src/ZF/Resid/Reduction.thy
author wenzelm
Thu, 06 Mar 2008 21:32:27 +0100
changeset 26228 b8bbbb76220c
parent 24892 c663e675e177
child 35762 af3ff2ba4c54
permissions -rw-r--r--
replaced execute by system_out;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
1478
2b8c2a7547ab expanded tabs
clasohm
parents: 1401
diff changeset
     1
(*  Title:      Reduction.thy
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
     2
    ID:         $Id$
1478
2b8c2a7547ab expanded tabs
clasohm
parents: 1401
diff changeset
     3
    Author:     Ole Rasmussen
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
     4
    Copyright   1995  University of Cambridge
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
     5
    Logic Image: ZF
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
     6
*)
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
     7
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 13612
diff changeset
     8
theory Reduction imports Residuals begin
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
     9
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    10
(**** Lambda-terms ****)
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
    11
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
    12
consts
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    13
  lambda        :: "i"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    14
  unmark        :: "i=>i"
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
    15
24892
c663e675e177 replaced some 'translations' by 'abbreviation';
wenzelm
parents: 22808
diff changeset
    16
abbreviation
c663e675e177 replaced some 'translations' by 'abbreviation';
wenzelm
parents: 22808
diff changeset
    17
  Apl :: "[i,i]=>i" where
c663e675e177 replaced some 'translations' by 'abbreviation';
wenzelm
parents: 22808
diff changeset
    18
  "Apl(n,m) == App(0,n,m)"
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    19
  
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    20
inductive
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 12593
diff changeset
    21
  domains       "lambda" <= redexes
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    22
  intros
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    23
    Lambda_Var:  "               n \<in> nat ==>     Var(n) \<in> lambda"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    24
    Lambda_Fun:  "            u \<in> lambda ==>     Fun(u) \<in> lambda"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    25
    Lambda_App:  "[|u \<in> lambda; v \<in> lambda|] ==> Apl(u,v) \<in> lambda"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    26
  type_intros    redexes.intros bool_typechecks
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    27
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    28
declare lambda.intros [intro]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    29
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    30
primrec
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    31
  "unmark(Var(n)) = Var(n)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    32
  "unmark(Fun(u)) = Fun(unmark(u))"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    33
  "unmark(App(b,f,a)) = Apl(unmark(f), unmark(a))"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    34
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    35
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    36
declare lambda.intros [simp] 
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    37
declare lambda.dom_subset [THEN subsetD, simp, intro]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    38
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    39
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    40
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    41
(*        unmark lemmas                                                      *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    42
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    43
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    44
lemma unmark_type [intro, simp]:
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    45
     "u \<in> redexes ==> unmark(u) \<in> lambda"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    46
by (erule redexes.induct, simp_all)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    47
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    48
lemma lambda_unmark: "u \<in> lambda ==> unmark(u) = u"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    49
by (erule lambda.induct, simp_all)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    50
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    51
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    52
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    53
(*         lift and subst preserve lambda                                    *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    54
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    55
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    56
lemma liftL_type [rule_format]:
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    57
     "v \<in> lambda ==> \<forall>k \<in> nat. lift_rec(v,k) \<in> lambda"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    58
by (erule lambda.induct, simp_all add: lift_rec_Var)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    59
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    60
lemma substL_type [rule_format, simp]:
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    61
     "v \<in> lambda ==>  \<forall>n \<in> nat. \<forall>u \<in> lambda. subst_rec(u,v,n) \<in> lambda"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    62
by (erule lambda.induct, simp_all add: liftL_type subst_Var)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    63
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    64
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    65
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    66
(*        type-rule for reduction definitions                               *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    67
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    68
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    69
lemmas red_typechecks = substL_type nat_typechecks lambda.intros 
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    70
                        bool_typechecks
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    71
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    72
consts
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    73
  Sred1     :: "i"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    74
  Sred      :: "i"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    75
  Spar_red1 :: "i"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    76
  Spar_red  :: "i"
22808
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    77
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    78
abbreviation
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    79
  Sred1_rel (infixl "-1->" 50) where
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    80
  "a -1-> b == <a,b> \<in> Sred1"
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    81
22808
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    82
abbreviation
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    83
  Sred_rel (infixl "--->" 50) where
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    84
  "a ---> b == <a,b> \<in> Sred"
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    85
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    86
abbreviation
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    87
  Spar_red1_rel (infixl "=1=>" 50) where
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    88
  "a =1=> b == <a,b> \<in> Spar_red1"
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    89
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    90
abbreviation
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    91
  Spar_red_rel (infixl "===>" 50) where
a7daa74e2980 eliminated unnamed infixes, tuned syntax;
wenzelm
parents: 16417
diff changeset
    92
  "a ===> b == <a,b> \<in> Spar_red"
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
    93
  
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
    94
  
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
    95
inductive
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
    96
  domains       "Sred1" <= "lambda*lambda"
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    97
  intros
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    98
    beta:       "[|m \<in> lambda; n \<in> lambda|] ==> Apl(Fun(m),n) -1-> n/m"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
    99
    rfun:       "[|m -1-> n|] ==> Fun(m) -1-> Fun(n)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   100
    apl_l:      "[|m2 \<in> lambda; m1 -1-> n1|] ==> Apl(m1,m2) -1-> Apl(n1,m2)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   101
    apl_r:      "[|m1 \<in> lambda; m2 -1-> n2|] ==> Apl(m1,m2) -1-> Apl(m1,n2)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   102
  type_intros    red_typechecks
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   103
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   104
declare Sred1.intros [intro, simp]
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   105
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   106
inductive
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   107
  domains       "Sred" <= "lambda*lambda"
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   108
  intros
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   109
    one_step:   "m-1->n ==> m--->n"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   110
    refl:       "m \<in> lambda==>m --->m"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   111
    trans:      "[|m--->n; n--->p|] ==>m--->p"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   112
  type_intros    Sred1.dom_subset [THEN subsetD] red_typechecks
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   113
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   114
declare Sred.one_step [intro, simp]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   115
declare Sred.refl     [intro, simp]
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   116
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   117
inductive
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   118
  domains       "Spar_red1" <= "lambda*lambda"
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   119
  intros
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   120
    beta:       "[|m =1=> m'; n =1=> n'|] ==> Apl(Fun(m),n) =1=> n'/m'"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   121
    rvar:       "n \<in> nat ==> Var(n) =1=> Var(n)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   122
    rfun:       "m =1=> m' ==> Fun(m) =1=> Fun(m')"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   123
    rapl:       "[|m =1=> m'; n =1=> n'|] ==> Apl(m,n) =1=> Apl(m',n')"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   124
  type_intros    red_typechecks
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   125
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   126
declare Spar_red1.intros [intro, simp]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   127
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   128
inductive
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   129
  domains "Spar_red" <= "lambda*lambda"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   130
  intros
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   131
    one_step:   "m =1=> n ==> m ===> n"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   132
    trans:      "[|m===>n; n===>p|] ==> m===>p"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   133
  type_intros    Spar_red1.dom_subset [THEN subsetD] red_typechecks
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   134
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   135
declare Spar_red.one_step [intro, simp]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   136
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   137
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   138
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   139
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   140
(*     Setting up rule lists for reduction                                   *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   141
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   142
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   143
lemmas red1D1 [simp] = Sred1.dom_subset [THEN subsetD, THEN SigmaD1]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   144
lemmas red1D2 [simp] = Sred1.dom_subset [THEN subsetD, THEN SigmaD2]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   145
lemmas redD1 [simp] = Sred.dom_subset [THEN subsetD, THEN SigmaD1]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   146
lemmas redD2 [simp] = Sred.dom_subset [THEN subsetD, THEN SigmaD2]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   147
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   148
lemmas par_red1D1 [simp] = Spar_red1.dom_subset [THEN subsetD, THEN SigmaD1]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   149
lemmas par_red1D2 [simp] = Spar_red1.dom_subset [THEN subsetD, THEN SigmaD2]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   150
lemmas par_redD1 [simp] = Spar_red.dom_subset [THEN subsetD, THEN SigmaD1]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   151
lemmas par_redD2 [simp] = Spar_red.dom_subset [THEN subsetD, THEN SigmaD2]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   152
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   153
declare bool_typechecks [intro]
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   154
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   155
inductive_cases  [elim!]: "Fun(t) =1=> Fun(u)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   156
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   157
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   158
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   159
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   160
(*     Lemmas for reduction                                                  *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   161
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   162
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   163
lemma red_Fun: "m--->n ==> Fun(m) ---> Fun(n)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   164
apply (erule Sred.induct)
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 12593
diff changeset
   165
apply (rule_tac [3] Sred.trans, simp_all)
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   166
done
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   167
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   168
lemma red_Apll: "[|n \<in> lambda; m ---> m'|] ==> Apl(m,n)--->Apl(m',n)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   169
apply (erule Sred.induct)
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 12593
diff changeset
   170
apply (rule_tac [3] Sred.trans, simp_all)
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   171
done
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   172
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   173
lemma red_Aplr: "[|n \<in> lambda; m ---> m'|] ==> Apl(n,m)--->Apl(n,m')"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   174
apply (erule Sred.induct)
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 12593
diff changeset
   175
apply (rule_tac [3] Sred.trans, simp_all)
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   176
done
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   177
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   178
lemma red_Apl: "[|m ---> m'; n--->n'|] ==> Apl(m,n)--->Apl(m',n')"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   179
apply (rule_tac n = "Apl (m',n) " in Sred.trans)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   180
apply (simp_all add: red_Apll red_Aplr)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   181
done
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   182
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   183
lemma red_beta: "[|m \<in> lambda; m':lambda; n \<in> lambda; n':lambda; m ---> m'; n--->n'|] ==>  
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   184
               Apl(Fun(m),n)---> n'/m'"
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 12593
diff changeset
   185
apply (rule_tac n = "Apl (Fun (m'),n') " in Sred.trans)
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   186
apply (simp_all add: red_Apl red_Fun)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   187
done
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   188
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   189
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   190
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   191
(*      Lemmas for parallel reduction                                        *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   192
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   193
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   194
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   195
lemma refl_par_red1: "m \<in> lambda==> m =1=> m"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   196
by (erule lambda.induct, simp_all)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   197
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   198
lemma red1_par_red1: "m-1->n ==> m=1=>n"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   199
by (erule Sred1.induct, simp_all add: refl_par_red1)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   200
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   201
lemma red_par_red: "m--->n ==> m===>n"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   202
apply (erule Sred.induct)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   203
apply (rule_tac [3] Spar_red.trans)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   204
apply (simp_all add: refl_par_red1 red1_par_red1)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   205
done
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   206
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   207
lemma par_red_red: "m===>n ==> m--->n"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   208
apply (erule Spar_red.induct)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   209
apply (erule Spar_red1.induct)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   210
apply (rule_tac [5] Sred.trans)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   211
apply (simp_all add: red_Fun red_beta red_Apl)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   212
done
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   213
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   214
12593
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   215
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   216
(*      Simulation                                                           *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   217
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   218
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   219
lemma simulation: "m=1=>n ==> \<exists>v. m|>v = n & m~v & regular(v)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   220
by (erule Spar_red1.induct, force+)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   221
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   222
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   223
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   224
(*           commuting of unmark and subst                                   *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   225
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   226
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   227
lemma unmmark_lift_rec:
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   228
     "u \<in> redexes ==> \<forall>k \<in> nat. unmark(lift_rec(u,k)) = lift_rec(unmark(u),k)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   229
by (erule redexes.induct, simp_all add: lift_rec_Var)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   230
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   231
lemma unmmark_subst_rec:
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   232
 "v \<in> redexes ==> \<forall>k \<in> nat. \<forall>u \<in> redexes.   
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   233
                  unmark(subst_rec(u,v,k)) = subst_rec(unmark(u),unmark(v),k)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   234
by (erule redexes.induct, simp_all add: unmmark_lift_rec subst_Var)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   235
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   236
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   237
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   238
(*        Completeness                                                       *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   239
(* ------------------------------------------------------------------------- *)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   240
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   241
lemma completeness_l [rule_format]:
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   242
     "u~v ==> regular(v) --> unmark(u) =1=> unmark(u|>v)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   243
apply (erule Scomp.induct)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   244
apply (auto simp add: unmmark_subst_rec)
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   245
done
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   246
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   247
lemma completeness: "[|u \<in> lambda; u~v; regular(v)|] ==> u =1=> unmark(u|>v)"
cd35fe5947d4 Resid converted to Isar/ZF
paulson
parents: 11319
diff changeset
   248
by (drule completeness_l, simp_all add: lambda_unmark)
1048
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   249
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   250
end
5ba0314f8214 New example by Ole Rasmussen
lcp
parents:
diff changeset
   251