 | have "(x \<sqinter> - x) \<squnion> (- x \<sqinter> y) = (x \<sqinter> y) \<squnion> (- x \<sqinter> y)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 454 | using inf_compl_bot assms(1) by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 455 | then have "(- x \<sqinter> x) \<squnion> (- x \<sqinter> y) = (y \<sqinter> x) \<squnion> (y \<sqinter> - x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 456 | by (simp add: inf_commute) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 457 | then have "- x \<sqinter> (x \<squnion> y) = y \<sqinter> (x \<squnion> - x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 458 | by (simp add: inf_sup_distrib1) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 459 | then have "- x \<sqinter> \<top> = y \<sqinter> \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 460 | using sup_compl_top assms(2) by simp | 
| 34209 | 461 | then show "- x = y" by simp | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 462 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 463 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 464 | lemma double_compl [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 465 | "- (- x) = x" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 466 | using compl_inf_bot compl_sup_top by (rule compl_unique) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 467 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 468 | lemma compl_eq_compl_iff [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 469 | "- x = - y \<longleftrightarrow> x = y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 470 | proof | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 471 | assume "- x = - y" | 
| 36008 | 472 | then have "- (- x) = - (- y)" by (rule arg_cong) | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 473 | then show "x = y" by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 474 | next | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 475 | assume "x = y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 476 | then show "- x = - y" by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 477 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 478 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 479 | lemma compl_bot_eq [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 480 | "- \<bottom> = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 481 | proof - | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 482 | from sup_compl_top have "\<bottom> \<squnion> - \<bottom> = \<top>" . | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 483 | then show ?thesis by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 484 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 485 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 486 | lemma compl_top_eq [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 487 | "- \<top> = \<bottom>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 488 | proof - | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 489 | from inf_compl_bot have "\<top> \<sqinter> - \<top> = \<bottom>" . | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 490 | then show ?thesis by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 491 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 492 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 493 | lemma compl_inf [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 494 | "- (x \<sqinter> y) = - x \<squnion> - y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 495 | proof (rule compl_unique) | 
| 36008 | 496 | have "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = (y \<sqinter> (x \<sqinter> - x)) \<squnion> (x \<sqinter> (y \<sqinter> - y))" | 
| 497 | by (simp only: inf_sup_distrib inf_aci) | |
| 498 | then show "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = \<bottom>" | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 499 | by (simp add: inf_compl_bot) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 500 | next | 
| 36008 | 501 | have "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = (- y \<squnion> (x \<squnion> - x)) \<sqinter> (- x \<squnion> (y \<squnion> - y))" | 
| 502 | by (simp only: sup_inf_distrib sup_aci) | |
| 503 | then show "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = \<top>" | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 504 | by (simp add: sup_compl_top) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 505 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 506 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 507 | lemma compl_sup [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 508 | "- (x \<squnion> y) = - x \<sqinter> - y" | 
| 44921 | 509 | using dual_boolean_algebra | 
| 510 | by (rule boolean_algebra.compl_inf) | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 511 | |
| 36008 | 512 | lemma compl_mono: | 
| 513 | "x \<sqsubseteq> y \<Longrightarrow> - y \<sqsubseteq> - x" | |
| 514 | proof - | |
| 515 | assume "x \<sqsubseteq> y" | |
| 516 | then have "x \<squnion> y = y" by (simp only: le_iff_sup) | |
| 517 | then have "- (x \<squnion> y) = - y" by simp | |
| 518 | then have "- x \<sqinter> - y = - y" by simp | |
| 519 | then have "- y \<sqinter> - x = - y" by (simp only: inf_commute) | |
| 520 | then show "- y \<sqsubseteq> - x" by (simp only: le_iff_inf) | |
| 521 | qed | |
| 522 | ||
| 44918 | 523 | lemma compl_le_compl_iff [simp]: | 
| 43753 | 524 | "- x \<sqsubseteq> - y \<longleftrightarrow> y \<sqsubseteq> x" | 
| 43873 | 525 | by (auto dest: compl_mono) | 
| 526 | ||
| 527 | lemma compl_le_swap1: | |
| 528 | assumes "y \<sqsubseteq> - x" shows "x \<sqsubseteq> -y" | |
| 529 | proof - | |
| 530 | from assms have "- (- x) \<sqsubseteq> - y" by (simp only: compl_le_compl_iff) | |
| 531 | then show ?thesis by simp | |
| 532 | qed | |
| 533 | ||
| 534 | lemma compl_le_swap2: | |
| 535 | assumes "- y \<sqsubseteq> x" shows "- x \<sqsubseteq> y" | |
| 536 | proof - | |
| 537 | from assms have "- x \<sqsubseteq> - (- y)" by (simp only: compl_le_compl_iff) | |
| 538 | then show ?thesis by simp | |
| 539 | qed | |
| 540 | ||
| 541 | lemma compl_less_compl_iff: (* TODO: declare [simp] ? *) | |
| 542 | "- x \<sqsubset> - y \<longleftrightarrow> y \<sqsubset> x" | |
| 44919 | 543 | by (auto simp add: less_le) | 
| 43873 | 544 | |
| 545 | lemma compl_less_swap1: | |
| 546 | assumes "y \<sqsubset> - x" shows "x \<sqsubset> - y" | |
| 547 | proof - | |
| 548 | from assms have "- (- x) \<sqsubset> - y" by (simp only: compl_less_compl_iff) | |
| 549 | then show ?thesis by simp | |
| 550 | qed | |
| 551 | ||
| 552 | lemma compl_less_swap2: | |
| 553 | assumes "- y \<sqsubset> x" shows "- x \<sqsubset> y" | |
| 554 | proof - | |
| 555 | from assms have "- x \<sqsubset> - (- y)" by (simp only: compl_less_compl_iff) | |
| 556 | then show ?thesis by simp | |
| 557 | qed | |
| 36008 | 558 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 559 | end | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 560 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 561 | |
| 22454 | 562 | subsection {* Uniqueness of inf and sup *}
 | 
| 563 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 564 | lemma (in semilattice_inf) inf_unique: | 
| 22454 | 565 | fixes f (infixl "\<triangle>" 70) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 566 | assumes le1: "\<And>x y. x \<triangle> y \<sqsubseteq> x" and le2: "\<And>x y. x \<triangle> y \<sqsubseteq> y" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 567 | and greatest: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" | 
| 22737 | 568 | shows "x \<sqinter> y = x \<triangle> y" | 
| 22454 | 569 | proof (rule antisym) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 570 | show "x \<triangle> y \<sqsubseteq> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) | 
| 22454 | 571 | next | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 572 | have leI: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" by (blast intro: greatest) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 573 | show "x \<sqinter> y \<sqsubseteq> x \<triangle> y" by (rule leI) simp_all | 
| 22454 | 574 | qed | 
| 575 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 576 | lemma (in semilattice_sup) sup_unique: | 
| 22454 | 577 | fixes f (infixl "\<nabla>" 70) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 578 | assumes ge1 [simp]: "\<And>x y. x \<sqsubseteq> x \<nabla> y" and ge2: "\<And>x y. y \<sqsubseteq> x \<nabla> y" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 579 | and least: "\<And>x y z. y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<nabla> z \<sqsubseteq> x" | 
| 22737 | 580 | shows "x \<squnion> y = x \<nabla> y" | 
| 22454 | 581 | proof (rule antisym) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 582 | show "x \<squnion> y \<sqsubseteq> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) | 
| 22454 | 583 | next | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 584 | have leI: "\<And>x y z. x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<nabla> y \<sqsubseteq> z" by (blast intro: least) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 585 | show "x \<nabla> y \<sqsubseteq> x \<squnion> y" by (rule leI) simp_all | 
| 22454 | 586 | qed | 
| 36008 | 587 | |
| 22454 | 588 | |
| 22916 | 589 | subsection {* @{const min}/@{const max} on linear orders as
 | 
| 590 |   special case of @{const inf}/@{const sup} *}
 | |
| 591 | ||
| 44845 | 592 | sublocale linorder < min_max!: distrib_lattice min less_eq less max | 
| 28823 | 593 | proof | 
| 22916 | 594 | fix x y z | 
| 32512 | 595 | show "max x (min y z) = min (max x y) (max x z)" | 
| 596 | by (auto simp add: min_def max_def) | |
| 22916 | 597 | qed (auto simp add: min_def max_def not_le less_imp_le) | 
| 21249 | 598 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 599 | lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{semilattice_inf, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 600 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 601 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 602 | lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{semilattice_sup, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 603 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 604 | |
| 21249 | 605 | lemmas le_maxI1 = min_max.sup_ge1 | 
| 606 | lemmas le_maxI2 = min_max.sup_ge2 | |
| 21381 | 607 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 608 | lemmas min_ac = min_max.inf_assoc min_max.inf_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 609 | min_max.inf.left_commute | 
| 21249 | 610 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 611 | lemmas max_ac = min_max.sup_assoc min_max.sup_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 612 | min_max.sup.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 613 | |
| 21249 | 614 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 615 | subsection {* Lattice on @{typ bool} *}
 | 
| 22454 | 616 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 617 | instantiation bool :: boolean_algebra | 
| 25510 | 618 | begin | 
| 619 | ||
| 620 | definition | |
| 41080 | 621 | bool_Compl_def [simp]: "uminus = Not" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 622 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 623 | definition | 
| 41080 | 624 | bool_diff_def [simp]: "A - B \<longleftrightarrow> A \<and> \<not> B" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 625 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 626 | definition | 
| 41080 | 627 | [simp]: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q" | 
| 25510 | 628 | |
| 629 | definition | |
| 41080 | 630 | [simp]: "P \<squnion> Q \<longleftrightarrow> P \<or> Q" | 
| 25510 | 631 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 632 | instance proof | 
| 41080 | 633 | qed auto | 
| 22454 | 634 | |
| 25510 | 635 | end | 
| 636 | ||
| 32781 | 637 | lemma sup_boolI1: | 
| 638 | "P \<Longrightarrow> P \<squnion> Q" | |
| 41080 | 639 | by simp | 
| 32781 | 640 | |
| 641 | lemma sup_boolI2: | |
| 642 | "Q \<Longrightarrow> P \<squnion> Q" | |
| 41080 | 643 | by simp | 
| 32781 | 644 | |
| 645 | lemma sup_boolE: | |
| 646 | "P \<squnion> Q \<Longrightarrow> (P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 647 | by auto | 
| 32781 | 648 | |
| 23878 | 649 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 650 | subsection {* Lattice on @{typ "_ \<Rightarrow> _"} *}
 | 
| 23878 | 651 | |
| 25510 | 652 | instantiation "fun" :: (type, lattice) lattice | 
| 653 | begin | |
| 654 | ||
| 655 | definition | |
| 41080 | 656 | "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" | 
| 657 | ||
| 49769 | 658 | lemma inf_apply [simp, code]: | 
| 41080 | 659 | "(f \<sqinter> g) x = f x \<sqinter> g x" | 
| 660 | by (simp add: inf_fun_def) | |
| 25510 | 661 | |
| 662 | definition | |
| 41080 | 663 | "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" | 
| 664 | ||
| 49769 | 665 | lemma sup_apply [simp, code]: | 
| 41080 | 666 | "(f \<squnion> g) x = f x \<squnion> g x" | 
| 667 | by (simp add: sup_fun_def) | |
| 25510 | 668 | |
| 32780 | 669 | instance proof | 
| 46884 | 670 | qed (simp_all add: le_fun_def) | 
| 23878 | 671 | |
| 25510 | 672 | end | 
| 23878 | 673 | |
| 41080 | 674 | instance "fun" :: (type, distrib_lattice) distrib_lattice proof | 
| 46884 | 675 | qed (rule ext, simp add: sup_inf_distrib1) | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 676 | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 677 | instance "fun" :: (type, bounded_lattice) bounded_lattice .. | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 678 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 679 | instantiation "fun" :: (type, uminus) uminus | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 680 | begin | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 681 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 682 | definition | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 683 | fun_Compl_def: "- A = (\<lambda>x. - A x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 684 | |
| 49769 | 685 | lemma uminus_apply [simp, code]: | 
| 41080 | 686 | "(- A) x = - (A x)" | 
| 687 | by (simp add: fun_Compl_def) | |
| 688 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 689 | instance .. | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 690 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 691 | end | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 692 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 693 | instantiation "fun" :: (type, minus) minus | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 694 | begin | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 695 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 696 | definition | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 697 | fun_diff_def: "A - B = (\<lambda>x. A x - B x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 698 | |
| 49769 | 699 | lemma minus_apply [simp, code]: | 
| 41080 | 700 | "(A - B) x = A x - B x" | 
| 701 | by (simp add: fun_diff_def) | |
| 702 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 703 | instance .. | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 704 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 705 | end | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 706 | |
| 41080 | 707 | instance "fun" :: (type, boolean_algebra) boolean_algebra proof | 
| 46884 | 708 | qed (rule ext, simp_all add: inf_compl_bot sup_compl_top diff_eq)+ | 
| 26794 | 709 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 710 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 711 | subsection {* Lattice on unary and binary predicates *}
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 712 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 713 | lemma inf1I: "A x \<Longrightarrow> B x \<Longrightarrow> (A \<sqinter> B) x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 714 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 715 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 716 | lemma inf2I: "A x y \<Longrightarrow> B x y \<Longrightarrow> (A \<sqinter> B) x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 717 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 718 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 719 | lemma inf1E: "(A \<sqinter> B) x \<Longrightarrow> (A x \<Longrightarrow> B x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 720 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 721 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 722 | lemma inf2E: "(A \<sqinter> B) x y \<Longrightarrow> (A x y \<Longrightarrow> B x y \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 723 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 724 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 725 | lemma inf1D1: "(A \<sqinter> B) x \<Longrightarrow> A x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 726 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 727 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 728 | lemma inf2D1: "(A \<sqinter> B) x y \<Longrightarrow> A x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 729 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 730 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 731 | lemma inf1D2: "(A \<sqinter> B) x \<Longrightarrow> B x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 732 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 733 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 734 | lemma inf2D2: "(A \<sqinter> B) x y \<Longrightarrow> B x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 735 | by (simp add: inf_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 736 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 737 | lemma sup1I1: "A x \<Longrightarrow> (A \<squnion> B) x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 738 | by (simp add: sup_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 739 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 740 | lemma sup2I1: "A x y \<Longrightarrow> (A \<squnion> B) x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 741 | by (simp add: sup_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 742 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 743 | lemma sup1I2: "B x \<Longrightarrow> (A \<squnion> B) x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 744 | by (simp add: sup_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 745 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 746 | lemma sup2I2: "B x y \<Longrightarrow> (A \<squnion> B) x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 747 | by (simp add: sup_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 748 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 749 | lemma sup1E: "(A \<squnion> B) x \<Longrightarrow> (A x \<Longrightarrow> P) \<Longrightarrow> (B x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 750 | by (simp add: sup_fun_def) iprover | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 751 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 752 | lemma sup2E: "(A \<squnion> B) x y \<Longrightarrow> (A x y \<Longrightarrow> P) \<Longrightarrow> (B x y \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 753 | by (simp add: sup_fun_def) iprover | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 754 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 755 | text {*
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 756 |   \medskip Classical introduction rule: no commitment to @{text A} vs
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 757 |   @{text B}.
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 758 | *} | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 759 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 760 | lemma sup1CI: "(\<not> B x \<Longrightarrow> A x) \<Longrightarrow> (A \<squnion> B) x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 761 | by (auto simp add: sup_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 762 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 763 | lemma sup2CI: "(\<not> B x y \<Longrightarrow> A x y) \<Longrightarrow> (A \<squnion> B) x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 764 | by (auto simp add: sup_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 765 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 766 | |
| 25062 | 767 | no_notation | 
| 46691 | 768 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 769 | less (infix "\<sqsubset>" 50) | |
| 25062 | 770 | |
| 21249 | 771 | end | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 772 |