| 
23146
 | 
     1  | 
(*  Title:      ZF/IntDiv.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1999  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Here is the division algorithm in ML:
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
    fun posDivAlg (a,b) =
  | 
| 
 | 
     9  | 
      if a<b then (0,a)
  | 
| 
 | 
    10  | 
      else let val (q,r) = posDivAlg(a, 2*b)
  | 
| 
 | 
    11  | 
	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
  | 
| 
 | 
    12  | 
	   end
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
    fun negDivAlg (a,b) =
  | 
| 
 | 
    15  | 
      if 0<=a+b then (~1,a+b)
  | 
| 
 | 
    16  | 
      else let val (q,r) = negDivAlg(a, 2*b)
  | 
| 
 | 
    17  | 
	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
  | 
| 
 | 
    18  | 
	   end;
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
    fun negateSnd (q,r:int) = (q,~r);
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
    fun divAlg (a,b) = if 0<=a then 
  | 
| 
 | 
    23  | 
			  if b>0 then posDivAlg (a,b) 
  | 
| 
 | 
    24  | 
			   else if a=0 then (0,0)
  | 
| 
 | 
    25  | 
				else negateSnd (negDivAlg (~a,~b))
  | 
| 
 | 
    26  | 
		       else 
  | 
| 
 | 
    27  | 
			  if 0<b then negDivAlg (a,b)
  | 
| 
 | 
    28  | 
			  else        negateSnd (posDivAlg (~a,~b));
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
*)
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
header{*The Division Operators Div and Mod*}
 | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
theory IntDiv imports IntArith OrderArith begin
  | 
| 
 | 
    35  | 
  | 
| 
24893
 | 
    36  | 
definition
  | 
| 
 | 
    37  | 
  quorem :: "[i,i] => o"  where
  | 
| 
23146
 | 
    38  | 
    "quorem == %<a,b> <q,r>.
  | 
| 
 | 
    39  | 
                      a = b$*q $+ r &
  | 
| 
 | 
    40  | 
                      (#0$<b & #0$<=r & r$<b | ~(#0$<b) & b$<r & r $<= #0)"
  | 
| 
 | 
    41  | 
  | 
| 
24893
 | 
    42  | 
definition
  | 
| 
 | 
    43  | 
  adjust :: "[i,i] => i"  where
  | 
| 
23146
 | 
    44  | 
    "adjust(b) == %<q,r>. if #0 $<= r$-b then <#2$*q $+ #1,r$-b>
  | 
| 
 | 
    45  | 
                          else <#2$*q,r>"
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
(** the division algorithm **)
  | 
| 
 | 
    49  | 
  | 
| 
24893
 | 
    50  | 
definition
  | 
| 
 | 
    51  | 
  posDivAlg :: "i => i"  where
  | 
| 
23146
 | 
    52  | 
(*for the case a>=0, b>0*)
  | 
| 
 | 
    53  | 
(*recdef posDivAlg "inv_image less_than (%(a,b). nat_of(a $- b $+ #1))"*)
  | 
| 
 | 
    54  | 
    "posDivAlg(ab) ==
  | 
| 
 | 
    55  | 
       wfrec(measure(int*int, %<a,b>. nat_of (a $- b $+ #1)),
  | 
| 
 | 
    56  | 
	     ab,
  | 
| 
 | 
    57  | 
	     %<a,b> f. if (a$<b | b$<=#0) then <#0,a>
  | 
| 
 | 
    58  | 
                       else adjust(b, f ` <a,#2$*b>))"
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
(*for the case a<0, b>0*)
  | 
| 
24893
 | 
    62  | 
definition
  | 
| 
 | 
    63  | 
  negDivAlg :: "i => i"  where
  | 
| 
23146
 | 
    64  | 
(*recdef negDivAlg "inv_image less_than (%(a,b). nat_of(- a $- b))"*)
  | 
| 
 | 
    65  | 
    "negDivAlg(ab) ==
  | 
| 
 | 
    66  | 
       wfrec(measure(int*int, %<a,b>. nat_of ($- a $- b)),
  | 
| 
 | 
    67  | 
	     ab,
  | 
| 
 | 
    68  | 
	     %<a,b> f. if (#0 $<= a$+b | b$<=#0) then <#-1,a$+b>
  | 
| 
 | 
    69  | 
                       else adjust(b, f ` <a,#2$*b>))"
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
(*for the general case b\<noteq>0*)
  | 
| 
 | 
    72  | 
  | 
| 
24893
 | 
    73  | 
definition
  | 
| 
 | 
    74  | 
  negateSnd :: "i => i"  where
  | 
| 
23146
 | 
    75  | 
    "negateSnd == %<q,r>. <q, $-r>"
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
  (*The full division algorithm considers all possible signs for a, b
  | 
| 
 | 
    78  | 
    including the special case a=0, b<0, because negDivAlg requires a<0*)
  | 
| 
24893
 | 
    79  | 
definition
  | 
| 
 | 
    80  | 
  divAlg :: "i => i"  where
  | 
| 
23146
 | 
    81  | 
    "divAlg ==
  | 
| 
 | 
    82  | 
       %<a,b>. if #0 $<= a then
  | 
| 
 | 
    83  | 
                  if #0 $<= b then posDivAlg (<a,b>)
  | 
| 
 | 
    84  | 
                  else if a=#0 then <#0,#0>
  | 
| 
 | 
    85  | 
                       else negateSnd (negDivAlg (<$-a,$-b>))
  | 
| 
 | 
    86  | 
               else 
  | 
| 
 | 
    87  | 
                  if #0$<b then negDivAlg (<a,b>)
  | 
| 
 | 
    88  | 
                  else         negateSnd (posDivAlg (<$-a,$-b>))"
  | 
| 
 | 
    89  | 
  | 
| 
24893
 | 
    90  | 
definition
  | 
| 
 | 
    91  | 
  zdiv  :: "[i,i]=>i"                    (infixl "zdiv" 70)  where
  | 
| 
23146
 | 
    92  | 
    "a zdiv b == fst (divAlg (<intify(a), intify(b)>))"
  | 
| 
 | 
    93  | 
  | 
| 
24893
 | 
    94  | 
definition
  | 
| 
 | 
    95  | 
  zmod  :: "[i,i]=>i"                    (infixl "zmod" 70)  where
  | 
| 
23146
 | 
    96  | 
    "a zmod b == snd (divAlg (<intify(a), intify(b)>))"
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
(** Some basic laws by Sidi Ehmety (need linear arithmetic!) **)
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
lemma zspos_add_zspos_imp_zspos: "[| #0 $< x;  #0 $< y |] ==> #0 $< x $+ y"
  | 
| 
 | 
   102  | 
apply (rule_tac y = "y" in zless_trans)
  | 
| 
 | 
   103  | 
apply (rule_tac [2] zdiff_zless_iff [THEN iffD1])
  | 
| 
 | 
   104  | 
apply auto
  | 
| 
 | 
   105  | 
done
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
lemma zpos_add_zpos_imp_zpos: "[| #0 $<= x;  #0 $<= y |] ==> #0 $<= x $+ y"
  | 
| 
 | 
   108  | 
apply (rule_tac y = "y" in zle_trans)
  | 
| 
 | 
   109  | 
apply (rule_tac [2] zdiff_zle_iff [THEN iffD1])
  | 
| 
 | 
   110  | 
apply auto
  | 
| 
 | 
   111  | 
done
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma zneg_add_zneg_imp_zneg: "[| x $< #0;  y $< #0 |] ==> x $+ y $< #0"
  | 
| 
 | 
   114  | 
apply (rule_tac y = "y" in zless_trans)
  | 
| 
 | 
   115  | 
apply (rule zless_zdiff_iff [THEN iffD1])
  | 
| 
 | 
   116  | 
apply auto
  | 
| 
 | 
   117  | 
done
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
(* this theorem is used below *)
  | 
| 
 | 
   120  | 
lemma zneg_or_0_add_zneg_or_0_imp_zneg_or_0:
  | 
| 
 | 
   121  | 
     "[| x $<= #0;  y $<= #0 |] ==> x $+ y $<= #0"
  | 
| 
 | 
   122  | 
apply (rule_tac y = "y" in zle_trans)
  | 
| 
 | 
   123  | 
apply (rule zle_zdiff_iff [THEN iffD1])
  | 
| 
 | 
   124  | 
apply auto
  | 
| 
 | 
   125  | 
done
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
lemma zero_lt_zmagnitude: "[| #0 $< k; k \<in> int |] ==> 0 < zmagnitude(k)"
  | 
| 
 | 
   128  | 
apply (drule zero_zless_imp_znegative_zminus)
  | 
| 
 | 
   129  | 
apply (drule_tac [2] zneg_int_of)
  | 
| 
 | 
   130  | 
apply (auto simp add: zminus_equation [of k])
  | 
| 
 | 
   131  | 
apply (subgoal_tac "0 < zmagnitude ($# succ (n))")
  | 
| 
 | 
   132  | 
 apply simp
  | 
| 
 | 
   133  | 
apply (simp only: zmagnitude_int_of)
  | 
| 
 | 
   134  | 
apply simp
  | 
| 
 | 
   135  | 
done
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
(*** Inequality lemmas involving $#succ(m) ***)
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
lemma zless_add_succ_iff:
  | 
| 
 | 
   141  | 
     "(w $< z $+ $# succ(m)) <-> (w $< z $+ $#m | intify(w) = z $+ $#m)"
  | 
| 
 | 
   142  | 
apply (auto simp add: zless_iff_succ_zadd zadd_assoc int_of_add [symmetric])
  | 
| 
 | 
   143  | 
apply (rule_tac [3] x = "0" in bexI)
  | 
| 
 | 
   144  | 
apply (cut_tac m = "m" in int_succ_int_1)
  | 
| 
 | 
   145  | 
apply (cut_tac m = "n" in int_succ_int_1)
  | 
| 
 | 
   146  | 
apply simp
  | 
| 
 | 
   147  | 
apply (erule natE)
  | 
| 
 | 
   148  | 
apply auto
  | 
| 
 | 
   149  | 
apply (rule_tac x = "succ (n) " in bexI)
  | 
| 
 | 
   150  | 
apply auto
  | 
| 
 | 
   151  | 
done
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
lemma zadd_succ_lemma:
  | 
| 
 | 
   154  | 
     "z \<in> int ==> (w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)"
  | 
| 
 | 
   155  | 
apply (simp only: not_zless_iff_zle [THEN iff_sym] zless_add_succ_iff)
  | 
| 
 | 
   156  | 
apply (auto intro: zle_anti_sym elim: zless_asym
  | 
| 
 | 
   157  | 
            simp add: zless_imp_zle not_zless_iff_zle)
  | 
| 
 | 
   158  | 
done
  | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
lemma zadd_succ_zle_iff: "(w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)"
  | 
| 
 | 
   161  | 
apply (cut_tac z = "intify (z)" in zadd_succ_lemma)
  | 
| 
 | 
   162  | 
apply auto
  | 
| 
 | 
   163  | 
done
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
(** Inequality reasoning **)
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
lemma zless_add1_iff_zle: "(w $< z $+ #1) <-> (w$<=z)"
  | 
| 
 | 
   168  | 
apply (subgoal_tac "#1 = $# 1")
  | 
| 
 | 
   169  | 
apply (simp only: zless_add_succ_iff zle_def)
  | 
| 
 | 
   170  | 
apply auto
  | 
| 
 | 
   171  | 
done
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
lemma add1_zle_iff: "(w $+ #1 $<= z) <-> (w $< z)"
  | 
| 
 | 
   174  | 
apply (subgoal_tac "#1 = $# 1")
  | 
| 
 | 
   175  | 
apply (simp only: zadd_succ_zle_iff)
  | 
| 
 | 
   176  | 
apply auto
  | 
| 
 | 
   177  | 
done
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
lemma add1_left_zle_iff: "(#1 $+ w $<= z) <-> (w $< z)"
  | 
| 
 | 
   180  | 
apply (subst zadd_commute)
  | 
| 
 | 
   181  | 
apply (rule add1_zle_iff)
  | 
| 
 | 
   182  | 
done
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
(*** Monotonicity of Multiplication ***)
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
lemma zmult_mono_lemma: "k \<in> nat ==> i $<= j ==> i $* $#k $<= j $* $#k"
  | 
| 
 | 
   188  | 
apply (induct_tac "k")
  | 
| 
 | 
   189  | 
 prefer 2 apply (subst int_succ_int_1)
  | 
| 
 | 
   190  | 
apply (simp_all (no_asm_simp) add: zadd_zmult_distrib2 zadd_zle_mono)
  | 
| 
 | 
   191  | 
done
  | 
| 
 | 
   192  | 
  | 
| 
 | 
   193  | 
lemma zmult_zle_mono1: "[| i $<= j;  #0 $<= k |] ==> i$*k $<= j$*k"
  | 
| 
 | 
   194  | 
apply (subgoal_tac "i $* intify (k) $<= j $* intify (k) ")
  | 
| 
 | 
   195  | 
apply (simp (no_asm_use))
  | 
| 
 | 
   196  | 
apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
  | 
| 
 | 
   197  | 
apply (rule_tac [3] zmult_mono_lemma)
  | 
| 
 | 
   198  | 
apply auto
  | 
| 
 | 
   199  | 
apply (simp add: znegative_iff_zless_0 not_zless_iff_zle [THEN iff_sym])
  | 
| 
 | 
   200  | 
done
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
lemma zmult_zle_mono1_neg: "[| i $<= j;  k $<= #0 |] ==> j$*k $<= i$*k"
  | 
| 
 | 
   203  | 
apply (rule zminus_zle_zminus [THEN iffD1])
  | 
| 
 | 
   204  | 
apply (simp del: zmult_zminus_right
  | 
| 
 | 
   205  | 
            add: zmult_zminus_right [symmetric] zmult_zle_mono1 zle_zminus)
  | 
| 
 | 
   206  | 
done
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
lemma zmult_zle_mono2: "[| i $<= j;  #0 $<= k |] ==> k$*i $<= k$*j"
  | 
| 
 | 
   209  | 
apply (drule zmult_zle_mono1)
  | 
| 
 | 
   210  | 
apply (simp_all add: zmult_commute)
  | 
| 
 | 
   211  | 
done
  | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
lemma zmult_zle_mono2_neg: "[| i $<= j;  k $<= #0 |] ==> k$*j $<= k$*i"
  | 
| 
 | 
   214  | 
apply (drule zmult_zle_mono1_neg)
  | 
| 
 | 
   215  | 
apply (simp_all add: zmult_commute)
  | 
| 
 | 
   216  | 
done
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
(* $<= monotonicity, BOTH arguments*)
  | 
| 
 | 
   219  | 
lemma zmult_zle_mono:
  | 
| 
 | 
   220  | 
     "[| i $<= j;  k $<= l;  #0 $<= j;  #0 $<= k |] ==> i$*k $<= j$*l"
  | 
| 
 | 
   221  | 
apply (erule zmult_zle_mono1 [THEN zle_trans])
  | 
| 
 | 
   222  | 
apply assumption
  | 
| 
 | 
   223  | 
apply (erule zmult_zle_mono2)
  | 
| 
 | 
   224  | 
apply assumption
  | 
| 
 | 
   225  | 
done
  | 
| 
 | 
   226  | 
  | 
| 
 | 
   227  | 
  | 
| 
 | 
   228  | 
(** strict, in 1st argument; proof is by induction on k>0 **)
  | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
lemma zmult_zless_mono2_lemma [rule_format]:
  | 
| 
 | 
   231  | 
     "[| i$<j; k \<in> nat |] ==> 0<k --> $#k $* i $< $#k $* j"
  | 
| 
 | 
   232  | 
apply (induct_tac "k")
  | 
| 
 | 
   233  | 
 prefer 2
  | 
| 
 | 
   234  | 
 apply (subst int_succ_int_1)
  | 
| 
 | 
   235  | 
 apply (erule natE)
  | 
| 
 | 
   236  | 
apply (simp_all add: zadd_zmult_distrib zadd_zless_mono zle_def)
  | 
| 
 | 
   237  | 
apply (frule nat_0_le)
  | 
| 
 | 
   238  | 
apply (subgoal_tac "i $+ (i $+ $# xa $* i) $< j $+ (j $+ $# xa $* j) ")
  | 
| 
 | 
   239  | 
apply (simp (no_asm_use))
  | 
| 
 | 
   240  | 
apply (rule zadd_zless_mono)
  | 
| 
 | 
   241  | 
apply (simp_all (no_asm_simp) add: zle_def)
  | 
| 
 | 
   242  | 
done
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
lemma zmult_zless_mono2: "[| i$<j;  #0 $< k |] ==> k$*i $< k$*j"
  | 
| 
 | 
   245  | 
apply (subgoal_tac "intify (k) $* i $< intify (k) $* j")
  | 
| 
 | 
   246  | 
apply (simp (no_asm_use))
  | 
| 
 | 
   247  | 
apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
  | 
| 
 | 
   248  | 
apply (rule_tac [3] zmult_zless_mono2_lemma)
  | 
| 
 | 
   249  | 
apply auto
  | 
| 
 | 
   250  | 
apply (simp add: znegative_iff_zless_0)
  | 
| 
 | 
   251  | 
apply (drule zless_trans, assumption)
  | 
| 
 | 
   252  | 
apply (auto simp add: zero_lt_zmagnitude)
  | 
| 
 | 
   253  | 
done
  | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
lemma zmult_zless_mono1: "[| i$<j;  #0 $< k |] ==> i$*k $< j$*k"
  | 
| 
 | 
   256  | 
apply (drule zmult_zless_mono2)
  | 
| 
 | 
   257  | 
apply (simp_all add: zmult_commute)
  | 
| 
 | 
   258  | 
done
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
(* < monotonicity, BOTH arguments*)
  | 
| 
 | 
   261  | 
lemma zmult_zless_mono:
  | 
| 
 | 
   262  | 
     "[| i $< j;  k $< l;  #0 $< j;  #0 $< k |] ==> i$*k $< j$*l"
  | 
| 
 | 
   263  | 
apply (erule zmult_zless_mono1 [THEN zless_trans])
  | 
| 
 | 
   264  | 
apply assumption
  | 
| 
 | 
   265  | 
apply (erule zmult_zless_mono2)
  | 
| 
 | 
   266  | 
apply assumption
  | 
| 
 | 
   267  | 
done
  | 
| 
 | 
   268  | 
  | 
| 
 | 
   269  | 
lemma zmult_zless_mono1_neg: "[| i $< j;  k $< #0 |] ==> j$*k $< i$*k"
  | 
| 
 | 
   270  | 
apply (rule zminus_zless_zminus [THEN iffD1])
  | 
| 
 | 
   271  | 
apply (simp del: zmult_zminus_right 
  | 
| 
 | 
   272  | 
            add: zmult_zminus_right [symmetric] zmult_zless_mono1 zless_zminus)
  | 
| 
 | 
   273  | 
done
  | 
| 
 | 
   274  | 
  | 
| 
 | 
   275  | 
lemma zmult_zless_mono2_neg: "[| i $< j;  k $< #0 |] ==> k$*j $< k$*i"
  | 
| 
 | 
   276  | 
apply (rule zminus_zless_zminus [THEN iffD1])
  | 
| 
 | 
   277  | 
apply (simp del: zmult_zminus 
  | 
| 
 | 
   278  | 
            add: zmult_zminus [symmetric] zmult_zless_mono2 zless_zminus)
  | 
| 
 | 
   279  | 
done
  | 
| 
 | 
   280  | 
  | 
| 
 | 
   281  | 
  | 
| 
 | 
   282  | 
(** Products of zeroes **)
  | 
| 
 | 
   283  | 
  | 
| 
 | 
   284  | 
lemma zmult_eq_lemma:
  | 
| 
 | 
   285  | 
     "[| m \<in> int; n \<in> int |] ==> (m = #0 | n = #0) <-> (m$*n = #0)"
  | 
| 
 | 
   286  | 
apply (case_tac "m $< #0")
  | 
| 
 | 
   287  | 
apply (auto simp add: not_zless_iff_zle zle_def neq_iff_zless)
  | 
| 
 | 
   288  | 
apply (force dest: zmult_zless_mono1_neg zmult_zless_mono1)+
  | 
| 
 | 
   289  | 
done
  | 
| 
 | 
   290  | 
  | 
| 
 | 
   291  | 
lemma zmult_eq_0_iff [iff]: "(m$*n = #0) <-> (intify(m) = #0 | intify(n) = #0)"
  | 
| 
 | 
   292  | 
apply (simp add: zmult_eq_lemma)
  | 
| 
 | 
   293  | 
done
  | 
| 
 | 
   294  | 
  | 
| 
 | 
   295  | 
  | 
| 
 | 
   296  | 
(** Cancellation laws for k*m < k*n and m*k < n*k, also for <= and =,
  | 
| 
 | 
   297  | 
    but not (yet?) for k*m < n*k. **)
  | 
| 
 | 
   298  | 
  | 
| 
 | 
   299  | 
lemma zmult_zless_lemma:
  | 
| 
 | 
   300  | 
     "[| k \<in> int; m \<in> int; n \<in> int |]  
  | 
| 
 | 
   301  | 
      ==> (m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
  | 
| 
 | 
   302  | 
apply (case_tac "k = #0")
  | 
| 
 | 
   303  | 
apply (auto simp add: neq_iff_zless zmult_zless_mono1 zmult_zless_mono1_neg)
  | 
| 
 | 
   304  | 
apply (auto simp add: not_zless_iff_zle 
  | 
| 
 | 
   305  | 
                      not_zle_iff_zless [THEN iff_sym, of "m$*k"] 
  | 
| 
 | 
   306  | 
                      not_zle_iff_zless [THEN iff_sym, of m])
  | 
| 
 | 
   307  | 
apply (auto elim: notE
  | 
| 
 | 
   308  | 
            simp add: zless_imp_zle zmult_zle_mono1 zmult_zle_mono1_neg)
  | 
| 
 | 
   309  | 
done
  | 
| 
 | 
   310  | 
  | 
| 
 | 
   311  | 
lemma zmult_zless_cancel2:
  | 
| 
 | 
   312  | 
     "(m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
  | 
| 
 | 
   313  | 
apply (cut_tac k = "intify (k)" and m = "intify (m)" and n = "intify (n)" 
  | 
| 
 | 
   314  | 
       in zmult_zless_lemma)
  | 
| 
 | 
   315  | 
apply auto
  | 
| 
 | 
   316  | 
done
  | 
| 
 | 
   317  | 
  | 
| 
 | 
   318  | 
lemma zmult_zless_cancel1:
  | 
| 
 | 
   319  | 
     "(k$*m $< k$*n) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
  | 
| 
 | 
   320  | 
by (simp add: zmult_commute [of k] zmult_zless_cancel2)
  | 
| 
 | 
   321  | 
  | 
| 
 | 
   322  | 
lemma zmult_zle_cancel2:
  | 
| 
 | 
   323  | 
     "(m$*k $<= n$*k) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))"
  | 
| 
 | 
   324  | 
by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel2)
  | 
| 
 | 
   325  | 
  | 
| 
 | 
   326  | 
lemma zmult_zle_cancel1:
  | 
| 
 | 
   327  | 
     "(k$*m $<= k$*n) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))"
  | 
| 
 | 
   328  | 
by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel1)
  | 
| 
 | 
   329  | 
  | 
| 
 | 
   330  | 
lemma int_eq_iff_zle: "[| m \<in> int; n \<in> int |] ==> m=n <-> (m $<= n & n $<= m)"
  | 
| 
 | 
   331  | 
apply (blast intro: zle_refl zle_anti_sym)
  | 
| 
 | 
   332  | 
done
  | 
| 
 | 
   333  | 
  | 
| 
 | 
   334  | 
lemma zmult_cancel2_lemma:
  | 
| 
 | 
   335  | 
     "[| k \<in> int; m \<in> int; n \<in> int |] ==> (m$*k = n$*k) <-> (k=#0 | m=n)"
  | 
| 
 | 
   336  | 
apply (simp add: int_eq_iff_zle [of "m$*k"] int_eq_iff_zle [of m])
  | 
| 
 | 
   337  | 
apply (auto simp add: zmult_zle_cancel2 neq_iff_zless)
  | 
| 
 | 
   338  | 
done
  | 
| 
 | 
   339  | 
  | 
| 
 | 
   340  | 
lemma zmult_cancel2 [simp]:
  | 
| 
 | 
   341  | 
     "(m$*k = n$*k) <-> (intify(k) = #0 | intify(m) = intify(n))"
  | 
| 
 | 
   342  | 
apply (rule iff_trans)
  | 
| 
 | 
   343  | 
apply (rule_tac [2] zmult_cancel2_lemma)
  | 
| 
 | 
   344  | 
apply auto
  | 
| 
 | 
   345  | 
done
  | 
| 
 | 
   346  | 
  | 
| 
 | 
   347  | 
lemma zmult_cancel1 [simp]:
  | 
| 
 | 
   348  | 
     "(k$*m = k$*n) <-> (intify(k) = #0 | intify(m) = intify(n))"
  | 
| 
 | 
   349  | 
by (simp add: zmult_commute [of k] zmult_cancel2)
  | 
| 
 | 
   350  | 
  | 
| 
 | 
   351  | 
  | 
| 
 | 
   352  | 
subsection{* Uniqueness and monotonicity of quotients and remainders *}
 | 
| 
 | 
   353  | 
  | 
| 
 | 
   354  | 
lemma unique_quotient_lemma:
  | 
| 
 | 
   355  | 
     "[| b$*q' $+ r' $<= b$*q $+ r;  #0 $<= r';  #0 $< b;  r $< b |]  
  | 
| 
 | 
   356  | 
      ==> q' $<= q"
  | 
| 
 | 
   357  | 
apply (subgoal_tac "r' $+ b $* (q'$-q) $<= r")
  | 
| 
 | 
   358  | 
 prefer 2 apply (simp add: zdiff_zmult_distrib2 zadd_ac zcompare_rls)
  | 
| 
 | 
   359  | 
apply (subgoal_tac "#0 $< b $* (#1 $+ q $- q') ")
  | 
| 
 | 
   360  | 
 prefer 2
  | 
| 
 | 
   361  | 
 apply (erule zle_zless_trans)
  | 
| 
 | 
   362  | 
 apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
  | 
| 
 | 
   363  | 
 apply (erule zle_zless_trans)
  | 
| 
 | 
   364  | 
 apply (simp add: ); 
  | 
| 
 | 
   365  | 
apply (subgoal_tac "b $* q' $< b $* (#1 $+ q)")
  | 
| 
 | 
   366  | 
 prefer 2 
  | 
| 
 | 
   367  | 
 apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
  | 
| 
 | 
   368  | 
apply (auto elim: zless_asym
  | 
| 
 | 
   369  | 
        simp add: zmult_zless_cancel1 zless_add1_iff_zle zadd_ac zcompare_rls)
  | 
| 
 | 
   370  | 
done
  | 
| 
 | 
   371  | 
  | 
| 
 | 
   372  | 
lemma unique_quotient_lemma_neg:
  | 
| 
 | 
   373  | 
     "[| b$*q' $+ r' $<= b$*q $+ r;  r $<= #0;  b $< #0;  b $< r' |]  
  | 
| 
 | 
   374  | 
      ==> q $<= q'"
  | 
| 
 | 
   375  | 
apply (rule_tac b = "$-b" and r = "$-r'" and r' = "$-r" 
  | 
| 
 | 
   376  | 
       in unique_quotient_lemma)
  | 
| 
 | 
   377  | 
apply (auto simp del: zminus_zadd_distrib
  | 
| 
 | 
   378  | 
            simp add: zminus_zadd_distrib [symmetric] zle_zminus zless_zminus)
  | 
| 
 | 
   379  | 
done
  | 
| 
 | 
   380  | 
  | 
| 
 | 
   381  | 
  | 
| 
 | 
   382  | 
lemma unique_quotient:
  | 
| 
 | 
   383  | 
     "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b \<in> int; b ~= #0;  
  | 
| 
 | 
   384  | 
         q \<in> int; q' \<in> int |] ==> q = q'"
  | 
| 
 | 
   385  | 
apply (simp add: split_ifs quorem_def neq_iff_zless)
  | 
| 
 | 
   386  | 
apply safe
  | 
| 
 | 
   387  | 
apply simp_all
  | 
| 
 | 
   388  | 
apply (blast intro: zle_anti_sym
  | 
| 
 | 
   389  | 
             dest: zle_eq_refl [THEN unique_quotient_lemma] 
  | 
| 
 | 
   390  | 
                   zle_eq_refl [THEN unique_quotient_lemma_neg] sym)+
  | 
| 
 | 
   391  | 
done
  | 
| 
 | 
   392  | 
  | 
| 
 | 
   393  | 
lemma unique_remainder:
  | 
| 
 | 
   394  | 
     "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b \<in> int; b ~= #0;  
  | 
| 
 | 
   395  | 
         q \<in> int; q' \<in> int;  
  | 
| 
 | 
   396  | 
         r \<in> int; r' \<in> int |] ==> r = r'"
  | 
| 
 | 
   397  | 
apply (subgoal_tac "q = q'")
  | 
| 
 | 
   398  | 
 prefer 2 apply (blast intro: unique_quotient)
  | 
| 
 | 
   399  | 
apply (simp add: quorem_def)
  | 
| 
 | 
   400  | 
done
  | 
| 
 | 
   401  | 
  | 
| 
 | 
   402  | 
  | 
| 
 | 
   403  | 
subsection{*Correctness of posDivAlg, 
 | 
| 
 | 
   404  | 
           the Division Algorithm for @{text "a\<ge>0"} and @{text "b>0"} *}
 | 
| 
 | 
   405  | 
  | 
| 
 | 
   406  | 
lemma adjust_eq [simp]:
  | 
| 
 | 
   407  | 
     "adjust(b, <q,r>) = (let diff = r$-b in  
  | 
| 
 | 
   408  | 
                          if #0 $<= diff then <#2$*q $+ #1,diff>   
  | 
| 
 | 
   409  | 
                                         else <#2$*q,r>)"
  | 
| 
 | 
   410  | 
by (simp add: Let_def adjust_def)
  | 
| 
 | 
   411  | 
  | 
| 
 | 
   412  | 
  | 
| 
 | 
   413  | 
lemma posDivAlg_termination:
  | 
| 
 | 
   414  | 
     "[| #0 $< b; ~ a $< b |]    
  | 
| 
 | 
   415  | 
      ==> nat_of(a $- #2 $\<times> b $+ #1) < nat_of(a $- b $+ #1)"
  | 
| 
 | 
   416  | 
apply (simp (no_asm) add: zless_nat_conj)
  | 
| 
 | 
   417  | 
apply (simp add: not_zless_iff_zle zless_add1_iff_zle zcompare_rls)
  | 
| 
 | 
   418  | 
done
  | 
| 
 | 
   419  | 
  | 
| 
 | 
   420  | 
lemmas posDivAlg_unfold = def_wfrec [OF posDivAlg_def wf_measure]
  | 
| 
 | 
   421  | 
  | 
| 
 | 
   422  | 
lemma posDivAlg_eqn:
  | 
| 
 | 
   423  | 
     "[| #0 $< b; a \<in> int; b \<in> int |] ==>  
  | 
| 
 | 
   424  | 
      posDivAlg(<a,b>) =       
  | 
| 
 | 
   425  | 
       (if a$<b then <#0,a> else adjust(b, posDivAlg (<a, #2$*b>)))"
  | 
| 
 | 
   426  | 
apply (rule posDivAlg_unfold [THEN trans])
  | 
| 
 | 
   427  | 
apply (simp add: vimage_iff not_zless_iff_zle [THEN iff_sym])
  | 
| 
 | 
   428  | 
apply (blast intro: posDivAlg_termination)
  | 
| 
 | 
   429  | 
done
  | 
| 
 | 
   430  | 
  | 
| 
 | 
   431  | 
lemma posDivAlg_induct_lemma [rule_format]:
  | 
| 
 | 
   432  | 
  assumes prem:
  | 
| 
 | 
   433  | 
        "!!a b. [| a \<in> int; b \<in> int;  
  | 
| 
 | 
   434  | 
                   ~ (a $< b | b $<= #0) --> P(<a, #2 $* b>) |] ==> P(<a,b>)"
  | 
| 
 | 
   435  | 
  shows "<u,v> \<in> int*int --> P(<u,v>)"
  | 
| 
 | 
   436  | 
apply (rule_tac a = "<u,v>" in wf_induct)
  | 
| 
 | 
   437  | 
apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of (a $- b $+ #1)" 
  | 
| 
 | 
   438  | 
       in wf_measure)
  | 
| 
 | 
   439  | 
apply clarify
  | 
| 
 | 
   440  | 
apply (rule prem)
  | 
| 
 | 
   441  | 
apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec)
  | 
| 
 | 
   442  | 
apply auto
  | 
| 
 | 
   443  | 
apply (simp add: not_zle_iff_zless posDivAlg_termination)
  | 
| 
 | 
   444  | 
done
  | 
| 
 | 
   445  | 
  | 
| 
 | 
   446  | 
  | 
| 
 | 
   447  | 
lemma posDivAlg_induct [consumes 2]:
  | 
| 
 | 
   448  | 
  assumes u_int: "u \<in> int"
  | 
| 
 | 
   449  | 
      and v_int: "v \<in> int"
  | 
| 
 | 
   450  | 
      and ih: "!!a b. [| a \<in> int; b \<in> int;
  | 
| 
 | 
   451  | 
                     ~ (a $< b | b $<= #0) --> P(a, #2 $* b) |] ==> P(a,b)"
  | 
| 
 | 
   452  | 
  shows "P(u,v)"
  | 
| 
 | 
   453  | 
apply (subgoal_tac "(%<x,y>. P (x,y)) (<u,v>)")
  | 
| 
 | 
   454  | 
apply simp
  | 
| 
 | 
   455  | 
apply (rule posDivAlg_induct_lemma)
  | 
| 
 | 
   456  | 
apply (simp (no_asm_use))
  | 
| 
 | 
   457  | 
apply (rule ih)
  | 
| 
 | 
   458  | 
apply (auto simp add: u_int v_int)
  | 
| 
 | 
   459  | 
done
  | 
| 
 | 
   460  | 
  | 
| 
 | 
   461  | 
(*FIXME: use intify in integ_of so that we always have integ_of w \<in> int.
  | 
| 
 | 
   462  | 
    then this rewrite can work for ALL constants!!*)
  | 
| 
 | 
   463  | 
lemma intify_eq_0_iff_zle: "intify(m) = #0 <-> (m $<= #0 & #0 $<= m)"
  | 
| 
 | 
   464  | 
apply (simp (no_asm) add: int_eq_iff_zle)
  | 
| 
 | 
   465  | 
done
  | 
| 
 | 
   466  | 
  | 
| 
 | 
   467  | 
  | 
| 
 | 
   468  | 
subsection{* Some convenient biconditionals for products of signs *}
 | 
| 
 | 
   469  | 
  | 
| 
 | 
   470  | 
lemma zmult_pos: "[| #0 $< i; #0 $< j |] ==> #0 $< i $* j"
  | 
| 
 | 
   471  | 
apply (drule zmult_zless_mono1)
  | 
| 
 | 
   472  | 
apply auto
  | 
| 
 | 
   473  | 
done
  | 
| 
 | 
   474  | 
  | 
| 
 | 
   475  | 
lemma zmult_neg: "[| i $< #0; j $< #0 |] ==> #0 $< i $* j"
  | 
| 
 | 
   476  | 
apply (drule zmult_zless_mono1_neg)
  | 
| 
 | 
   477  | 
apply auto
  | 
| 
 | 
   478  | 
done
  | 
| 
 | 
   479  | 
  | 
| 
 | 
   480  | 
lemma zmult_pos_neg: "[| #0 $< i; j $< #0 |] ==> i $* j $< #0"
  | 
| 
 | 
   481  | 
apply (drule zmult_zless_mono1_neg)
  | 
| 
 | 
   482  | 
apply auto
  | 
| 
 | 
   483  | 
done
  | 
| 
 | 
   484  | 
  | 
| 
 | 
   485  | 
(** Inequality reasoning **)
  | 
| 
 | 
   486  | 
  | 
| 
 | 
   487  | 
lemma int_0_less_lemma:
  | 
| 
 | 
   488  | 
     "[| x \<in> int; y \<in> int |]  
  | 
| 
 | 
   489  | 
      ==> (#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)"
  | 
| 
 | 
   490  | 
apply (auto simp add: zle_def not_zless_iff_zle zmult_pos zmult_neg)
  | 
| 
 | 
   491  | 
apply (rule ccontr) 
  | 
| 
 | 
   492  | 
apply (rule_tac [2] ccontr) 
  | 
| 
 | 
   493  | 
apply (auto simp add: zle_def not_zless_iff_zle)
  | 
| 
 | 
   494  | 
apply (erule_tac P = "#0$< x$* y" in rev_mp)
  | 
| 
 | 
   495  | 
apply (erule_tac [2] P = "#0$< x$* y" in rev_mp)
  | 
| 
 | 
   496  | 
apply (drule zmult_pos_neg, assumption) 
  | 
| 
 | 
   497  | 
 prefer 2
  | 
| 
 | 
   498  | 
 apply (drule zmult_pos_neg, assumption) 
  | 
| 
 | 
   499  | 
apply (auto dest: zless_not_sym simp add: zmult_commute)
  | 
| 
 | 
   500  | 
done
  | 
| 
 | 
   501  | 
  | 
| 
 | 
   502  | 
lemma int_0_less_mult_iff:
  | 
| 
 | 
   503  | 
     "(#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)"
  | 
| 
 | 
   504  | 
apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_less_lemma)
  | 
| 
 | 
   505  | 
apply auto
  | 
| 
 | 
   506  | 
done
  | 
| 
 | 
   507  | 
  | 
| 
 | 
   508  | 
lemma int_0_le_lemma:
  | 
| 
 | 
   509  | 
     "[| x \<in> int; y \<in> int |]  
  | 
| 
 | 
   510  | 
      ==> (#0 $<= x $* y) <-> (#0 $<= x & #0 $<= y | x $<= #0 & y $<= #0)"
  | 
| 
 | 
   511  | 
by (auto simp add: zle_def not_zless_iff_zle int_0_less_mult_iff)
  | 
| 
 | 
   512  | 
  | 
| 
 | 
   513  | 
lemma int_0_le_mult_iff:
  | 
| 
 | 
   514  | 
     "(#0 $<= x $* y) <-> ((#0 $<= x & #0 $<= y) | (x $<= #0 & y $<= #0))"
  | 
| 
 | 
   515  | 
apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_le_lemma)
  | 
| 
 | 
   516  | 
apply auto
  | 
| 
 | 
   517  | 
done
  | 
| 
 | 
   518  | 
  | 
| 
 | 
   519  | 
lemma zmult_less_0_iff:
  | 
| 
 | 
   520  | 
     "(x $* y $< #0) <-> (#0 $< x & y $< #0 | x $< #0 & #0 $< y)"
  | 
| 
 | 
   521  | 
apply (auto simp add: int_0_le_mult_iff not_zle_iff_zless [THEN iff_sym])
  | 
| 
 | 
   522  | 
apply (auto dest: zless_not_sym simp add: not_zle_iff_zless)
  | 
| 
 | 
   523  | 
done
  | 
| 
 | 
   524  | 
  | 
| 
 | 
   525  | 
lemma zmult_le_0_iff:
  | 
| 
 | 
   526  | 
     "(x $* y $<= #0) <-> (#0 $<= x & y $<= #0 | x $<= #0 & #0 $<= y)"
  | 
| 
 | 
   527  | 
by (auto dest: zless_not_sym
  | 
| 
 | 
   528  | 
         simp add: int_0_less_mult_iff not_zless_iff_zle [THEN iff_sym])
  | 
| 
 | 
   529  | 
  | 
| 
 | 
   530  | 
  | 
| 
 | 
   531  | 
(*Typechecking for posDivAlg*)
  | 
| 
 | 
   532  | 
lemma posDivAlg_type [rule_format]:
  | 
| 
 | 
   533  | 
     "[| a \<in> int; b \<in> int |] ==> posDivAlg(<a,b>) \<in> int * int"
  | 
| 
 | 
   534  | 
apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
  | 
| 
 | 
   535  | 
apply assumption+
  | 
| 
 | 
   536  | 
apply (case_tac "#0 $< ba")
  | 
| 
 | 
   537  | 
 apply (simp add: posDivAlg_eqn adjust_def integ_of_type 
  | 
| 
 | 
   538  | 
             split add: split_if_asm)
  | 
| 
 | 
   539  | 
 apply clarify
  | 
| 
 | 
   540  | 
 apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
  | 
| 
 | 
   541  | 
apply (simp add: not_zless_iff_zle)
  | 
| 
 | 
   542  | 
apply (subst posDivAlg_unfold)
  | 
| 
 | 
   543  | 
apply simp
  | 
| 
 | 
   544  | 
done
  | 
| 
 | 
   545  | 
  | 
| 
 | 
   546  | 
(*Correctness of posDivAlg: it computes quotients correctly*)
  | 
| 
 | 
   547  | 
lemma posDivAlg_correct [rule_format]:
  | 
| 
 | 
   548  | 
     "[| a \<in> int; b \<in> int |]  
  | 
| 
 | 
   549  | 
      ==> #0 $<= a --> #0 $< b --> quorem (<a,b>, posDivAlg(<a,b>))"
  | 
| 
 | 
   550  | 
apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
  | 
| 
 | 
   551  | 
apply auto
  | 
| 
 | 
   552  | 
   apply (simp_all add: quorem_def)
  | 
| 
 | 
   553  | 
   txt{*base case: a<b*}
 | 
| 
 | 
   554  | 
   apply (simp add: posDivAlg_eqn)
  | 
| 
 | 
   555  | 
  apply (simp add: not_zless_iff_zle [THEN iff_sym])
  | 
| 
 | 
   556  | 
 apply (simp add: int_0_less_mult_iff)
  | 
| 
 | 
   557  | 
txt{*main argument*}
 | 
| 
 | 
   558  | 
apply (subst posDivAlg_eqn)
  | 
| 
 | 
   559  | 
apply (simp_all (no_asm_simp))
  | 
| 
 | 
   560  | 
apply (erule splitE)
  | 
| 
 | 
   561  | 
apply (rule posDivAlg_type)
  | 
| 
 | 
   562  | 
apply (simp_all add: int_0_less_mult_iff)
  | 
| 
 | 
   563  | 
apply (auto simp add: zadd_zmult_distrib2 Let_def)
  | 
| 
 | 
   564  | 
txt{*now just linear arithmetic*}
 | 
| 
 | 
   565  | 
apply (simp add: not_zle_iff_zless zdiff_zless_iff)
  | 
| 
 | 
   566  | 
done
  | 
| 
 | 
   567  | 
  | 
| 
 | 
   568  | 
  | 
| 
 | 
   569  | 
subsection{*Correctness of negDivAlg, the division algorithm for a<0 and b>0*}
 | 
| 
 | 
   570  | 
  | 
| 
 | 
   571  | 
lemma negDivAlg_termination:
  | 
| 
 | 
   572  | 
     "[| #0 $< b; a $+ b $< #0 |] 
  | 
| 
 | 
   573  | 
      ==> nat_of($- a $- #2 $* b) < nat_of($- a $- b)"
  | 
| 
 | 
   574  | 
apply (simp (no_asm) add: zless_nat_conj)
  | 
| 
 | 
   575  | 
apply (simp add: zcompare_rls not_zle_iff_zless zless_zdiff_iff [THEN iff_sym]
  | 
| 
 | 
   576  | 
                 zless_zminus)
  | 
| 
 | 
   577  | 
done
  | 
| 
 | 
   578  | 
  | 
| 
 | 
   579  | 
lemmas negDivAlg_unfold = def_wfrec [OF negDivAlg_def wf_measure]
  | 
| 
 | 
   580  | 
  | 
| 
 | 
   581  | 
lemma negDivAlg_eqn:
  | 
| 
 | 
   582  | 
     "[| #0 $< b; a : int; b : int |] ==>  
  | 
| 
 | 
   583  | 
      negDivAlg(<a,b>) =       
  | 
| 
 | 
   584  | 
       (if #0 $<= a$+b then <#-1,a$+b>  
  | 
| 
 | 
   585  | 
                       else adjust(b, negDivAlg (<a, #2$*b>)))"
  | 
| 
 | 
   586  | 
apply (rule negDivAlg_unfold [THEN trans])
  | 
| 
 | 
   587  | 
apply (simp (no_asm_simp) add: vimage_iff not_zless_iff_zle [THEN iff_sym])
  | 
| 
 | 
   588  | 
apply (blast intro: negDivAlg_termination)
  | 
| 
 | 
   589  | 
done
  | 
| 
 | 
   590  | 
  | 
| 
 | 
   591  | 
lemma negDivAlg_induct_lemma [rule_format]:
  | 
| 
 | 
   592  | 
  assumes prem:
  | 
| 
 | 
   593  | 
        "!!a b. [| a \<in> int; b \<in> int;  
  | 
| 
 | 
   594  | 
                   ~ (#0 $<= a $+ b | b $<= #0) --> P(<a, #2 $* b>) |]  
  | 
| 
 | 
   595  | 
                ==> P(<a,b>)"
  | 
| 
 | 
   596  | 
  shows "<u,v> \<in> int*int --> P(<u,v>)"
  | 
| 
 | 
   597  | 
apply (rule_tac a = "<u,v>" in wf_induct)
  | 
| 
 | 
   598  | 
apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of ($- a $- b)" 
  | 
| 
 | 
   599  | 
       in wf_measure)
  | 
| 
 | 
   600  | 
apply clarify
  | 
| 
 | 
   601  | 
apply (rule prem)
  | 
| 
 | 
   602  | 
apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec)
  | 
| 
 | 
   603  | 
apply auto
  | 
| 
 | 
   604  | 
apply (simp add: not_zle_iff_zless negDivAlg_termination)
  | 
| 
 | 
   605  | 
done
  | 
| 
 | 
   606  | 
  | 
| 
 | 
   607  | 
lemma negDivAlg_induct [consumes 2]:
  | 
| 
 | 
   608  | 
  assumes u_int: "u \<in> int"
  | 
| 
 | 
   609  | 
      and v_int: "v \<in> int"
  | 
| 
 | 
   610  | 
      and ih: "!!a b. [| a \<in> int; b \<in> int;  
  | 
| 
 | 
   611  | 
                         ~ (#0 $<= a $+ b | b $<= #0) --> P(a, #2 $* b) |]  
  | 
| 
 | 
   612  | 
                      ==> P(a,b)"
  | 
| 
 | 
   613  | 
  shows "P(u,v)"
  | 
| 
 | 
   614  | 
apply (subgoal_tac " (%<x,y>. P (x,y)) (<u,v>)")
  | 
| 
 | 
   615  | 
apply simp
  | 
| 
 | 
   616  | 
apply (rule negDivAlg_induct_lemma)
  | 
| 
 | 
   617  | 
apply (simp (no_asm_use))
  | 
| 
 | 
   618  | 
apply (rule ih)
  | 
| 
 | 
   619  | 
apply (auto simp add: u_int v_int)
  | 
| 
 | 
   620  | 
done
  | 
| 
 | 
   621  | 
  | 
| 
 | 
   622  | 
  | 
| 
 | 
   623  | 
(*Typechecking for negDivAlg*)
  | 
| 
 | 
   624  | 
lemma negDivAlg_type:
  | 
| 
 | 
   625  | 
     "[| a \<in> int; b \<in> int |] ==> negDivAlg(<a,b>) \<in> int * int"
  | 
| 
 | 
   626  | 
apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
  | 
| 
 | 
   627  | 
apply assumption+
  | 
| 
 | 
   628  | 
apply (case_tac "#0 $< ba")
  | 
| 
 | 
   629  | 
 apply (simp add: negDivAlg_eqn adjust_def integ_of_type 
  | 
| 
 | 
   630  | 
             split add: split_if_asm)
  | 
| 
 | 
   631  | 
 apply clarify
  | 
| 
 | 
   632  | 
 apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
  | 
| 
 | 
   633  | 
apply (simp add: not_zless_iff_zle)
  | 
| 
 | 
   634  | 
apply (subst negDivAlg_unfold)
  | 
| 
 | 
   635  | 
apply simp
  | 
| 
 | 
   636  | 
done
  | 
| 
 | 
   637  | 
  | 
| 
 | 
   638  | 
  | 
| 
 | 
   639  | 
(*Correctness of negDivAlg: it computes quotients correctly
  | 
| 
 | 
   640  | 
  It doesn't work if a=0 because the 0/b=0 rather than -1*)
  | 
| 
 | 
   641  | 
lemma negDivAlg_correct [rule_format]:
  | 
| 
 | 
   642  | 
     "[| a \<in> int; b \<in> int |]  
  | 
| 
 | 
   643  | 
      ==> a $< #0 --> #0 $< b --> quorem (<a,b>, negDivAlg(<a,b>))"
  | 
| 
 | 
   644  | 
apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
  | 
| 
 | 
   645  | 
  apply auto
  | 
| 
 | 
   646  | 
   apply (simp_all add: quorem_def)
  | 
| 
 | 
   647  | 
   txt{*base case: @{term "0$<=a$+b"}*}
 | 
| 
 | 
   648  | 
   apply (simp add: negDivAlg_eqn)
  | 
| 
 | 
   649  | 
  apply (simp add: not_zless_iff_zle [THEN iff_sym])
  | 
| 
 | 
   650  | 
 apply (simp add: int_0_less_mult_iff)
  | 
| 
 | 
   651  | 
txt{*main argument*}
 | 
| 
 | 
   652  | 
apply (subst negDivAlg_eqn)
  | 
| 
 | 
   653  | 
apply (simp_all (no_asm_simp))
  | 
| 
 | 
   654  | 
apply (erule splitE)
  | 
| 
 | 
   655  | 
apply (rule negDivAlg_type)
  | 
| 
 | 
   656  | 
apply (simp_all add: int_0_less_mult_iff)
  | 
| 
 | 
   657  | 
apply (auto simp add: zadd_zmult_distrib2 Let_def)
  | 
| 
 | 
   658  | 
txt{*now just linear arithmetic*}
 | 
| 
 | 
   659  | 
apply (simp add: not_zle_iff_zless zdiff_zless_iff)
  | 
| 
 | 
   660  | 
done
  | 
| 
 | 
   661  | 
  | 
| 
 | 
   662  | 
  | 
| 
 | 
   663  | 
subsection{* Existence shown by proving the division algorithm to be correct *}
 | 
| 
 | 
   664  | 
  | 
| 
 | 
   665  | 
(*the case a=0*)
  | 
| 
 | 
   666  | 
lemma quorem_0: "[|b \<noteq> #0;  b \<in> int|] ==> quorem (<#0,b>, <#0,#0>)"
  | 
| 
 | 
   667  | 
by (force simp add: quorem_def neq_iff_zless)
  | 
| 
 | 
   668  | 
  | 
| 
 | 
   669  | 
lemma posDivAlg_zero_divisor: "posDivAlg(<a,#0>) = <#0,a>"
  | 
| 
 | 
   670  | 
apply (subst posDivAlg_unfold)
  | 
| 
 | 
   671  | 
apply simp
  | 
| 
 | 
   672  | 
done
  | 
| 
 | 
   673  | 
  | 
| 
 | 
   674  | 
lemma posDivAlg_0 [simp]: "posDivAlg (<#0,b>) = <#0,#0>"
  | 
| 
 | 
   675  | 
apply (subst posDivAlg_unfold)
  | 
| 
 | 
   676  | 
apply (simp add: not_zle_iff_zless)
  | 
| 
 | 
   677  | 
done
  | 
| 
 | 
   678  | 
  | 
| 
 | 
   679  | 
  | 
| 
 | 
   680  | 
(*Needed below.  Actually it's an equivalence.*)
  | 
| 
 | 
   681  | 
lemma linear_arith_lemma: "~ (#0 $<= #-1 $+ b) ==> (b $<= #0)"
  | 
| 
 | 
   682  | 
apply (simp add: not_zle_iff_zless)
  | 
| 
 | 
   683  | 
apply (drule zminus_zless_zminus [THEN iffD2])
  | 
| 
 | 
   684  | 
apply (simp add: zadd_commute zless_add1_iff_zle zle_zminus)
  | 
| 
 | 
   685  | 
done
  | 
| 
 | 
   686  | 
  | 
| 
 | 
   687  | 
lemma negDivAlg_minus1 [simp]: "negDivAlg (<#-1,b>) = <#-1, b$-#1>"
  | 
| 
 | 
   688  | 
apply (subst negDivAlg_unfold)
  | 
| 
 | 
   689  | 
apply (simp add: linear_arith_lemma integ_of_type vimage_iff)
  | 
| 
 | 
   690  | 
done
  | 
| 
 | 
   691  | 
  | 
| 
 | 
   692  | 
lemma negateSnd_eq [simp]: "negateSnd (<q,r>) = <q, $-r>"
  | 
| 
 | 
   693  | 
apply (unfold negateSnd_def)
  | 
| 
 | 
   694  | 
apply auto
  | 
| 
 | 
   695  | 
done
  | 
| 
 | 
   696  | 
  | 
| 
 | 
   697  | 
lemma negateSnd_type: "qr \<in> int * int ==> negateSnd (qr) \<in> int * int"
  | 
| 
 | 
   698  | 
apply (unfold negateSnd_def)
  | 
| 
 | 
   699  | 
apply auto
  | 
| 
 | 
   700  | 
done
  | 
| 
 | 
   701  | 
  | 
| 
 | 
   702  | 
lemma quorem_neg:
  | 
| 
 | 
   703  | 
     "[|quorem (<$-a,$-b>, qr);  a \<in> int;  b \<in> int;  qr \<in> int * int|]   
  | 
| 
 | 
   704  | 
      ==> quorem (<a,b>, negateSnd(qr))"
  | 
| 
 | 
   705  | 
apply clarify
  | 
| 
 | 
   706  | 
apply (auto elim: zless_asym simp add: quorem_def zless_zminus)
  | 
| 
 | 
   707  | 
txt{*linear arithmetic from here on*}
 | 
| 
 | 
   708  | 
apply (simp_all add: zminus_equation [of a] zminus_zless)
  | 
| 
 | 
   709  | 
apply (cut_tac [2] z = "b" and w = "#0" in zless_linear)
  | 
| 
 | 
   710  | 
apply (cut_tac [1] z = "b" and w = "#0" in zless_linear)
  | 
| 
 | 
   711  | 
apply auto
  | 
| 
 | 
   712  | 
apply (blast dest: zle_zless_trans)+
  | 
| 
 | 
   713  | 
done
  | 
| 
 | 
   714  | 
  | 
| 
 | 
   715  | 
lemma divAlg_correct:
  | 
| 
 | 
   716  | 
     "[|b \<noteq> #0;  a \<in> int;  b \<in> int|] ==> quorem (<a,b>, divAlg(<a,b>))"
  | 
| 
 | 
   717  | 
apply (auto simp add: quorem_0 divAlg_def)
  | 
| 
 | 
   718  | 
apply (safe intro!: quorem_neg posDivAlg_correct negDivAlg_correct
  | 
| 
 | 
   719  | 
                    posDivAlg_type negDivAlg_type) 
  | 
| 
 | 
   720  | 
apply (auto simp add: quorem_def neq_iff_zless)
  | 
| 
 | 
   721  | 
txt{*linear arithmetic from here on*}
 | 
| 
 | 
   722  | 
apply (auto simp add: zle_def)
  | 
| 
 | 
   723  | 
done
  | 
| 
 | 
   724  | 
  | 
| 
 | 
   725  | 
lemma divAlg_type: "[|a \<in> int;  b \<in> int|] ==> divAlg(<a,b>) \<in> int * int"
  | 
| 
 | 
   726  | 
apply (auto simp add: divAlg_def)
  | 
| 
 | 
   727  | 
apply (auto simp add: posDivAlg_type negDivAlg_type negateSnd_type)
  | 
| 
 | 
   728  | 
done
  | 
| 
 | 
   729  | 
  | 
| 
 | 
   730  | 
  | 
| 
 | 
   731  | 
(** intify cancellation **)
  | 
| 
 | 
   732  | 
  | 
| 
 | 
   733  | 
lemma zdiv_intify1 [simp]: "intify(x) zdiv y = x zdiv y"
  | 
| 
 | 
   734  | 
apply (simp (no_asm) add: zdiv_def)
  | 
| 
 | 
   735  | 
done
  | 
| 
 | 
   736  | 
  | 
| 
 | 
   737  | 
lemma zdiv_intify2 [simp]: "x zdiv intify(y) = x zdiv y"
  | 
| 
 | 
   738  | 
apply (simp (no_asm) add: zdiv_def)
  | 
| 
 | 
   739  | 
done
  | 
| 
 | 
   740  | 
  | 
| 
 | 
   741  | 
lemma zdiv_type [iff,TC]: "z zdiv w \<in> int"
  | 
| 
 | 
   742  | 
apply (unfold zdiv_def)
  | 
| 
 | 
   743  | 
apply (blast intro: fst_type divAlg_type)
  | 
| 
 | 
   744  | 
done
  | 
| 
 | 
   745  | 
  | 
| 
 | 
   746  | 
lemma zmod_intify1 [simp]: "intify(x) zmod y = x zmod y"
  | 
| 
 | 
   747  | 
apply (simp (no_asm) add: zmod_def)
  | 
| 
 | 
   748  | 
done
  | 
| 
 | 
   749  | 
  | 
| 
 | 
   750  | 
lemma zmod_intify2 [simp]: "x zmod intify(y) = x zmod y"
  | 
| 
 | 
   751  | 
apply (simp (no_asm) add: zmod_def)
  | 
| 
 | 
   752  | 
done
  | 
| 
 | 
   753  | 
  | 
| 
 | 
   754  | 
lemma zmod_type [iff,TC]: "z zmod w \<in> int"
  | 
| 
 | 
   755  | 
apply (unfold zmod_def)
  | 
| 
 | 
   756  | 
apply (rule snd_type)
  | 
| 
 | 
   757  | 
apply (blast intro: divAlg_type)
  | 
| 
 | 
   758  | 
done
  | 
| 
 | 
   759  | 
  | 
| 
 | 
   760  | 
  | 
| 
 | 
   761  | 
(** Arbitrary definitions for division by zero.  Useful to simplify 
  | 
| 
 | 
   762  | 
    certain equations **)
  | 
| 
 | 
   763  | 
  | 
| 
 | 
   764  | 
lemma DIVISION_BY_ZERO_ZDIV: "a zdiv #0 = #0"
  | 
| 
 | 
   765  | 
apply (simp (no_asm) add: zdiv_def divAlg_def posDivAlg_zero_divisor)
  | 
| 
 | 
   766  | 
done  (*NOT for adding to default simpset*)
  | 
| 
 | 
   767  | 
  | 
| 
 | 
   768  | 
lemma DIVISION_BY_ZERO_ZMOD: "a zmod #0 = intify(a)"
  | 
| 
 | 
   769  | 
apply (simp (no_asm) add: zmod_def divAlg_def posDivAlg_zero_divisor)
  | 
| 
 | 
   770  | 
done  (*NOT for adding to default simpset*)
  | 
| 
 | 
   771  | 
  | 
| 
 | 
   772  | 
  | 
| 
 | 
   773  | 
  | 
| 
 | 
   774  | 
(** Basic laws about division and remainder **)
  | 
| 
 | 
   775  | 
  | 
| 
 | 
   776  | 
lemma raw_zmod_zdiv_equality:
  | 
| 
 | 
   777  | 
     "[| a \<in> int; b \<in> int |] ==> a = b $* (a zdiv b) $+ (a zmod b)"
  | 
| 
 | 
   778  | 
apply (case_tac "b = #0")
  | 
| 
 | 
   779  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
   780  | 
apply (cut_tac a = "a" and b = "b" in divAlg_correct)
  | 
| 
 | 
   781  | 
apply (auto simp add: quorem_def zdiv_def zmod_def split_def)
  | 
| 
 | 
   782  | 
done
  | 
| 
 | 
   783  | 
  | 
| 
 | 
   784  | 
lemma zmod_zdiv_equality: "intify(a) = b $* (a zdiv b) $+ (a zmod b)"
  | 
| 
 | 
   785  | 
apply (rule trans)
  | 
| 
 | 
   786  | 
apply (rule_tac b = "intify (b)" in raw_zmod_zdiv_equality)
  | 
| 
 | 
   787  | 
apply auto
  | 
| 
 | 
   788  | 
done
  | 
| 
 | 
   789  | 
  | 
| 
 | 
   790  | 
lemma pos_mod: "#0 $< b ==> #0 $<= a zmod b & a zmod b $< b"
  | 
| 
 | 
   791  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
  | 
| 
 | 
   792  | 
apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
  | 
| 
 | 
   793  | 
apply (blast dest: zle_zless_trans)+
  | 
| 
 | 
   794  | 
done
  | 
| 
 | 
   795  | 
  | 
| 
 | 
   796  | 
lemmas pos_mod_sign = pos_mod [THEN conjunct1, standard]
  | 
| 
 | 
   797  | 
and    pos_mod_bound = pos_mod [THEN conjunct2, standard]
  | 
| 
 | 
   798  | 
  | 
| 
 | 
   799  | 
lemma neg_mod: "b $< #0 ==> a zmod b $<= #0 & b $< a zmod b"
  | 
| 
 | 
   800  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
  | 
| 
 | 
   801  | 
apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
  | 
| 
 | 
   802  | 
apply (blast dest: zle_zless_trans)
  | 
| 
 | 
   803  | 
apply (blast dest: zless_trans)+
  | 
| 
 | 
   804  | 
done
  | 
| 
 | 
   805  | 
  | 
| 
 | 
   806  | 
lemmas neg_mod_sign = neg_mod [THEN conjunct1, standard]
  | 
| 
 | 
   807  | 
and    neg_mod_bound = neg_mod [THEN conjunct2, standard]
  | 
| 
 | 
   808  | 
  | 
| 
 | 
   809  | 
  | 
| 
 | 
   810  | 
(** proving general properties of zdiv and zmod **)
  | 
| 
 | 
   811  | 
  | 
| 
 | 
   812  | 
lemma quorem_div_mod:
  | 
| 
 | 
   813  | 
     "[|b \<noteq> #0;  a \<in> int;  b \<in> int |]  
  | 
| 
 | 
   814  | 
      ==> quorem (<a,b>, <a zdiv b, a zmod b>)"
  | 
| 
 | 
   815  | 
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
  | 
| 
 | 
   816  | 
apply (auto simp add: quorem_def neq_iff_zless pos_mod_sign pos_mod_bound 
  | 
| 
 | 
   817  | 
                      neg_mod_sign neg_mod_bound)
  | 
| 
 | 
   818  | 
done
  | 
| 
 | 
   819  | 
  | 
| 
 | 
   820  | 
(*Surely quorem(<a,b>,<q,r>) implies a \<in> int, but it doesn't matter*)
  | 
| 
 | 
   821  | 
lemma quorem_div:
  | 
| 
 | 
   822  | 
     "[| quorem(<a,b>,<q,r>);  b \<noteq> #0;  a \<in> int;  b \<in> int;  q \<in> int |]  
  | 
| 
 | 
   823  | 
      ==> a zdiv b = q"
  | 
| 
 | 
   824  | 
by (blast intro: quorem_div_mod [THEN unique_quotient])
  | 
| 
 | 
   825  | 
  | 
| 
 | 
   826  | 
lemma quorem_mod:
  | 
| 
 | 
   827  | 
     "[| quorem(<a,b>,<q,r>); b \<noteq> #0; a \<in> int; b \<in> int; q \<in> int; r \<in> int |] 
  | 
| 
 | 
   828  | 
      ==> a zmod b = r"
  | 
| 
 | 
   829  | 
by (blast intro: quorem_div_mod [THEN unique_remainder])
  | 
| 
 | 
   830  | 
  | 
| 
 | 
   831  | 
lemma zdiv_pos_pos_trivial_raw:
  | 
| 
 | 
   832  | 
     "[| a \<in> int;  b \<in> int;  #0 $<= a;  a $< b |] ==> a zdiv b = #0"
  | 
| 
 | 
   833  | 
apply (rule quorem_div)
  | 
| 
 | 
   834  | 
apply (auto simp add: quorem_def)
  | 
| 
 | 
   835  | 
(*linear arithmetic*)
  | 
| 
 | 
   836  | 
apply (blast dest: zle_zless_trans)+
  | 
| 
 | 
   837  | 
done
  | 
| 
 | 
   838  | 
  | 
| 
 | 
   839  | 
lemma zdiv_pos_pos_trivial: "[| #0 $<= a;  a $< b |] ==> a zdiv b = #0"
  | 
| 
 | 
   840  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" 
  | 
| 
 | 
   841  | 
       in zdiv_pos_pos_trivial_raw)
  | 
| 
 | 
   842  | 
apply auto
  | 
| 
 | 
   843  | 
done
  | 
| 
 | 
   844  | 
  | 
| 
 | 
   845  | 
lemma zdiv_neg_neg_trivial_raw:
  | 
| 
 | 
   846  | 
     "[| a \<in> int;  b \<in> int;  a $<= #0;  b $< a |] ==> a zdiv b = #0"
  | 
| 
 | 
   847  | 
apply (rule_tac r = "a" in quorem_div)
  | 
| 
 | 
   848  | 
apply (auto simp add: quorem_def)
  | 
| 
 | 
   849  | 
(*linear arithmetic*)
  | 
| 
 | 
   850  | 
apply (blast dest: zle_zless_trans zless_trans)+
  | 
| 
 | 
   851  | 
done
  | 
| 
 | 
   852  | 
  | 
| 
 | 
   853  | 
lemma zdiv_neg_neg_trivial: "[| a $<= #0;  b $< a |] ==> a zdiv b = #0"
  | 
| 
 | 
   854  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" 
  | 
| 
 | 
   855  | 
       in zdiv_neg_neg_trivial_raw)
  | 
| 
 | 
   856  | 
apply auto
  | 
| 
 | 
   857  | 
done
  | 
| 
 | 
   858  | 
  | 
| 
 | 
   859  | 
lemma zadd_le_0_lemma: "[| a$+b $<= #0;  #0 $< a;  #0 $< b |] ==> False"
  | 
| 
 | 
   860  | 
apply (drule_tac z' = "#0" and z = "b" in zadd_zless_mono)
  | 
| 
 | 
   861  | 
apply (auto simp add: zle_def)
  | 
| 
 | 
   862  | 
apply (blast dest: zless_trans)
  | 
| 
 | 
   863  | 
done
  | 
| 
 | 
   864  | 
  | 
| 
 | 
   865  | 
lemma zdiv_pos_neg_trivial_raw:
  | 
| 
 | 
   866  | 
     "[| a \<in> int;  b \<in> int;  #0 $< a;  a$+b $<= #0 |] ==> a zdiv b = #-1"
  | 
| 
 | 
   867  | 
apply (rule_tac r = "a $+ b" in quorem_div)
  | 
| 
 | 
   868  | 
apply (auto simp add: quorem_def)
  | 
| 
 | 
   869  | 
(*linear arithmetic*)
  | 
| 
 | 
   870  | 
apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
  | 
| 
 | 
   871  | 
done
  | 
| 
 | 
   872  | 
  | 
| 
 | 
   873  | 
lemma zdiv_pos_neg_trivial: "[| #0 $< a;  a$+b $<= #0 |] ==> a zdiv b = #-1"
  | 
| 
 | 
   874  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" 
  | 
| 
 | 
   875  | 
       in zdiv_pos_neg_trivial_raw)
  | 
| 
 | 
   876  | 
apply auto
  | 
| 
 | 
   877  | 
done
  | 
| 
 | 
   878  | 
  | 
| 
 | 
   879  | 
(*There is no zdiv_neg_pos_trivial because  #0 zdiv b = #0 would supersede it*)
  | 
| 
 | 
   880  | 
  | 
| 
 | 
   881  | 
  | 
| 
 | 
   882  | 
lemma zmod_pos_pos_trivial_raw:
  | 
| 
 | 
   883  | 
     "[| a \<in> int;  b \<in> int;  #0 $<= a;  a $< b |] ==> a zmod b = a"
  | 
| 
 | 
   884  | 
apply (rule_tac q = "#0" in quorem_mod)
  | 
| 
 | 
   885  | 
apply (auto simp add: quorem_def)
  | 
| 
 | 
   886  | 
(*linear arithmetic*)
  | 
| 
 | 
   887  | 
apply (blast dest: zle_zless_trans)+
  | 
| 
 | 
   888  | 
done
  | 
| 
 | 
   889  | 
  | 
| 
 | 
   890  | 
lemma zmod_pos_pos_trivial: "[| #0 $<= a;  a $< b |] ==> a zmod b = intify(a)"
  | 
| 
 | 
   891  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" 
  | 
| 
 | 
   892  | 
       in zmod_pos_pos_trivial_raw)
  | 
| 
 | 
   893  | 
apply auto
  | 
| 
 | 
   894  | 
done
  | 
| 
 | 
   895  | 
  | 
| 
 | 
   896  | 
lemma zmod_neg_neg_trivial_raw:
  | 
| 
 | 
   897  | 
     "[| a \<in> int;  b \<in> int;  a $<= #0;  b $< a |] ==> a zmod b = a"
  | 
| 
 | 
   898  | 
apply (rule_tac q = "#0" in quorem_mod)
  | 
| 
 | 
   899  | 
apply (auto simp add: quorem_def)
  | 
| 
 | 
   900  | 
(*linear arithmetic*)
  | 
| 
 | 
   901  | 
apply (blast dest: zle_zless_trans zless_trans)+
  | 
| 
 | 
   902  | 
done
  | 
| 
 | 
   903  | 
  | 
| 
 | 
   904  | 
lemma zmod_neg_neg_trivial: "[| a $<= #0;  b $< a |] ==> a zmod b = intify(a)"
  | 
| 
 | 
   905  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" 
  | 
| 
 | 
   906  | 
       in zmod_neg_neg_trivial_raw)
  | 
| 
 | 
   907  | 
apply auto
  | 
| 
 | 
   908  | 
done
  | 
| 
 | 
   909  | 
  | 
| 
 | 
   910  | 
lemma zmod_pos_neg_trivial_raw:
  | 
| 
 | 
   911  | 
     "[| a \<in> int;  b \<in> int;  #0 $< a;  a$+b $<= #0 |] ==> a zmod b = a$+b"
  | 
| 
 | 
   912  | 
apply (rule_tac q = "#-1" in quorem_mod)
  | 
| 
 | 
   913  | 
apply (auto simp add: quorem_def)
  | 
| 
 | 
   914  | 
(*linear arithmetic*)
  | 
| 
 | 
   915  | 
apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
  | 
| 
 | 
   916  | 
done
  | 
| 
 | 
   917  | 
  | 
| 
 | 
   918  | 
lemma zmod_pos_neg_trivial: "[| #0 $< a;  a$+b $<= #0 |] ==> a zmod b = a$+b"
  | 
| 
 | 
   919  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" 
  | 
| 
 | 
   920  | 
       in zmod_pos_neg_trivial_raw)
  | 
| 
 | 
   921  | 
apply auto
  | 
| 
 | 
   922  | 
done
  | 
| 
 | 
   923  | 
  | 
| 
 | 
   924  | 
(*There is no zmod_neg_pos_trivial...*)
  | 
| 
 | 
   925  | 
  | 
| 
 | 
   926  | 
  | 
| 
 | 
   927  | 
(*Simpler laws such as -a zdiv b = -(a zdiv b) FAIL*)
  | 
| 
 | 
   928  | 
  | 
| 
 | 
   929  | 
lemma zdiv_zminus_zminus_raw:
  | 
| 
 | 
   930  | 
     "[|a \<in> int;  b \<in> int|] ==> ($-a) zdiv ($-b) = a zdiv b"
  | 
| 
 | 
   931  | 
apply (case_tac "b = #0")
  | 
| 
 | 
   932  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
   933  | 
apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_div])
  | 
| 
 | 
   934  | 
apply auto
  | 
| 
 | 
   935  | 
done
  | 
| 
 | 
   936  | 
  | 
| 
 | 
   937  | 
lemma zdiv_zminus_zminus [simp]: "($-a) zdiv ($-b) = a zdiv b"
  | 
| 
 | 
   938  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zminus_zminus_raw)
  | 
| 
 | 
   939  | 
apply auto
  | 
| 
 | 
   940  | 
done
  | 
| 
 | 
   941  | 
  | 
| 
 | 
   942  | 
(*Simpler laws such as -a zmod b = -(a zmod b) FAIL*)
  | 
| 
 | 
   943  | 
lemma zmod_zminus_zminus_raw:
  | 
| 
 | 
   944  | 
     "[|a \<in> int;  b \<in> int|] ==> ($-a) zmod ($-b) = $- (a zmod b)"
  | 
| 
 | 
   945  | 
apply (case_tac "b = #0")
  | 
| 
 | 
   946  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
   947  | 
apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod])
  | 
| 
 | 
   948  | 
apply auto
  | 
| 
 | 
   949  | 
done
  | 
| 
 | 
   950  | 
  | 
| 
 | 
   951  | 
lemma zmod_zminus_zminus [simp]: "($-a) zmod ($-b) = $- (a zmod b)"
  | 
| 
 | 
   952  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zminus_zminus_raw)
  | 
| 
 | 
   953  | 
apply auto
  | 
| 
 | 
   954  | 
done
  | 
| 
 | 
   955  | 
  | 
| 
 | 
   956  | 
  | 
| 
 | 
   957  | 
subsection{* division of a number by itself *}
 | 
| 
 | 
   958  | 
  | 
| 
 | 
   959  | 
lemma self_quotient_aux1: "[| #0 $< a; a = r $+ a$*q; r $< a |] ==> #1 $<= q"
  | 
| 
 | 
   960  | 
apply (subgoal_tac "#0 $< a$*q")
  | 
| 
 | 
   961  | 
apply (cut_tac w = "#0" and z = "q" in add1_zle_iff)
  | 
| 
 | 
   962  | 
apply (simp add: int_0_less_mult_iff)
  | 
| 
 | 
   963  | 
apply (blast dest: zless_trans)
  | 
| 
 | 
   964  | 
(*linear arithmetic...*)
  | 
| 
 | 
   965  | 
apply (drule_tac t = "%x. x $- r" in subst_context)
  | 
| 
 | 
   966  | 
apply (drule sym)
  | 
| 
 | 
   967  | 
apply (simp add: zcompare_rls)
  | 
| 
 | 
   968  | 
done
  | 
| 
 | 
   969  | 
  | 
| 
 | 
   970  | 
lemma self_quotient_aux2: "[| #0 $< a; a = r $+ a$*q; #0 $<= r |] ==> q $<= #1"
  | 
| 
 | 
   971  | 
apply (subgoal_tac "#0 $<= a$* (#1$-q)")
  | 
| 
 | 
   972  | 
 apply (simp add: int_0_le_mult_iff zcompare_rls)
  | 
| 
 | 
   973  | 
 apply (blast dest: zle_zless_trans)
  | 
| 
 | 
   974  | 
apply (simp add: zdiff_zmult_distrib2)
  | 
| 
 | 
   975  | 
apply (drule_tac t = "%x. x $- a $* q" in subst_context)
  | 
| 
 | 
   976  | 
apply (simp add: zcompare_rls)
  | 
| 
 | 
   977  | 
done
  | 
| 
 | 
   978  | 
  | 
| 
 | 
   979  | 
lemma self_quotient:
  | 
| 
 | 
   980  | 
     "[| quorem(<a,a>,<q,r>);  a \<in> int;  q \<in> int;  a \<noteq> #0|] ==> q = #1"
  | 
| 
 | 
   981  | 
apply (simp add: split_ifs quorem_def neq_iff_zless)
  | 
| 
 | 
   982  | 
apply (rule zle_anti_sym)
  | 
| 
 | 
   983  | 
apply safe
  | 
| 
 | 
   984  | 
apply auto
  | 
| 
 | 
   985  | 
prefer 4 apply (blast dest: zless_trans)
  | 
| 
 | 
   986  | 
apply (blast dest: zless_trans)
  | 
| 
 | 
   987  | 
apply (rule_tac [3] a = "$-a" and r = "$-r" in self_quotient_aux1)
  | 
| 
 | 
   988  | 
apply (rule_tac a = "$-a" and r = "$-r" in self_quotient_aux2)
  | 
| 
 | 
   989  | 
apply (rule_tac [6] zminus_equation [THEN iffD1])
  | 
| 
 | 
   990  | 
apply (rule_tac [2] zminus_equation [THEN iffD1])
  | 
| 
 | 
   991  | 
apply (force intro: self_quotient_aux1 self_quotient_aux2
  | 
| 
 | 
   992  | 
  simp add: zadd_commute zmult_zminus)+
  | 
| 
 | 
   993  | 
done
  | 
| 
 | 
   994  | 
  | 
| 
 | 
   995  | 
lemma self_remainder:
  | 
| 
 | 
   996  | 
     "[|quorem(<a,a>,<q,r>); a \<in> int; q \<in> int; r \<in> int; a \<noteq> #0|] ==> r = #0"
  | 
| 
 | 
   997  | 
apply (frule self_quotient)
  | 
| 
 | 
   998  | 
apply (auto simp add: quorem_def)
  | 
| 
 | 
   999  | 
done
  | 
| 
 | 
  1000  | 
  | 
| 
 | 
  1001  | 
lemma zdiv_self_raw: "[|a \<noteq> #0; a \<in> int|] ==> a zdiv a = #1"
  | 
| 
 | 
  1002  | 
apply (blast intro: quorem_div_mod [THEN self_quotient])
  | 
| 
 | 
  1003  | 
done
  | 
| 
 | 
  1004  | 
  | 
| 
 | 
  1005  | 
lemma zdiv_self [simp]: "intify(a) \<noteq> #0 ==> a zdiv a = #1"
  | 
| 
 | 
  1006  | 
apply (drule zdiv_self_raw)
  | 
| 
 | 
  1007  | 
apply auto
  | 
| 
 | 
  1008  | 
done
  | 
| 
 | 
  1009  | 
  | 
| 
 | 
  1010  | 
(*Here we have 0 zmod 0 = 0, also assumed by Knuth (who puts m zmod 0 = 0) *)
  | 
| 
 | 
  1011  | 
lemma zmod_self_raw: "a \<in> int ==> a zmod a = #0"
  | 
| 
 | 
  1012  | 
apply (case_tac "a = #0")
  | 
| 
 | 
  1013  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1014  | 
apply (blast intro: quorem_div_mod [THEN self_remainder])
  | 
| 
 | 
  1015  | 
done
  | 
| 
 | 
  1016  | 
  | 
| 
 | 
  1017  | 
lemma zmod_self [simp]: "a zmod a = #0"
  | 
| 
 | 
  1018  | 
apply (cut_tac a = "intify (a)" in zmod_self_raw)
  | 
| 
 | 
  1019  | 
apply auto
  | 
| 
 | 
  1020  | 
done
  | 
| 
 | 
  1021  | 
  | 
| 
 | 
  1022  | 
  | 
| 
 | 
  1023  | 
subsection{* Computation of division and remainder *}
 | 
| 
 | 
  1024  | 
  | 
| 
 | 
  1025  | 
lemma zdiv_zero [simp]: "#0 zdiv b = #0"
  | 
| 
 | 
  1026  | 
apply (simp (no_asm) add: zdiv_def divAlg_def)
  | 
| 
 | 
  1027  | 
done
  | 
| 
 | 
  1028  | 
  | 
| 
 | 
  1029  | 
lemma zdiv_eq_minus1: "#0 $< b ==> #-1 zdiv b = #-1"
  | 
| 
 | 
  1030  | 
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
  | 
| 
 | 
  1031  | 
done
  | 
| 
 | 
  1032  | 
  | 
| 
 | 
  1033  | 
lemma zmod_zero [simp]: "#0 zmod b = #0"
  | 
| 
 | 
  1034  | 
apply (simp (no_asm) add: zmod_def divAlg_def)
  | 
| 
 | 
  1035  | 
done
  | 
| 
 | 
  1036  | 
  | 
| 
 | 
  1037  | 
lemma zdiv_minus1: "#0 $< b ==> #-1 zdiv b = #-1"
  | 
| 
 | 
  1038  | 
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
  | 
| 
 | 
  1039  | 
done
  | 
| 
 | 
  1040  | 
  | 
| 
 | 
  1041  | 
lemma zmod_minus1: "#0 $< b ==> #-1 zmod b = b $- #1"
  | 
| 
 | 
  1042  | 
apply (simp (no_asm_simp) add: zmod_def divAlg_def)
  | 
| 
 | 
  1043  | 
done
  | 
| 
 | 
  1044  | 
  | 
| 
 | 
  1045  | 
(** a positive, b positive **)
  | 
| 
 | 
  1046  | 
  | 
| 
 | 
  1047  | 
lemma zdiv_pos_pos: "[| #0 $< a;  #0 $<= b |]  
  | 
| 
 | 
  1048  | 
      ==> a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))"
  | 
| 
 | 
  1049  | 
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
  | 
| 
 | 
  1050  | 
apply (auto simp add: zle_def)
  | 
| 
 | 
  1051  | 
done
  | 
| 
 | 
  1052  | 
  | 
| 
 | 
  1053  | 
lemma zmod_pos_pos:
  | 
| 
 | 
  1054  | 
     "[| #0 $< a;  #0 $<= b |]  
  | 
| 
 | 
  1055  | 
      ==> a zmod b = snd (posDivAlg(<intify(a), intify(b)>))"
  | 
| 
 | 
  1056  | 
apply (simp (no_asm_simp) add: zmod_def divAlg_def)
  | 
| 
 | 
  1057  | 
apply (auto simp add: zle_def)
  | 
| 
 | 
  1058  | 
done
  | 
| 
 | 
  1059  | 
  | 
| 
 | 
  1060  | 
(** a negative, b positive **)
  | 
| 
 | 
  1061  | 
  | 
| 
 | 
  1062  | 
lemma zdiv_neg_pos:
  | 
| 
 | 
  1063  | 
     "[| a $< #0;  #0 $< b |]  
  | 
| 
 | 
  1064  | 
      ==> a zdiv b = fst (negDivAlg(<intify(a), intify(b)>))"
  | 
| 
 | 
  1065  | 
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
  | 
| 
 | 
  1066  | 
apply (blast dest: zle_zless_trans)
  | 
| 
 | 
  1067  | 
done
  | 
| 
 | 
  1068  | 
  | 
| 
 | 
  1069  | 
lemma zmod_neg_pos:
  | 
| 
 | 
  1070  | 
     "[| a $< #0;  #0 $< b |]  
  | 
| 
 | 
  1071  | 
      ==> a zmod b = snd (negDivAlg(<intify(a), intify(b)>))"
  | 
| 
 | 
  1072  | 
apply (simp (no_asm_simp) add: zmod_def divAlg_def)
  | 
| 
 | 
  1073  | 
apply (blast dest: zle_zless_trans)
  | 
| 
 | 
  1074  | 
done
  | 
| 
 | 
  1075  | 
  | 
| 
 | 
  1076  | 
(** a positive, b negative **)
  | 
| 
 | 
  1077  | 
  | 
| 
 | 
  1078  | 
lemma zdiv_pos_neg:
  | 
| 
 | 
  1079  | 
     "[| #0 $< a;  b $< #0 |]  
  | 
| 
 | 
  1080  | 
      ==> a zdiv b = fst (negateSnd(negDivAlg (<$-a, $-b>)))"
  | 
| 
 | 
  1081  | 
apply (simp (no_asm_simp) add: zdiv_def divAlg_def intify_eq_0_iff_zle)
  | 
| 
 | 
  1082  | 
apply auto
  | 
| 
 | 
  1083  | 
apply (blast dest: zle_zless_trans)+
  | 
| 
 | 
  1084  | 
apply (blast dest: zless_trans)
  | 
| 
 | 
  1085  | 
apply (blast intro: zless_imp_zle)
  | 
| 
 | 
  1086  | 
done
  | 
| 
 | 
  1087  | 
  | 
| 
 | 
  1088  | 
lemma zmod_pos_neg:
  | 
| 
 | 
  1089  | 
     "[| #0 $< a;  b $< #0 |]  
  | 
| 
 | 
  1090  | 
      ==> a zmod b = snd (negateSnd(negDivAlg (<$-a, $-b>)))"
  | 
| 
 | 
  1091  | 
apply (simp (no_asm_simp) add: zmod_def divAlg_def intify_eq_0_iff_zle)
  | 
| 
 | 
  1092  | 
apply auto
  | 
| 
 | 
  1093  | 
apply (blast dest: zle_zless_trans)+
  | 
| 
 | 
  1094  | 
apply (blast dest: zless_trans)
  | 
| 
 | 
  1095  | 
apply (blast intro: zless_imp_zle)
  | 
| 
 | 
  1096  | 
done
  | 
| 
 | 
  1097  | 
  | 
| 
 | 
  1098  | 
(** a negative, b negative **)
  | 
| 
 | 
  1099  | 
  | 
| 
 | 
  1100  | 
lemma zdiv_neg_neg:
  | 
| 
 | 
  1101  | 
     "[| a $< #0;  b $<= #0 |]  
  | 
| 
 | 
  1102  | 
      ==> a zdiv b = fst (negateSnd(posDivAlg(<$-a, $-b>)))"
  | 
| 
 | 
  1103  | 
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
  | 
| 
 | 
  1104  | 
apply auto
  | 
| 
 | 
  1105  | 
apply (blast dest!: zle_zless_trans)+
  | 
| 
 | 
  1106  | 
done
  | 
| 
 | 
  1107  | 
  | 
| 
 | 
  1108  | 
lemma zmod_neg_neg:
  | 
| 
 | 
  1109  | 
     "[| a $< #0;  b $<= #0 |]  
  | 
| 
 | 
  1110  | 
      ==> a zmod b = snd (negateSnd(posDivAlg(<$-a, $-b>)))"
  | 
| 
 | 
  1111  | 
apply (simp (no_asm_simp) add: zmod_def divAlg_def)
  | 
| 
 | 
  1112  | 
apply auto
  | 
| 
 | 
  1113  | 
apply (blast dest!: zle_zless_trans)+
  | 
| 
 | 
  1114  | 
done
  | 
| 
 | 
  1115  | 
  | 
| 
 | 
  1116  | 
declare zdiv_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1117  | 
declare zdiv_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1118  | 
declare zdiv_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1119  | 
declare zdiv_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1120  | 
declare zmod_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1121  | 
declare zmod_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1122  | 
declare zmod_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1123  | 
declare zmod_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1124  | 
declare posDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1125  | 
declare negDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp]
  | 
| 
 | 
  1126  | 
  | 
| 
 | 
  1127  | 
  | 
| 
 | 
  1128  | 
(** Special-case simplification **)
  | 
| 
 | 
  1129  | 
  | 
| 
 | 
  1130  | 
lemma zmod_1 [simp]: "a zmod #1 = #0"
  | 
| 
 | 
  1131  | 
apply (cut_tac a = "a" and b = "#1" in pos_mod_sign)
  | 
| 
 | 
  1132  | 
apply (cut_tac [2] a = "a" and b = "#1" in pos_mod_bound)
  | 
| 
 | 
  1133  | 
apply auto
  | 
| 
 | 
  1134  | 
(*arithmetic*)
  | 
| 
 | 
  1135  | 
apply (drule add1_zle_iff [THEN iffD2])
  | 
| 
 | 
  1136  | 
apply (rule zle_anti_sym)
  | 
| 
 | 
  1137  | 
apply auto
  | 
| 
 | 
  1138  | 
done
  | 
| 
 | 
  1139  | 
  | 
| 
 | 
  1140  | 
lemma zdiv_1 [simp]: "a zdiv #1 = intify(a)"
  | 
| 
 | 
  1141  | 
apply (cut_tac a = "a" and b = "#1" in zmod_zdiv_equality)
  | 
| 
 | 
  1142  | 
apply auto
  | 
| 
 | 
  1143  | 
done
  | 
| 
 | 
  1144  | 
  | 
| 
 | 
  1145  | 
lemma zmod_minus1_right [simp]: "a zmod #-1 = #0"
  | 
| 
 | 
  1146  | 
apply (cut_tac a = "a" and b = "#-1" in neg_mod_sign)
  | 
| 
 | 
  1147  | 
apply (cut_tac [2] a = "a" and b = "#-1" in neg_mod_bound)
  | 
| 
 | 
  1148  | 
apply auto
  | 
| 
 | 
  1149  | 
(*arithmetic*)
  | 
| 
 | 
  1150  | 
apply (drule add1_zle_iff [THEN iffD2])
  | 
| 
 | 
  1151  | 
apply (rule zle_anti_sym)
  | 
| 
 | 
  1152  | 
apply auto
  | 
| 
 | 
  1153  | 
done
  | 
| 
 | 
  1154  | 
  | 
| 
 | 
  1155  | 
lemma zdiv_minus1_right_raw: "a \<in> int ==> a zdiv #-1 = $-a"
  | 
| 
 | 
  1156  | 
apply (cut_tac a = "a" and b = "#-1" in zmod_zdiv_equality)
  | 
| 
 | 
  1157  | 
apply auto
  | 
| 
 | 
  1158  | 
apply (rule equation_zminus [THEN iffD2])
  | 
| 
 | 
  1159  | 
apply auto
  | 
| 
 | 
  1160  | 
done
  | 
| 
 | 
  1161  | 
  | 
| 
 | 
  1162  | 
lemma zdiv_minus1_right: "a zdiv #-1 = $-a"
  | 
| 
 | 
  1163  | 
apply (cut_tac a = "intify (a)" in zdiv_minus1_right_raw)
  | 
| 
 | 
  1164  | 
apply auto
  | 
| 
 | 
  1165  | 
done
  | 
| 
 | 
  1166  | 
declare zdiv_minus1_right [simp]
  | 
| 
 | 
  1167  | 
  | 
| 
 | 
  1168  | 
  | 
| 
 | 
  1169  | 
subsection{* Monotonicity in the first argument (divisor) *}
 | 
| 
 | 
  1170  | 
  | 
| 
 | 
  1171  | 
lemma zdiv_mono1: "[| a $<= a';  #0 $< b |] ==> a zdiv b $<= a' zdiv b"
  | 
| 
 | 
  1172  | 
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
  | 
| 
 | 
  1173  | 
apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
  | 
| 
 | 
  1174  | 
apply (rule unique_quotient_lemma)
  | 
| 
 | 
  1175  | 
apply (erule subst)
  | 
| 
 | 
  1176  | 
apply (erule subst)
  | 
| 
 | 
  1177  | 
apply (simp_all (no_asm_simp) add: pos_mod_sign pos_mod_bound)
  | 
| 
 | 
  1178  | 
done
  | 
| 
 | 
  1179  | 
  | 
| 
 | 
  1180  | 
lemma zdiv_mono1_neg: "[| a $<= a';  b $< #0 |] ==> a' zdiv b $<= a zdiv b"
  | 
| 
 | 
  1181  | 
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
  | 
| 
 | 
  1182  | 
apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
  | 
| 
 | 
  1183  | 
apply (rule unique_quotient_lemma_neg)
  | 
| 
 | 
  1184  | 
apply (erule subst)
  | 
| 
 | 
  1185  | 
apply (erule subst)
  | 
| 
 | 
  1186  | 
apply (simp_all (no_asm_simp) add: neg_mod_sign neg_mod_bound)
  | 
| 
 | 
  1187  | 
done
  | 
| 
 | 
  1188  | 
  | 
| 
 | 
  1189  | 
  | 
| 
 | 
  1190  | 
subsection{* Monotonicity in the second argument (dividend) *}
 | 
| 
 | 
  1191  | 
  | 
| 
 | 
  1192  | 
lemma q_pos_lemma:
  | 
| 
 | 
  1193  | 
     "[| #0 $<= b'$*q' $+ r'; r' $< b';  #0 $< b' |] ==> #0 $<= q'"
  | 
| 
 | 
  1194  | 
apply (subgoal_tac "#0 $< b'$* (q' $+ #1)")
  | 
| 
 | 
  1195  | 
 apply (simp add: int_0_less_mult_iff)
  | 
| 
 | 
  1196  | 
 apply (blast dest: zless_trans intro: zless_add1_iff_zle [THEN iffD1])
  | 
| 
 | 
  1197  | 
apply (simp add: zadd_zmult_distrib2)
  | 
| 
 | 
  1198  | 
apply (erule zle_zless_trans)
  | 
| 
 | 
  1199  | 
apply (erule zadd_zless_mono2)
  | 
| 
 | 
  1200  | 
done
  | 
| 
 | 
  1201  | 
  | 
| 
 | 
  1202  | 
lemma zdiv_mono2_lemma:
  | 
| 
 | 
  1203  | 
     "[| b$*q $+ r = b'$*q' $+ r';  #0 $<= b'$*q' $+ r';   
  | 
| 
 | 
  1204  | 
         r' $< b';  #0 $<= r;  #0 $< b';  b' $<= b |]   
  | 
| 
 | 
  1205  | 
      ==> q $<= q'"
  | 
| 
 | 
  1206  | 
apply (frule q_pos_lemma, assumption+) 
  | 
| 
 | 
  1207  | 
apply (subgoal_tac "b$*q $< b$* (q' $+ #1)")
  | 
| 
 | 
  1208  | 
 apply (simp add: zmult_zless_cancel1)
  | 
| 
 | 
  1209  | 
 apply (force dest: zless_add1_iff_zle [THEN iffD1] zless_trans zless_zle_trans)
  | 
| 
 | 
  1210  | 
apply (subgoal_tac "b$*q = r' $- r $+ b'$*q'")
  | 
| 
 | 
  1211  | 
 prefer 2 apply (simp add: zcompare_rls)
  | 
| 
 | 
  1212  | 
apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
  | 
| 
 | 
  1213  | 
apply (subst zadd_commute [of "b $\<times> q'"], rule zadd_zless_mono)
  | 
| 
 | 
  1214  | 
 prefer 2 apply (blast intro: zmult_zle_mono1)
  | 
| 
 | 
  1215  | 
apply (subgoal_tac "r' $+ #0 $< b $+ r")
  | 
| 
 | 
  1216  | 
 apply (simp add: zcompare_rls)
  | 
| 
 | 
  1217  | 
apply (rule zadd_zless_mono)
  | 
| 
 | 
  1218  | 
 apply auto
  | 
| 
 | 
  1219  | 
apply (blast dest: zless_zle_trans)
  | 
| 
 | 
  1220  | 
done
  | 
| 
 | 
  1221  | 
  | 
| 
 | 
  1222  | 
  | 
| 
 | 
  1223  | 
lemma zdiv_mono2_raw:
  | 
| 
 | 
  1224  | 
     "[| #0 $<= a;  #0 $< b';  b' $<= b;  a \<in> int |]   
  | 
| 
 | 
  1225  | 
      ==> a zdiv b $<= a zdiv b'"
  | 
| 
 | 
  1226  | 
apply (subgoal_tac "#0 $< b")
  | 
| 
 | 
  1227  | 
 prefer 2 apply (blast dest: zless_zle_trans)
  | 
| 
 | 
  1228  | 
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
  | 
| 
 | 
  1229  | 
apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
  | 
| 
 | 
  1230  | 
apply (rule zdiv_mono2_lemma)
  | 
| 
 | 
  1231  | 
apply (erule subst)
  | 
| 
 | 
  1232  | 
apply (erule subst)
  | 
| 
 | 
  1233  | 
apply (simp_all add: pos_mod_sign pos_mod_bound)
  | 
| 
 | 
  1234  | 
done
  | 
| 
 | 
  1235  | 
  | 
| 
 | 
  1236  | 
lemma zdiv_mono2:
  | 
| 
 | 
  1237  | 
     "[| #0 $<= a;  #0 $< b';  b' $<= b |]   
  | 
| 
 | 
  1238  | 
      ==> a zdiv b $<= a zdiv b'"
  | 
| 
 | 
  1239  | 
apply (cut_tac a = "intify (a)" in zdiv_mono2_raw)
  | 
| 
 | 
  1240  | 
apply auto
  | 
| 
 | 
  1241  | 
done
  | 
| 
 | 
  1242  | 
  | 
| 
 | 
  1243  | 
lemma q_neg_lemma:
  | 
| 
 | 
  1244  | 
     "[| b'$*q' $+ r' $< #0;  #0 $<= r';  #0 $< b' |] ==> q' $< #0"
  | 
| 
 | 
  1245  | 
apply (subgoal_tac "b'$*q' $< #0")
  | 
| 
 | 
  1246  | 
 prefer 2 apply (force intro: zle_zless_trans)
  | 
| 
 | 
  1247  | 
apply (simp add: zmult_less_0_iff)
  | 
| 
 | 
  1248  | 
apply (blast dest: zless_trans)
  | 
| 
 | 
  1249  | 
done
  | 
| 
 | 
  1250  | 
  | 
| 
 | 
  1251  | 
  | 
| 
 | 
  1252  | 
  | 
| 
 | 
  1253  | 
lemma zdiv_mono2_neg_lemma:
  | 
| 
 | 
  1254  | 
     "[| b$*q $+ r = b'$*q' $+ r';  b'$*q' $+ r' $< #0;   
  | 
| 
 | 
  1255  | 
         r $< b;  #0 $<= r';  #0 $< b';  b' $<= b |]   
  | 
| 
 | 
  1256  | 
      ==> q' $<= q"
  | 
| 
 | 
  1257  | 
apply (subgoal_tac "#0 $< b")
  | 
| 
 | 
  1258  | 
 prefer 2 apply (blast dest: zless_zle_trans)
  | 
| 
 | 
  1259  | 
apply (frule q_neg_lemma, assumption+) 
  | 
| 
 | 
  1260  | 
apply (subgoal_tac "b$*q' $< b$* (q $+ #1)")
  | 
| 
 | 
  1261  | 
 apply (simp add: zmult_zless_cancel1)
  | 
| 
 | 
  1262  | 
 apply (blast dest: zless_trans zless_add1_iff_zle [THEN iffD1])
  | 
| 
 | 
  1263  | 
apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
  | 
| 
 | 
  1264  | 
apply (subgoal_tac "b$*q' $<= b'$*q'")
  | 
| 
 | 
  1265  | 
 prefer 2
  | 
| 
 | 
  1266  | 
 apply (simp add: zmult_zle_cancel2)
  | 
| 
 | 
  1267  | 
 apply (blast dest: zless_trans)
  | 
| 
 | 
  1268  | 
apply (subgoal_tac "b'$*q' $+ r $< b $+ (b$*q $+ r)")
  | 
| 
 | 
  1269  | 
 prefer 2
  | 
| 
 | 
  1270  | 
 apply (erule ssubst)
  | 
| 
 | 
  1271  | 
 apply simp
  | 
| 
 | 
  1272  | 
 apply (drule_tac w' = "r" and z' = "#0" in zadd_zless_mono)
  | 
| 
 | 
  1273  | 
  apply (assumption)
  | 
| 
 | 
  1274  | 
 apply simp
  | 
| 
 | 
  1275  | 
apply (simp (no_asm_use) add: zadd_commute)
  | 
| 
 | 
  1276  | 
apply (rule zle_zless_trans)
  | 
| 
 | 
  1277  | 
 prefer 2 apply (assumption)
  | 
| 
 | 
  1278  | 
apply (simp (no_asm_simp) add: zmult_zle_cancel2)
  | 
| 
 | 
  1279  | 
apply (blast dest: zless_trans)
  | 
| 
 | 
  1280  | 
done
  | 
| 
 | 
  1281  | 
  | 
| 
 | 
  1282  | 
lemma zdiv_mono2_neg_raw:
  | 
| 
 | 
  1283  | 
     "[| a $< #0;  #0 $< b';  b' $<= b;  a \<in> int |]   
  | 
| 
 | 
  1284  | 
      ==> a zdiv b' $<= a zdiv b"
  | 
| 
 | 
  1285  | 
apply (subgoal_tac "#0 $< b")
  | 
| 
 | 
  1286  | 
 prefer 2 apply (blast dest: zless_zle_trans)
  | 
| 
 | 
  1287  | 
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
  | 
| 
 | 
  1288  | 
apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
  | 
| 
 | 
  1289  | 
apply (rule zdiv_mono2_neg_lemma)
  | 
| 
 | 
  1290  | 
apply (erule subst)
  | 
| 
 | 
  1291  | 
apply (erule subst)
  | 
| 
 | 
  1292  | 
apply (simp_all add: pos_mod_sign pos_mod_bound)
  | 
| 
 | 
  1293  | 
done
  | 
| 
 | 
  1294  | 
  | 
| 
 | 
  1295  | 
lemma zdiv_mono2_neg: "[| a $< #0;  #0 $< b';  b' $<= b |]   
  | 
| 
 | 
  1296  | 
      ==> a zdiv b' $<= a zdiv b"
  | 
| 
 | 
  1297  | 
apply (cut_tac a = "intify (a)" in zdiv_mono2_neg_raw)
  | 
| 
 | 
  1298  | 
apply auto
  | 
| 
 | 
  1299  | 
done
  | 
| 
 | 
  1300  | 
  | 
| 
 | 
  1301  | 
  | 
| 
 | 
  1302  | 
  | 
| 
 | 
  1303  | 
subsection{* More algebraic laws for zdiv and zmod *}
 | 
| 
 | 
  1304  | 
  | 
| 
 | 
  1305  | 
(** proving (a*b) zdiv c = a $* (b zdiv c) $+ a * (b zmod c) **)
  | 
| 
 | 
  1306  | 
  | 
| 
 | 
  1307  | 
lemma zmult1_lemma:
  | 
| 
 | 
  1308  | 
     "[| quorem(<b,c>, <q,r>);  c \<in> int;  c \<noteq> #0 |]  
  | 
| 
 | 
  1309  | 
      ==> quorem (<a$*b, c>, <a$*q $+ (a$*r) zdiv c, (a$*r) zmod c>)"
  | 
| 
 | 
  1310  | 
apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
  | 
| 
 | 
  1311  | 
                      pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
  | 
| 
 | 
  1312  | 
apply (auto intro: raw_zmod_zdiv_equality) 
  | 
| 
 | 
  1313  | 
done
  | 
| 
 | 
  1314  | 
  | 
| 
 | 
  1315  | 
lemma zdiv_zmult1_eq_raw:
  | 
| 
 | 
  1316  | 
     "[|b \<in> int;  c \<in> int|]  
  | 
| 
 | 
  1317  | 
      ==> (a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
  | 
| 
 | 
  1318  | 
apply (case_tac "c = #0")
  | 
| 
 | 
  1319  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1320  | 
apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_div])
  | 
| 
 | 
  1321  | 
apply auto
  | 
| 
 | 
  1322  | 
done
  | 
| 
 | 
  1323  | 
  | 
| 
 | 
  1324  | 
lemma zdiv_zmult1_eq: "(a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
  | 
| 
 | 
  1325  | 
apply (cut_tac b = "intify (b)" and c = "intify (c)" in zdiv_zmult1_eq_raw)
  | 
| 
 | 
  1326  | 
apply auto
  | 
| 
 | 
  1327  | 
done
  | 
| 
 | 
  1328  | 
  | 
| 
 | 
  1329  | 
lemma zmod_zmult1_eq_raw:
  | 
| 
 | 
  1330  | 
     "[|b \<in> int;  c \<in> int|] ==> (a$*b) zmod c = a$*(b zmod c) zmod c"
  | 
| 
 | 
  1331  | 
apply (case_tac "c = #0")
  | 
| 
 | 
  1332  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1333  | 
apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod])
  | 
| 
 | 
  1334  | 
apply auto
  | 
| 
 | 
  1335  | 
done
  | 
| 
 | 
  1336  | 
  | 
| 
 | 
  1337  | 
lemma zmod_zmult1_eq: "(a$*b) zmod c = a$*(b zmod c) zmod c"
  | 
| 
 | 
  1338  | 
apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult1_eq_raw)
  | 
| 
 | 
  1339  | 
apply auto
  | 
| 
 | 
  1340  | 
done
  | 
| 
 | 
  1341  | 
  | 
| 
 | 
  1342  | 
lemma zmod_zmult1_eq': "(a$*b) zmod c = ((a zmod c) $* b) zmod c"
  | 
| 
 | 
  1343  | 
apply (rule trans)
  | 
| 
 | 
  1344  | 
apply (rule_tac b = " (b $* a) zmod c" in trans)
  | 
| 
 | 
  1345  | 
apply (rule_tac [2] zmod_zmult1_eq)
  | 
| 
 | 
  1346  | 
apply (simp_all (no_asm) add: zmult_commute)
  | 
| 
 | 
  1347  | 
done
  | 
| 
 | 
  1348  | 
  | 
| 
 | 
  1349  | 
lemma zmod_zmult_distrib: "(a$*b) zmod c = ((a zmod c) $* (b zmod c)) zmod c"
  | 
| 
 | 
  1350  | 
apply (rule zmod_zmult1_eq' [THEN trans])
  | 
| 
 | 
  1351  | 
apply (rule zmod_zmult1_eq)
  | 
| 
 | 
  1352  | 
done
  | 
| 
 | 
  1353  | 
  | 
| 
 | 
  1354  | 
lemma zdiv_zmult_self1 [simp]: "intify(b) \<noteq> #0 ==> (a$*b) zdiv b = intify(a)"
  | 
| 
 | 
  1355  | 
apply (simp (no_asm_simp) add: zdiv_zmult1_eq)
  | 
| 
 | 
  1356  | 
done
  | 
| 
 | 
  1357  | 
  | 
| 
 | 
  1358  | 
lemma zdiv_zmult_self2 [simp]: "intify(b) \<noteq> #0 ==> (b$*a) zdiv b = intify(a)"
  | 
| 
 | 
  1359  | 
apply (subst zmult_commute , erule zdiv_zmult_self1)
  | 
| 
 | 
  1360  | 
done
  | 
| 
 | 
  1361  | 
  | 
| 
 | 
  1362  | 
lemma zmod_zmult_self1 [simp]: "(a$*b) zmod b = #0"
  | 
| 
 | 
  1363  | 
apply (simp (no_asm) add: zmod_zmult1_eq)
  | 
| 
 | 
  1364  | 
done
  | 
| 
 | 
  1365  | 
  | 
| 
 | 
  1366  | 
lemma zmod_zmult_self2 [simp]: "(b$*a) zmod b = #0"
  | 
| 
 | 
  1367  | 
apply (simp (no_asm) add: zmult_commute zmod_zmult1_eq)
  | 
| 
 | 
  1368  | 
done
  | 
| 
 | 
  1369  | 
  | 
| 
 | 
  1370  | 
  | 
| 
 | 
  1371  | 
(** proving (a$+b) zdiv c = 
  | 
| 
 | 
  1372  | 
            a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c) **)
  | 
| 
 | 
  1373  | 
  | 
| 
 | 
  1374  | 
lemma zadd1_lemma:
  | 
| 
 | 
  1375  | 
     "[| quorem(<a,c>, <aq,ar>);  quorem(<b,c>, <bq,br>);   
  | 
| 
 | 
  1376  | 
         c \<in> int;  c \<noteq> #0 |]  
  | 
| 
 | 
  1377  | 
      ==> quorem (<a$+b, c>, <aq $+ bq $+ (ar$+br) zdiv c, (ar$+br) zmod c>)"
  | 
| 
 | 
  1378  | 
apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
  | 
| 
 | 
  1379  | 
                      pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
  | 
| 
 | 
  1380  | 
apply (auto intro: raw_zmod_zdiv_equality)
  | 
| 
 | 
  1381  | 
done
  | 
| 
 | 
  1382  | 
  | 
| 
 | 
  1383  | 
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
  | 
| 
 | 
  1384  | 
lemma zdiv_zadd1_eq_raw:
  | 
| 
 | 
  1385  | 
     "[|a \<in> int; b \<in> int; c \<in> int|] ==>  
  | 
| 
 | 
  1386  | 
      (a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
  | 
| 
 | 
  1387  | 
apply (case_tac "c = #0")
  | 
| 
 | 
  1388  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1389  | 
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod,
  | 
| 
 | 
  1390  | 
                                 THEN quorem_div])
  | 
| 
 | 
  1391  | 
done
  | 
| 
 | 
  1392  | 
  | 
| 
 | 
  1393  | 
lemma zdiv_zadd1_eq:
  | 
| 
 | 
  1394  | 
     "(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
  | 
| 
 | 
  1395  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" 
  | 
| 
 | 
  1396  | 
       in zdiv_zadd1_eq_raw)
  | 
| 
 | 
  1397  | 
apply auto
  | 
| 
 | 
  1398  | 
done
  | 
| 
 | 
  1399  | 
  | 
| 
 | 
  1400  | 
lemma zmod_zadd1_eq_raw:
  | 
| 
 | 
  1401  | 
     "[|a \<in> int; b \<in> int; c \<in> int|]   
  | 
| 
 | 
  1402  | 
      ==> (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
  | 
| 
 | 
  1403  | 
apply (case_tac "c = #0")
  | 
| 
 | 
  1404  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1405  | 
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod, 
  | 
| 
 | 
  1406  | 
                                 THEN quorem_mod])
  | 
| 
 | 
  1407  | 
done
  | 
| 
 | 
  1408  | 
  | 
| 
 | 
  1409  | 
lemma zmod_zadd1_eq: "(a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
  | 
| 
 | 
  1410  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" 
  | 
| 
 | 
  1411  | 
       in zmod_zadd1_eq_raw)
  | 
| 
 | 
  1412  | 
apply auto
  | 
| 
 | 
  1413  | 
done
  | 
| 
 | 
  1414  | 
  | 
| 
 | 
  1415  | 
lemma zmod_div_trivial_raw:
  | 
| 
 | 
  1416  | 
     "[|a \<in> int; b \<in> int|] ==> (a zmod b) zdiv b = #0"
  | 
| 
 | 
  1417  | 
apply (case_tac "b = #0")
  | 
| 
 | 
  1418  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1419  | 
apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound
  | 
| 
 | 
  1420  | 
         zdiv_pos_pos_trivial neg_mod_sign neg_mod_bound zdiv_neg_neg_trivial)
  | 
| 
 | 
  1421  | 
done
  | 
| 
 | 
  1422  | 
  | 
| 
 | 
  1423  | 
lemma zmod_div_trivial [simp]: "(a zmod b) zdiv b = #0"
  | 
| 
 | 
  1424  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_div_trivial_raw)
  | 
| 
 | 
  1425  | 
apply auto
  | 
| 
 | 
  1426  | 
done
  | 
| 
 | 
  1427  | 
  | 
| 
 | 
  1428  | 
lemma zmod_mod_trivial_raw:
  | 
| 
 | 
  1429  | 
     "[|a \<in> int; b \<in> int|] ==> (a zmod b) zmod b = a zmod b"
  | 
| 
 | 
  1430  | 
apply (case_tac "b = #0")
  | 
| 
 | 
  1431  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1432  | 
apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound 
  | 
| 
 | 
  1433  | 
       zmod_pos_pos_trivial neg_mod_sign neg_mod_bound zmod_neg_neg_trivial)
  | 
| 
 | 
  1434  | 
done
  | 
| 
 | 
  1435  | 
  | 
| 
 | 
  1436  | 
lemma zmod_mod_trivial [simp]: "(a zmod b) zmod b = a zmod b"
  | 
| 
 | 
  1437  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_mod_trivial_raw)
  | 
| 
 | 
  1438  | 
apply auto
  | 
| 
 | 
  1439  | 
done
  | 
| 
 | 
  1440  | 
  | 
| 
 | 
  1441  | 
lemma zmod_zadd_left_eq: "(a$+b) zmod c = ((a zmod c) $+ b) zmod c"
  | 
| 
 | 
  1442  | 
apply (rule trans [symmetric])
  | 
| 
 | 
  1443  | 
apply (rule zmod_zadd1_eq)
  | 
| 
 | 
  1444  | 
apply (simp (no_asm))
  | 
| 
 | 
  1445  | 
apply (rule zmod_zadd1_eq [symmetric])
  | 
| 
 | 
  1446  | 
done
  | 
| 
 | 
  1447  | 
  | 
| 
 | 
  1448  | 
lemma zmod_zadd_right_eq: "(a$+b) zmod c = (a $+ (b zmod c)) zmod c"
  | 
| 
 | 
  1449  | 
apply (rule trans [symmetric])
  | 
| 
 | 
  1450  | 
apply (rule zmod_zadd1_eq)
  | 
| 
 | 
  1451  | 
apply (simp (no_asm))
  | 
| 
 | 
  1452  | 
apply (rule zmod_zadd1_eq [symmetric])
  | 
| 
 | 
  1453  | 
done
  | 
| 
 | 
  1454  | 
  | 
| 
 | 
  1455  | 
  | 
| 
 | 
  1456  | 
lemma zdiv_zadd_self1 [simp]:
  | 
| 
 | 
  1457  | 
     "intify(a) \<noteq> #0 ==> (a$+b) zdiv a = b zdiv a $+ #1"
  | 
| 
 | 
  1458  | 
by (simp (no_asm_simp) add: zdiv_zadd1_eq)
  | 
| 
 | 
  1459  | 
  | 
| 
 | 
  1460  | 
lemma zdiv_zadd_self2 [simp]:
  | 
| 
 | 
  1461  | 
     "intify(a) \<noteq> #0 ==> (b$+a) zdiv a = b zdiv a $+ #1"
  | 
| 
 | 
  1462  | 
by (simp (no_asm_simp) add: zdiv_zadd1_eq)
  | 
| 
 | 
  1463  | 
  | 
| 
 | 
  1464  | 
lemma zmod_zadd_self1 [simp]: "(a$+b) zmod a = b zmod a"
  | 
| 
 | 
  1465  | 
apply (case_tac "a = #0")
  | 
| 
 | 
  1466  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1467  | 
apply (simp (no_asm_simp) add: zmod_zadd1_eq)
  | 
| 
 | 
  1468  | 
done
  | 
| 
 | 
  1469  | 
  | 
| 
 | 
  1470  | 
lemma zmod_zadd_self2 [simp]: "(b$+a) zmod a = b zmod a"
  | 
| 
 | 
  1471  | 
apply (case_tac "a = #0")
  | 
| 
 | 
  1472  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1473  | 
apply (simp (no_asm_simp) add: zmod_zadd1_eq)
  | 
| 
 | 
  1474  | 
done
  | 
| 
 | 
  1475  | 
  | 
| 
 | 
  1476  | 
  | 
| 
 | 
  1477  | 
subsection{* proving  a zdiv (b*c) = (a zdiv b) zdiv c *}
 | 
| 
 | 
  1478  | 
  | 
| 
 | 
  1479  | 
(*The condition c>0 seems necessary.  Consider that 7 zdiv ~6 = ~2 but
  | 
| 
 | 
  1480  | 
  7 zdiv 2 zdiv ~3 = 3 zdiv ~3 = ~1.  The subcase (a zdiv b) zmod c = 0 seems
  | 
| 
 | 
  1481  | 
  to cause particular problems.*)
  | 
| 
 | 
  1482  | 
  | 
| 
 | 
  1483  | 
(** first, four lemmas to bound the remainder for the cases b<0 and b>0 **)
  | 
| 
 | 
  1484  | 
  | 
| 
 | 
  1485  | 
lemma zdiv_zmult2_aux1:
  | 
| 
 | 
  1486  | 
     "[| #0 $< c;  b $< r;  r $<= #0 |] ==> b$*c $< b$*(q zmod c) $+ r"
  | 
| 
 | 
  1487  | 
apply (subgoal_tac "b $* (c $- q zmod c) $< r $* #1")
  | 
| 
 | 
  1488  | 
apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
  | 
| 
 | 
  1489  | 
apply (rule zle_zless_trans)
  | 
| 
 | 
  1490  | 
apply (erule_tac [2] zmult_zless_mono1)
  | 
| 
 | 
  1491  | 
apply (rule zmult_zle_mono2_neg)
  | 
| 
 | 
  1492  | 
apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
  | 
| 
 | 
  1493  | 
apply (blast intro: zless_imp_zle dest: zless_zle_trans)
  | 
| 
 | 
  1494  | 
done
  | 
| 
 | 
  1495  | 
  | 
| 
 | 
  1496  | 
lemma zdiv_zmult2_aux2:
  | 
| 
 | 
  1497  | 
     "[| #0 $< c;   b $< r;  r $<= #0 |] ==> b $* (q zmod c) $+ r $<= #0"
  | 
| 
 | 
  1498  | 
apply (subgoal_tac "b $* (q zmod c) $<= #0")
  | 
| 
 | 
  1499  | 
 prefer 2
  | 
| 
 | 
  1500  | 
 apply (simp add: zmult_le_0_iff pos_mod_sign) 
  | 
| 
 | 
  1501  | 
 apply (blast intro: zless_imp_zle dest: zless_zle_trans)
  | 
| 
 | 
  1502  | 
(*arithmetic*)
  | 
| 
 | 
  1503  | 
apply (drule zadd_zle_mono)
  | 
| 
 | 
  1504  | 
apply assumption
  | 
| 
 | 
  1505  | 
apply (simp add: zadd_commute)
  | 
| 
 | 
  1506  | 
done
  | 
| 
 | 
  1507  | 
  | 
| 
 | 
  1508  | 
lemma zdiv_zmult2_aux3:
  | 
| 
 | 
  1509  | 
     "[| #0 $< c;  #0 $<= r;  r $< b |] ==> #0 $<= b $* (q zmod c) $+ r"
  | 
| 
 | 
  1510  | 
apply (subgoal_tac "#0 $<= b $* (q zmod c)")
  | 
| 
 | 
  1511  | 
 prefer 2
  | 
| 
 | 
  1512  | 
 apply (simp add: int_0_le_mult_iff pos_mod_sign) 
  | 
| 
 | 
  1513  | 
 apply (blast intro: zless_imp_zle dest: zle_zless_trans)
  | 
| 
 | 
  1514  | 
(*arithmetic*)
  | 
| 
 | 
  1515  | 
apply (drule zadd_zle_mono)
  | 
| 
 | 
  1516  | 
apply assumption
  | 
| 
 | 
  1517  | 
apply (simp add: zadd_commute)
  | 
| 
 | 
  1518  | 
done
  | 
| 
 | 
  1519  | 
  | 
| 
 | 
  1520  | 
lemma zdiv_zmult2_aux4:
  | 
| 
 | 
  1521  | 
     "[| #0 $< c; #0 $<= r; r $< b |] ==> b $* (q zmod c) $+ r $< b $* c"
  | 
| 
 | 
  1522  | 
apply (subgoal_tac "r $* #1 $< b $* (c $- q zmod c)")
  | 
| 
 | 
  1523  | 
apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
  | 
| 
 | 
  1524  | 
apply (rule zless_zle_trans)
  | 
| 
 | 
  1525  | 
apply (erule zmult_zless_mono1)
  | 
| 
 | 
  1526  | 
apply (rule_tac [2] zmult_zle_mono2)
  | 
| 
 | 
  1527  | 
apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
  | 
| 
 | 
  1528  | 
apply (blast intro: zless_imp_zle dest: zle_zless_trans)
  | 
| 
 | 
  1529  | 
done
  | 
| 
 | 
  1530  | 
  | 
| 
 | 
  1531  | 
lemma zdiv_zmult2_lemma:
  | 
| 
 | 
  1532  | 
     "[| quorem (<a,b>, <q,r>);  a \<in> int;  b \<in> int;  b \<noteq> #0;  #0 $< c |]  
  | 
| 
 | 
  1533  | 
      ==> quorem (<a,b$*c>, <q zdiv c, b$*(q zmod c) $+ r>)"
  | 
| 
 | 
  1534  | 
apply (auto simp add: zmult_ac zmod_zdiv_equality [symmetric] quorem_def
  | 
| 
 | 
  1535  | 
               neq_iff_zless int_0_less_mult_iff 
  | 
| 
 | 
  1536  | 
               zadd_zmult_distrib2 [symmetric] zdiv_zmult2_aux1 zdiv_zmult2_aux2
  | 
| 
 | 
  1537  | 
               zdiv_zmult2_aux3 zdiv_zmult2_aux4)
  | 
| 
 | 
  1538  | 
apply (blast dest: zless_trans)+
  | 
| 
 | 
  1539  | 
done
  | 
| 
 | 
  1540  | 
  | 
| 
 | 
  1541  | 
lemma zdiv_zmult2_eq_raw:
  | 
| 
 | 
  1542  | 
     "[|#0 $< c;  a \<in> int;  b \<in> int|] ==> a zdiv (b$*c) = (a zdiv b) zdiv c"
  | 
| 
 | 
  1543  | 
apply (case_tac "b = #0")
  | 
| 
 | 
  1544  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1545  | 
apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_div])
  | 
| 
 | 
  1546  | 
apply (auto simp add: intify_eq_0_iff_zle)
  | 
| 
 | 
  1547  | 
apply (blast dest: zle_zless_trans)
  | 
| 
 | 
  1548  | 
done
  | 
| 
 | 
  1549  | 
  | 
| 
 | 
  1550  | 
lemma zdiv_zmult2_eq: "#0 $< c ==> a zdiv (b$*c) = (a zdiv b) zdiv c"
  | 
| 
 | 
  1551  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zmult2_eq_raw)
  | 
| 
 | 
  1552  | 
apply auto
  | 
| 
 | 
  1553  | 
done
  | 
| 
 | 
  1554  | 
  | 
| 
 | 
  1555  | 
lemma zmod_zmult2_eq_raw:
  | 
| 
 | 
  1556  | 
     "[|#0 $< c;  a \<in> int;  b \<in> int|]  
  | 
| 
 | 
  1557  | 
      ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
  | 
| 
 | 
  1558  | 
apply (case_tac "b = #0")
  | 
| 
 | 
  1559  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1560  | 
apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_mod])
  | 
| 
 | 
  1561  | 
apply (auto simp add: intify_eq_0_iff_zle)
  | 
| 
 | 
  1562  | 
apply (blast dest: zle_zless_trans)
  | 
| 
 | 
  1563  | 
done
  | 
| 
 | 
  1564  | 
  | 
| 
 | 
  1565  | 
lemma zmod_zmult2_eq:
  | 
| 
 | 
  1566  | 
     "#0 $< c ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
  | 
| 
 | 
  1567  | 
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zmult2_eq_raw)
  | 
| 
 | 
  1568  | 
apply auto
  | 
| 
 | 
  1569  | 
done
  | 
| 
 | 
  1570  | 
  | 
| 
 | 
  1571  | 
subsection{* Cancellation of common factors in "zdiv" *}
 | 
| 
 | 
  1572  | 
  | 
| 
 | 
  1573  | 
lemma zdiv_zmult_zmult1_aux1:
  | 
| 
 | 
  1574  | 
     "[| #0 $< b;  intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b"
  | 
| 
 | 
  1575  | 
apply (subst zdiv_zmult2_eq)
  | 
| 
 | 
  1576  | 
apply auto
  | 
| 
 | 
  1577  | 
done
  | 
| 
 | 
  1578  | 
  | 
| 
 | 
  1579  | 
lemma zdiv_zmult_zmult1_aux2:
  | 
| 
 | 
  1580  | 
     "[| b $< #0;  intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b"
  | 
| 
 | 
  1581  | 
apply (subgoal_tac " (c $* ($-a)) zdiv (c $* ($-b)) = ($-a) zdiv ($-b)")
  | 
| 
 | 
  1582  | 
apply (rule_tac [2] zdiv_zmult_zmult1_aux1)
  | 
| 
 | 
  1583  | 
apply auto
  | 
| 
 | 
  1584  | 
done
  | 
| 
 | 
  1585  | 
  | 
| 
 | 
  1586  | 
lemma zdiv_zmult_zmult1_raw:
  | 
| 
 | 
  1587  | 
     "[|intify(c) \<noteq> #0; b \<in> int|] ==> (c$*a) zdiv (c$*b) = a zdiv b"
  | 
| 
 | 
  1588  | 
apply (case_tac "b = #0")
  | 
| 
 | 
  1589  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1590  | 
apply (auto simp add: neq_iff_zless [of b]
  | 
| 
 | 
  1591  | 
  zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
  | 
| 
 | 
  1592  | 
done
  | 
| 
 | 
  1593  | 
  | 
| 
 | 
  1594  | 
lemma zdiv_zmult_zmult1: "intify(c) \<noteq> #0 ==> (c$*a) zdiv (c$*b) = a zdiv b"
  | 
| 
 | 
  1595  | 
apply (cut_tac b = "intify (b)" in zdiv_zmult_zmult1_raw)
  | 
| 
 | 
  1596  | 
apply auto
  | 
| 
 | 
  1597  | 
done
  | 
| 
 | 
  1598  | 
  | 
| 
 | 
  1599  | 
lemma zdiv_zmult_zmult2: "intify(c) \<noteq> #0 ==> (a$*c) zdiv (b$*c) = a zdiv b"
  | 
| 
 | 
  1600  | 
apply (drule zdiv_zmult_zmult1)
  | 
| 
 | 
  1601  | 
apply (auto simp add: zmult_commute)
  | 
| 
 | 
  1602  | 
done
  | 
| 
 | 
  1603  | 
  | 
| 
 | 
  1604  | 
  | 
| 
 | 
  1605  | 
subsection{* Distribution of factors over "zmod" *}
 | 
| 
 | 
  1606  | 
  | 
| 
 | 
  1607  | 
lemma zmod_zmult_zmult1_aux1:
  | 
| 
 | 
  1608  | 
     "[| #0 $< b;  intify(c) \<noteq> #0 |]  
  | 
| 
 | 
  1609  | 
      ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
  | 
| 
 | 
  1610  | 
apply (subst zmod_zmult2_eq)
  | 
| 
 | 
  1611  | 
apply auto
  | 
| 
 | 
  1612  | 
done
  | 
| 
 | 
  1613  | 
  | 
| 
 | 
  1614  | 
lemma zmod_zmult_zmult1_aux2:
  | 
| 
 | 
  1615  | 
     "[| b $< #0;  intify(c) \<noteq> #0 |]  
  | 
| 
 | 
  1616  | 
      ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
  | 
| 
 | 
  1617  | 
apply (subgoal_tac " (c $* ($-a)) zmod (c $* ($-b)) = c $* (($-a) zmod ($-b))")
  | 
| 
 | 
  1618  | 
apply (rule_tac [2] zmod_zmult_zmult1_aux1)
  | 
| 
 | 
  1619  | 
apply auto
  | 
| 
 | 
  1620  | 
done
  | 
| 
 | 
  1621  | 
  | 
| 
 | 
  1622  | 
lemma zmod_zmult_zmult1_raw:
  | 
| 
 | 
  1623  | 
     "[|b \<in> int; c \<in> int|] ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
  | 
| 
 | 
  1624  | 
apply (case_tac "b = #0")
  | 
| 
 | 
  1625  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1626  | 
apply (case_tac "c = #0")
  | 
| 
 | 
  1627  | 
 apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
  | 
| 
 | 
  1628  | 
apply (auto simp add: neq_iff_zless [of b]
  | 
| 
 | 
  1629  | 
  zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
  | 
| 
 | 
  1630  | 
done
  | 
| 
 | 
  1631  | 
  | 
| 
 | 
  1632  | 
lemma zmod_zmult_zmult1: "(c$*a) zmod (c$*b) = c $* (a zmod b)"
  | 
| 
 | 
  1633  | 
apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult_zmult1_raw)
  | 
| 
 | 
  1634  | 
apply auto
  | 
| 
 | 
  1635  | 
done
  | 
| 
 | 
  1636  | 
  | 
| 
 | 
  1637  | 
lemma zmod_zmult_zmult2: "(a$*c) zmod (b$*c) = (a zmod b) $* c"
  | 
| 
 | 
  1638  | 
apply (cut_tac c = "c" in zmod_zmult_zmult1)
  | 
| 
 | 
  1639  | 
apply (auto simp add: zmult_commute)
  | 
| 
 | 
  1640  | 
done
  | 
| 
 | 
  1641  | 
  | 
| 
 | 
  1642  | 
  | 
| 
 | 
  1643  | 
(** Quotients of signs **)
  | 
| 
 | 
  1644  | 
  | 
| 
 | 
  1645  | 
lemma zdiv_neg_pos_less0: "[| a $< #0;  #0 $< b |] ==> a zdiv b $< #0"
  | 
| 
 | 
  1646  | 
apply (subgoal_tac "a zdiv b $<= #-1")
  | 
| 
 | 
  1647  | 
apply (erule zle_zless_trans)
  | 
| 
 | 
  1648  | 
apply (simp (no_asm))
  | 
| 
 | 
  1649  | 
apply (rule zle_trans)
  | 
| 
 | 
  1650  | 
apply (rule_tac a' = "#-1" in zdiv_mono1)
  | 
| 
 | 
  1651  | 
apply (rule zless_add1_iff_zle [THEN iffD1])
  | 
| 
 | 
  1652  | 
apply (simp (no_asm))
  | 
| 
 | 
  1653  | 
apply (auto simp add: zdiv_minus1)
  | 
| 
 | 
  1654  | 
done
  | 
| 
 | 
  1655  | 
  | 
| 
 | 
  1656  | 
lemma zdiv_nonneg_neg_le0: "[| #0 $<= a;  b $< #0 |] ==> a zdiv b $<= #0"
  | 
| 
 | 
  1657  | 
apply (drule zdiv_mono1_neg)
  | 
| 
 | 
  1658  | 
apply auto
  | 
| 
 | 
  1659  | 
done
  | 
| 
 | 
  1660  | 
  | 
| 
 | 
  1661  | 
lemma pos_imp_zdiv_nonneg_iff: "#0 $< b ==> (#0 $<= a zdiv b) <-> (#0 $<= a)"
  | 
| 
 | 
  1662  | 
apply auto
  | 
| 
 | 
  1663  | 
apply (drule_tac [2] zdiv_mono1)
  | 
| 
 | 
  1664  | 
apply (auto simp add: neq_iff_zless)
  | 
| 
 | 
  1665  | 
apply (simp (no_asm_use) add: not_zless_iff_zle [THEN iff_sym])
  | 
| 
 | 
  1666  | 
apply (blast intro: zdiv_neg_pos_less0)
  | 
| 
 | 
  1667  | 
done
  | 
| 
 | 
  1668  | 
  | 
| 
 | 
  1669  | 
lemma neg_imp_zdiv_nonneg_iff: "b $< #0 ==> (#0 $<= a zdiv b) <-> (a $<= #0)"
  | 
| 
 | 
  1670  | 
apply (subst zdiv_zminus_zminus [symmetric])
  | 
| 
 | 
  1671  | 
apply (rule iff_trans)
  | 
| 
 | 
  1672  | 
apply (rule pos_imp_zdiv_nonneg_iff)
  | 
| 
 | 
  1673  | 
apply auto
  | 
| 
 | 
  1674  | 
done
  | 
| 
 | 
  1675  | 
  | 
| 
 | 
  1676  | 
(*But not (a zdiv b $<= 0 iff a$<=0); consider a=1, b=2 when a zdiv b = 0.*)
  | 
| 
 | 
  1677  | 
lemma pos_imp_zdiv_neg_iff: "#0 $< b ==> (a zdiv b $< #0) <-> (a $< #0)"
  | 
| 
 | 
  1678  | 
apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
  | 
| 
 | 
  1679  | 
apply (erule pos_imp_zdiv_nonneg_iff)
  | 
| 
 | 
  1680  | 
done
  | 
| 
 | 
  1681  | 
  | 
| 
 | 
  1682  | 
(*Again the law fails for $<=: consider a = -1, b = -2 when a zdiv b = 0*)
  | 
| 
 | 
  1683  | 
lemma neg_imp_zdiv_neg_iff: "b $< #0 ==> (a zdiv b $< #0) <-> (#0 $< a)"
  | 
| 
 | 
  1684  | 
apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
  | 
| 
 | 
  1685  | 
apply (erule neg_imp_zdiv_nonneg_iff)
  | 
| 
 | 
  1686  | 
done
  | 
| 
 | 
  1687  | 
  | 
| 
 | 
  1688  | 
(*
  | 
| 
 | 
  1689  | 
 THESE REMAIN TO BE CONVERTED -- but aren't that useful!
  | 
| 
 | 
  1690  | 
  | 
| 
 | 
  1691  | 
 subsection{* Speeding up the division algorithm with shifting *}
 | 
| 
 | 
  1692  | 
  | 
| 
 | 
  1693  | 
 (** computing "zdiv" by shifting **)
  | 
| 
 | 
  1694  | 
  | 
| 
 | 
  1695  | 
 lemma pos_zdiv_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zdiv (#2$*a) = b zdiv a"
  | 
| 
 | 
  1696  | 
 apply (case_tac "a = #0")
  | 
| 
 | 
  1697  | 
 apply (subgoal_tac "#1 $<= a")
  | 
| 
 | 
  1698  | 
  apply (arith_tac 2)
  | 
| 
 | 
  1699  | 
 apply (subgoal_tac "#1 $< a $* #2")
  | 
| 
 | 
  1700  | 
  apply (arith_tac 2)
  | 
| 
 | 
  1701  | 
 apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a")
  | 
| 
 | 
  1702  | 
  apply (rule_tac [2] zmult_zle_mono2)
  | 
| 
 | 
  1703  | 
 apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound)
  | 
| 
 | 
  1704  | 
 apply (subst zdiv_zadd1_eq)
  | 
| 
 | 
  1705  | 
 apply (simp (no_asm_simp) add: zdiv_zmult_zmult2 zmod_zmult_zmult2 zdiv_pos_pos_trivial)
  | 
| 
 | 
  1706  | 
 apply (subst zdiv_pos_pos_trivial)
  | 
| 
 | 
  1707  | 
 apply (simp (no_asm_simp) add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ])
  | 
| 
 | 
  1708  | 
 apply (auto simp add: zmod_pos_pos_trivial)
  | 
| 
 | 
  1709  | 
 apply (subgoal_tac "#0 $<= b zmod a")
  | 
| 
 | 
  1710  | 
  apply (asm_simp_tac (simpset () add: pos_mod_sign) 2)
  | 
| 
 | 
  1711  | 
 apply arith
  | 
| 
 | 
  1712  | 
 done
  | 
| 
 | 
  1713  | 
  | 
| 
 | 
  1714  | 
  | 
| 
 | 
  1715  | 
 lemma neg_zdiv_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zdiv (#2$*a) <-> (b$+#1) zdiv a"
  | 
| 
 | 
  1716  | 
 apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zdiv (#2 $* ($-a)) <-> ($-b-#1) zdiv ($-a)")
  | 
| 
 | 
  1717  | 
 apply (rule_tac [2] pos_zdiv_mult_2)
  | 
| 
 | 
  1718  | 
 apply (auto simp add: zmult_zminus_right)
  | 
| 
 | 
  1719  | 
 apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))")
  | 
| 
 | 
  1720  | 
 apply (Simp_tac 2)
  | 
| 
 | 
  1721  | 
 apply (asm_full_simp_tac (HOL_ss add: zdiv_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric])
  | 
| 
 | 
  1722  | 
 done
  | 
| 
 | 
  1723  | 
  | 
| 
 | 
  1724  | 
  | 
| 
 | 
  1725  | 
 (*Not clear why this must be proved separately; probably integ_of causes
  | 
| 
 | 
  1726  | 
   simplification problems*)
  | 
| 
 | 
  1727  | 
 lemma lemma: "~ #0 $<= x ==> x $<= #0"
  | 
| 
 | 
  1728  | 
 apply auto
  | 
| 
 | 
  1729  | 
 done
  | 
| 
 | 
  1730  | 
  | 
| 
 | 
  1731  | 
 lemma zdiv_integ_of_BIT: "integ_of (v BIT b) zdiv integ_of (w BIT False) =  
  | 
| 
 | 
  1732  | 
           (if ~b | #0 $<= integ_of w                    
  | 
| 
 | 
  1733  | 
            then integ_of v zdiv (integ_of w)     
  | 
| 
 | 
  1734  | 
            else (integ_of v $+ #1) zdiv (integ_of w))"
  | 
| 
 | 
  1735  | 
 apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT)
  | 
| 
 | 
  1736  | 
 apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zdiv_zmult_zmult1 pos_zdiv_mult_2 lemma neg_zdiv_mult_2)
  | 
| 
 | 
  1737  | 
 done
  | 
| 
 | 
  1738  | 
  | 
| 
 | 
  1739  | 
 declare zdiv_integ_of_BIT [simp]
  | 
| 
 | 
  1740  | 
  | 
| 
 | 
  1741  | 
  | 
| 
 | 
  1742  | 
 (** computing "zmod" by shifting (proofs resemble those for "zdiv") **)
  | 
| 
 | 
  1743  | 
  | 
| 
 | 
  1744  | 
 lemma pos_zmod_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zmod (#2$*a) = #1 $+ #2 $* (b zmod a)"
  | 
| 
 | 
  1745  | 
 apply (case_tac "a = #0")
  | 
| 
 | 
  1746  | 
 apply (subgoal_tac "#1 $<= a")
  | 
| 
 | 
  1747  | 
  apply (arith_tac 2)
  | 
| 
 | 
  1748  | 
 apply (subgoal_tac "#1 $< a $* #2")
  | 
| 
 | 
  1749  | 
  apply (arith_tac 2)
  | 
| 
 | 
  1750  | 
 apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a")
  | 
| 
 | 
  1751  | 
  apply (rule_tac [2] zmult_zle_mono2)
  | 
| 
 | 
  1752  | 
 apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound)
  | 
| 
 | 
  1753  | 
 apply (subst zmod_zadd1_eq)
  | 
| 
 | 
  1754  | 
 apply (simp (no_asm_simp) add: zmod_zmult_zmult2 zmod_pos_pos_trivial)
  | 
| 
 | 
  1755  | 
 apply (rule zmod_pos_pos_trivial)
  | 
| 
 | 
  1756  | 
 apply (simp (no_asm_simp) # add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ])
  | 
| 
 | 
  1757  | 
 apply (auto simp add: zmod_pos_pos_trivial)
  | 
| 
 | 
  1758  | 
 apply (subgoal_tac "#0 $<= b zmod a")
  | 
| 
 | 
  1759  | 
  apply (asm_simp_tac (simpset () add: pos_mod_sign) 2)
  | 
| 
 | 
  1760  | 
 apply arith
  | 
| 
 | 
  1761  | 
 done
  | 
| 
 | 
  1762  | 
  | 
| 
 | 
  1763  | 
  | 
| 
 | 
  1764  | 
 lemma neg_zmod_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zmod (#2$*a) = #2 $* ((b$+#1) zmod a) - #1"
  | 
| 
 | 
  1765  | 
 apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zmod (#2$* ($-a)) = #1 $+ #2$* (($-b-#1) zmod ($-a))")
  | 
| 
 | 
  1766  | 
 apply (rule_tac [2] pos_zmod_mult_2)
  | 
| 
 | 
  1767  | 
 apply (auto simp add: zmult_zminus_right)
  | 
| 
 | 
  1768  | 
 apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))")
  | 
| 
 | 
  1769  | 
 apply (Simp_tac 2)
  | 
| 
 | 
  1770  | 
 apply (asm_full_simp_tac (HOL_ss add: zmod_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric])
  | 
| 
 | 
  1771  | 
 apply (dtac (zminus_equation [THEN iffD1, symmetric])
  | 
| 
 | 
  1772  | 
 apply auto
  | 
| 
 | 
  1773  | 
 done
  | 
| 
 | 
  1774  | 
  | 
| 
 | 
  1775  | 
 lemma zmod_integ_of_BIT: "integ_of (v BIT b) zmod integ_of (w BIT False) =  
  | 
| 
 | 
  1776  | 
           (if b then  
  | 
| 
 | 
  1777  | 
                 if #0 $<= integ_of w  
  | 
| 
 | 
  1778  | 
                 then #2 $* (integ_of v zmod integ_of w) $+ #1     
  | 
| 
 | 
  1779  | 
                 else #2 $* ((integ_of v $+ #1) zmod integ_of w) - #1   
  | 
| 
 | 
  1780  | 
            else #2 $* (integ_of v zmod integ_of w))"
  | 
| 
 | 
  1781  | 
 apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT)
  | 
| 
 | 
  1782  | 
 apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zmod_zmult_zmult1 pos_zmod_mult_2 lemma neg_zmod_mult_2)
  | 
| 
 | 
  1783  | 
 done
  | 
| 
 | 
  1784  | 
  | 
| 
 | 
  1785  | 
 declare zmod_integ_of_BIT [simp]
  | 
| 
 | 
  1786  | 
*)
  | 
| 
 | 
  1787  | 
  | 
| 
 | 
  1788  | 
end
  | 
| 
 | 
  1789  | 
  |