| 
43158
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
header "Live Variable Analysis"
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Live imports Vars Big_Step
  | 
| 
 | 
     6  | 
begin
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
subsection "Liveness Analysis"
  | 
| 
 | 
     9  | 
  | 
| 
45212
 | 
    10  | 
fun L :: "com \<Rightarrow> vname set \<Rightarrow> vname set" where
  | 
| 
43158
 | 
    11  | 
"L SKIP X = X" |
  | 
| 
 | 
    12  | 
"L (x ::= a) X = X-{x} \<union> vars a" |
 | 
| 
 | 
    13  | 
"L (c\<^isub>1; c\<^isub>2) X = (L c\<^isub>1 \<circ> L c\<^isub>2) X" |
  | 
| 
 | 
    14  | 
"L (IF b THEN c\<^isub>1 ELSE c\<^isub>2) X = vars b \<union> L c\<^isub>1 X \<union> L c\<^isub>2 X" |
  | 
| 
 | 
    15  | 
"L (WHILE b DO c) X = vars b \<union> X \<union> L c X"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
value "show (L (''y'' ::= V ''z''; ''x'' ::= Plus (V ''y'') (V ''z'')) {''x''})"
 | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
value "show (L (WHILE Less (V ''x'') (V ''x'') DO ''y'' ::= V ''z'') {''x''})"
 | 
| 
 | 
    20  | 
  | 
| 
45212
 | 
    21  | 
fun "kill" :: "com \<Rightarrow> vname set" where
  | 
| 
43158
 | 
    22  | 
"kill SKIP = {}" |
 | 
| 
 | 
    23  | 
"kill (x ::= a) = {x}" |
 | 
| 
 | 
    24  | 
"kill (c\<^isub>1; c\<^isub>2) = kill c\<^isub>1 \<union> kill c\<^isub>2" |
  | 
| 
 | 
    25  | 
"kill (IF b THEN c\<^isub>1 ELSE c\<^isub>2) = kill c\<^isub>1 \<inter> kill c\<^isub>2" |
  | 
| 
 | 
    26  | 
"kill (WHILE b DO c) = {}"
 | 
| 
 | 
    27  | 
  | 
| 
45212
 | 
    28  | 
fun gen :: "com \<Rightarrow> vname set" where
  | 
| 
43158
 | 
    29  | 
"gen SKIP = {}" |
 | 
| 
 | 
    30  | 
"gen (x ::= a) = vars a" |
  | 
| 
 | 
    31  | 
"gen (c\<^isub>1; c\<^isub>2) = gen c\<^isub>1 \<union> (gen c\<^isub>2 - kill c\<^isub>1)" |
  | 
| 
 | 
    32  | 
"gen (IF b THEN c\<^isub>1 ELSE c\<^isub>2) = vars b \<union> gen c\<^isub>1 \<union> gen c\<^isub>2" |
  | 
| 
 | 
    33  | 
"gen (WHILE b DO c) = vars b \<union> gen c"
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma L_gen_kill: "L c X = (X - kill c) \<union> gen c"
  | 
| 
 | 
    36  | 
by(induct c arbitrary:X) auto
  | 
| 
 | 
    37  | 
  | 
| 
45771
 | 
    38  | 
lemma L_While_pfp: "L c (L (WHILE b DO c) X) \<subseteq> L (WHILE b DO c) X"
  | 
| 
43158
 | 
    39  | 
by(auto simp add:L_gen_kill)
  | 
| 
 | 
    40  | 
  | 
| 
45771
 | 
    41  | 
lemma L_While_lpfp:
  | 
| 
45784
 | 
    42  | 
  "vars b \<union> X \<union> L c P \<subseteq> P \<Longrightarrow> L (WHILE b DO c) X \<subseteq> P"
  | 
| 
45771
 | 
    43  | 
by(simp add: L_gen_kill)
  | 
| 
 | 
    44  | 
  | 
| 
43158
 | 
    45  | 
  | 
| 
 | 
    46  | 
subsection "Soundness"
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
theorem L_sound:
  | 
| 
 | 
    49  | 
  "(c,s) \<Rightarrow> s'  \<Longrightarrow> s = t on L c X \<Longrightarrow>
  | 
| 
 | 
    50  | 
  \<exists> t'. (c,t) \<Rightarrow> t' & s' = t' on X"
  | 
| 
45015
 | 
    51  | 
proof (induction arbitrary: X t rule: big_step_induct)
  | 
| 
43158
 | 
    52  | 
  case Skip then show ?case by auto
  | 
| 
 | 
    53  | 
next
  | 
| 
 | 
    54  | 
  case Assign then show ?case
  | 
| 
 | 
    55  | 
    by (auto simp: ball_Un)
  | 
| 
 | 
    56  | 
next
  | 
| 
 | 
    57  | 
  case (Semi c1 s1 s2 c2 s3 X t1)
  | 
| 
45015
 | 
    58  | 
  from Semi.IH(1) Semi.prems obtain t2 where
  | 
| 
43158
 | 
    59  | 
    t12: "(c1, t1) \<Rightarrow> t2" and s2t2: "s2 = t2 on L c2 X"
  | 
| 
 | 
    60  | 
    by simp blast
  | 
| 
45015
 | 
    61  | 
  from Semi.IH(2)[OF s2t2] obtain t3 where
  | 
| 
43158
 | 
    62  | 
    t23: "(c2, t2) \<Rightarrow> t3" and s3t3: "s3 = t3 on X"
  | 
| 
 | 
    63  | 
    by auto
  | 
| 
 | 
    64  | 
  show ?case using t12 t23 s3t3 by auto
  | 
| 
 | 
    65  | 
next
  | 
| 
 | 
    66  | 
  case (IfTrue b s c1 s' c2)
  | 
| 
 | 
    67  | 
  hence "s = t on vars b" "s = t on L c1 X" by auto
  | 
| 
 | 
    68  | 
  from  bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have "bval b t" by simp
  | 
| 
 | 
    69  | 
  from IfTrue(3)[OF `s = t on L c1 X`] obtain t' where
  | 
| 
 | 
    70  | 
    "(c1, t) \<Rightarrow> t'" "s' = t' on X" by auto
  | 
| 
 | 
    71  | 
  thus ?case using `bval b t` by auto
  | 
| 
 | 
    72  | 
next
  | 
| 
 | 
    73  | 
  case (IfFalse b s c2 s' c1)
  | 
| 
 | 
    74  | 
  hence "s = t on vars b" "s = t on L c2 X" by auto
  | 
| 
 | 
    75  | 
  from  bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have "~bval b t" by simp
  | 
| 
 | 
    76  | 
  from IfFalse(3)[OF `s = t on L c2 X`] obtain t' where
  | 
| 
 | 
    77  | 
    "(c2, t) \<Rightarrow> t'" "s' = t' on X" by auto
  | 
| 
 | 
    78  | 
  thus ?case using `~bval b t` by auto
  | 
| 
 | 
    79  | 
next
  | 
| 
 | 
    80  | 
  case (WhileFalse b s c)
  | 
| 
 | 
    81  | 
  hence "~ bval b t" by (auto simp: ball_Un) (metis bval_eq_if_eq_on_vars)
  | 
| 
45770
 | 
    82  | 
  thus ?case using WhileFalse.prems by auto
  | 
| 
43158
 | 
    83  | 
next
  | 
| 
 | 
    84  | 
  case (WhileTrue b s1 c s2 s3 X t1)
  | 
| 
 | 
    85  | 
  let ?w = "WHILE b DO c"
  | 
| 
45770
 | 
    86  | 
  from `bval b s1` WhileTrue.prems have "bval b t1"
  | 
| 
43158
 | 
    87  | 
    by (auto simp: ball_Un) (metis bval_eq_if_eq_on_vars)
  | 
| 
45771
 | 
    88  | 
  have "s1 = t1 on L c (L ?w X)" using  L_While_pfp WhileTrue.prems
  | 
| 
43158
 | 
    89  | 
    by (blast)
  | 
| 
45015
 | 
    90  | 
  from WhileTrue.IH(1)[OF this] obtain t2 where
  | 
| 
43158
 | 
    91  | 
    "(c, t1) \<Rightarrow> t2" "s2 = t2 on L ?w X" by auto
  | 
| 
45015
 | 
    92  | 
  from WhileTrue.IH(2)[OF this(2)] obtain t3 where "(?w,t2) \<Rightarrow> t3" "s3 = t3 on X"
  | 
| 
43158
 | 
    93  | 
    by auto
  | 
| 
 | 
    94  | 
  with `bval b t1` `(c, t1) \<Rightarrow> t2` show ?case by auto
  | 
| 
 | 
    95  | 
qed
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
subsection "Program Optimization"
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
text{* Burying assignments to dead variables: *}
 | 
| 
45212
 | 
   101  | 
fun bury :: "com \<Rightarrow> vname set \<Rightarrow> com" where
  | 
| 
43158
 | 
   102  | 
"bury SKIP X = SKIP" |
  | 
| 
 | 
   103  | 
"bury (x ::= a) X = (if x:X then x::= a else SKIP)" |
  | 
| 
 | 
   104  | 
"bury (c\<^isub>1; c\<^isub>2) X = (bury c\<^isub>1 (L c\<^isub>2 X); bury c\<^isub>2 X)" |
  | 
| 
 | 
   105  | 
"bury (IF b THEN c\<^isub>1 ELSE c\<^isub>2) X = IF b THEN bury c\<^isub>1 X ELSE bury c\<^isub>2 X" |
  | 
| 
 | 
   106  | 
"bury (WHILE b DO c) X = WHILE b DO bury c (vars b \<union> X \<union> L c X)"
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
text{* We could prove the analogous lemma to @{thm[source]L_sound}, and the
 | 
| 
 | 
   109  | 
proof would be very similar. However, we phrase it as a semantics
  | 
| 
 | 
   110  | 
preservation property: *}
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
theorem bury_sound:
  | 
| 
 | 
   113  | 
  "(c,s) \<Rightarrow> s'  \<Longrightarrow> s = t on L c X \<Longrightarrow>
  | 
| 
 | 
   114  | 
  \<exists> t'. (bury c X,t) \<Rightarrow> t' & s' = t' on X"
  | 
| 
45015
 | 
   115  | 
proof (induction arbitrary: X t rule: big_step_induct)
  | 
| 
43158
 | 
   116  | 
  case Skip then show ?case by auto
  | 
| 
 | 
   117  | 
next
  | 
| 
 | 
   118  | 
  case Assign then show ?case
  | 
| 
 | 
   119  | 
    by (auto simp: ball_Un)
  | 
| 
 | 
   120  | 
next
  | 
| 
 | 
   121  | 
  case (Semi c1 s1 s2 c2 s3 X t1)
  | 
| 
45015
 | 
   122  | 
  from Semi.IH(1) Semi.prems obtain t2 where
  | 
| 
43158
 | 
   123  | 
    t12: "(bury c1 (L c2 X), t1) \<Rightarrow> t2" and s2t2: "s2 = t2 on L c2 X"
  | 
| 
 | 
   124  | 
    by simp blast
  | 
| 
45015
 | 
   125  | 
  from Semi.IH(2)[OF s2t2] obtain t3 where
  | 
| 
43158
 | 
   126  | 
    t23: "(bury c2 X, t2) \<Rightarrow> t3" and s3t3: "s3 = t3 on X"
  | 
| 
 | 
   127  | 
    by auto
  | 
| 
 | 
   128  | 
  show ?case using t12 t23 s3t3 by auto
  | 
| 
 | 
   129  | 
next
  | 
| 
 | 
   130  | 
  case (IfTrue b s c1 s' c2)
  | 
| 
 | 
   131  | 
  hence "s = t on vars b" "s = t on L c1 X" by auto
  | 
| 
 | 
   132  | 
  from  bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have "bval b t" by simp
  | 
| 
 | 
   133  | 
  from IfTrue(3)[OF `s = t on L c1 X`] obtain t' where
  | 
| 
 | 
   134  | 
    "(bury c1 X, t) \<Rightarrow> t'" "s' =t' on X" by auto
  | 
| 
 | 
   135  | 
  thus ?case using `bval b t` by auto
  | 
| 
 | 
   136  | 
next
  | 
| 
 | 
   137  | 
  case (IfFalse b s c2 s' c1)
  | 
| 
 | 
   138  | 
  hence "s = t on vars b" "s = t on L c2 X" by auto
  | 
| 
 | 
   139  | 
  from  bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have "~bval b t" by simp
  | 
| 
 | 
   140  | 
  from IfFalse(3)[OF `s = t on L c2 X`] obtain t' where
  | 
| 
 | 
   141  | 
    "(bury c2 X, t) \<Rightarrow> t'" "s' = t' on X" by auto
  | 
| 
 | 
   142  | 
  thus ?case using `~bval b t` by auto
  | 
| 
 | 
   143  | 
next
  | 
| 
 | 
   144  | 
  case (WhileFalse b s c)
  | 
| 
 | 
   145  | 
  hence "~ bval b t" by (auto simp: ball_Un) (metis bval_eq_if_eq_on_vars)
  | 
| 
45770
 | 
   146  | 
  thus ?case using WhileFalse.prems by auto
  | 
| 
43158
 | 
   147  | 
next
  | 
| 
 | 
   148  | 
  case (WhileTrue b s1 c s2 s3 X t1)
  | 
| 
 | 
   149  | 
  let ?w = "WHILE b DO c"
  | 
| 
45770
 | 
   150  | 
  from `bval b s1` WhileTrue.prems have "bval b t1"
  | 
| 
43158
 | 
   151  | 
    by (auto simp: ball_Un) (metis bval_eq_if_eq_on_vars)
  | 
| 
 | 
   152  | 
  have "s1 = t1 on L c (L ?w X)"
  | 
| 
45771
 | 
   153  | 
    using L_While_pfp WhileTrue.prems by blast
  | 
| 
45015
 | 
   154  | 
  from WhileTrue.IH(1)[OF this] obtain t2 where
  | 
| 
43158
 | 
   155  | 
    "(bury c (L ?w X), t1) \<Rightarrow> t2" "s2 = t2 on L ?w X" by auto
  | 
| 
45015
 | 
   156  | 
  from WhileTrue.IH(2)[OF this(2)] obtain t3
  | 
| 
43158
 | 
   157  | 
    where "(bury ?w X,t2) \<Rightarrow> t3" "s3 = t3 on X"
  | 
| 
 | 
   158  | 
    by auto
  | 
| 
 | 
   159  | 
  with `bval b t1` `(bury c (L ?w X), t1) \<Rightarrow> t2` show ?case by auto
  | 
| 
 | 
   160  | 
qed
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
corollary final_bury_sound: "(c,s) \<Rightarrow> s' \<Longrightarrow> (bury c UNIV,s) \<Rightarrow> s'"
  | 
| 
 | 
   163  | 
using bury_sound[of c s s' UNIV]
  | 
| 
 | 
   164  | 
by (auto simp: fun_eq_iff[symmetric])
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
text{* Now the opposite direction. *}
 | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
lemma SKIP_bury[simp]:
  | 
| 
 | 
   169  | 
  "SKIP = bury c X \<longleftrightarrow> c = SKIP | (EX x a. c = x::=a & x \<notin> X)"
  | 
| 
 | 
   170  | 
by (cases c) auto
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
lemma Assign_bury[simp]: "x::=a = bury c X \<longleftrightarrow> c = x::=a & x : X"
  | 
| 
 | 
   173  | 
by (cases c) auto
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
lemma Semi_bury[simp]: "bc\<^isub>1;bc\<^isub>2 = bury c X \<longleftrightarrow>
  | 
| 
 | 
   176  | 
  (EX c\<^isub>1 c\<^isub>2. c = c\<^isub>1;c\<^isub>2 & bc\<^isub>2 = bury c\<^isub>2 X & bc\<^isub>1 = bury c\<^isub>1 (L c\<^isub>2 X))"
  | 
| 
 | 
   177  | 
by (cases c) auto
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
lemma If_bury[simp]: "IF b THEN bc1 ELSE bc2 = bury c X \<longleftrightarrow>
  | 
| 
 | 
   180  | 
  (EX c1 c2. c = IF b THEN c1 ELSE c2 &
  | 
| 
 | 
   181  | 
     bc1 = bury c1 X & bc2 = bury c2 X)"
  | 
| 
 | 
   182  | 
by (cases c) auto
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
lemma While_bury[simp]: "WHILE b DO bc' = bury c X \<longleftrightarrow>
  | 
| 
 | 
   185  | 
  (EX c'. c = WHILE b DO c' & bc' = bury c' (vars b \<union> X \<union> L c X))"
  | 
| 
 | 
   186  | 
by (cases c) auto
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
theorem bury_sound2:
  | 
| 
 | 
   189  | 
  "(bury c X,s) \<Rightarrow> s'  \<Longrightarrow> s = t on L c X \<Longrightarrow>
  | 
| 
 | 
   190  | 
  \<exists> t'. (c,t) \<Rightarrow> t' & s' = t' on X"
  | 
| 
45015
 | 
   191  | 
proof (induction "bury c X" s s' arbitrary: c X t rule: big_step_induct)
  | 
| 
43158
 | 
   192  | 
  case Skip then show ?case by auto
  | 
| 
 | 
   193  | 
next
  | 
| 
 | 
   194  | 
  case Assign then show ?case
  | 
| 
 | 
   195  | 
    by (auto simp: ball_Un)
  | 
| 
 | 
   196  | 
next
  | 
| 
 | 
   197  | 
  case (Semi bc1 s1 s2 bc2 s3 c X t1)
  | 
| 
 | 
   198  | 
  then obtain c1 c2 where c: "c = c1;c2"
  | 
| 
 | 
   199  | 
    and bc2: "bc2 = bury c2 X" and bc1: "bc1 = bury c1 (L c2 X)" by auto
  | 
| 
45015
 | 
   200  | 
  note IH = Semi.hyps(2,4)
  | 
| 
 | 
   201  | 
  from IH(1)[OF bc1, of t1] Semi.prems c obtain t2 where
  | 
| 
43158
 | 
   202  | 
    t12: "(c1, t1) \<Rightarrow> t2" and s2t2: "s2 = t2 on L c2 X" by auto
  | 
| 
45015
 | 
   203  | 
  from IH(2)[OF bc2 s2t2] obtain t3 where
  | 
| 
43158
 | 
   204  | 
    t23: "(c2, t2) \<Rightarrow> t3" and s3t3: "s3 = t3 on X"
  | 
| 
 | 
   205  | 
    by auto
  | 
| 
 | 
   206  | 
  show ?case using c t12 t23 s3t3 by auto
  | 
| 
 | 
   207  | 
next
  | 
| 
 | 
   208  | 
  case (IfTrue b s bc1 s' bc2)
  | 
| 
 | 
   209  | 
  then obtain c1 c2 where c: "c = IF b THEN c1 ELSE c2"
  | 
| 
 | 
   210  | 
    and bc1: "bc1 = bury c1 X" and bc2: "bc2 = bury c2 X" by auto
  | 
| 
 | 
   211  | 
  have "s = t on vars b" "s = t on L c1 X" using IfTrue.prems c by auto
  | 
| 
 | 
   212  | 
  from bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have "bval b t" by simp
  | 
| 
45015
 | 
   213  | 
  note IH = IfTrue.hyps(3)
  | 
| 
 | 
   214  | 
  from IH[OF bc1 `s = t on L c1 X`] obtain t' where
  | 
| 
43158
 | 
   215  | 
    "(c1, t) \<Rightarrow> t'" "s' =t' on X" by auto
  | 
| 
 | 
   216  | 
  thus ?case using c `bval b t` by auto
  | 
| 
 | 
   217  | 
next
  | 
| 
 | 
   218  | 
  case (IfFalse b s bc2 s' bc1)
  | 
| 
 | 
   219  | 
  then obtain c1 c2 where c: "c = IF b THEN c1 ELSE c2"
  | 
| 
 | 
   220  | 
    and bc1: "bc1 = bury c1 X" and bc2: "bc2 = bury c2 X" by auto
  | 
| 
 | 
   221  | 
  have "s = t on vars b" "s = t on L c2 X" using IfFalse.prems c by auto
  | 
| 
 | 
   222  | 
  from bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have "~bval b t" by simp
  | 
| 
45015
 | 
   223  | 
  note IH = IfFalse.hyps(3)
  | 
| 
 | 
   224  | 
  from IH[OF bc2 `s = t on L c2 X`] obtain t' where
  | 
| 
43158
 | 
   225  | 
    "(c2, t) \<Rightarrow> t'" "s' =t' on X" by auto
  | 
| 
 | 
   226  | 
  thus ?case using c `~bval b t` by auto
  | 
| 
 | 
   227  | 
next
  | 
| 
 | 
   228  | 
  case (WhileFalse b s c)
  | 
| 
 | 
   229  | 
  hence "~ bval b t" by (auto simp: ball_Un dest: bval_eq_if_eq_on_vars)
  | 
| 
 | 
   230  | 
  thus ?case using WhileFalse by auto
  | 
| 
 | 
   231  | 
next
  | 
| 
 | 
   232  | 
  case (WhileTrue b s1 bc' s2 s3 c X t1)
  | 
| 
 | 
   233  | 
  then obtain c' where c: "c = WHILE b DO c'"
  | 
| 
 | 
   234  | 
    and bc': "bc' = bury c' (vars b \<union> X \<union> L c' X)" by auto
  | 
| 
 | 
   235  | 
  let ?w = "WHILE b DO c'"
  | 
| 
 | 
   236  | 
  from `bval b s1` WhileTrue.prems c have "bval b t1"
  | 
| 
 | 
   237  | 
    by (auto simp: ball_Un) (metis bval_eq_if_eq_on_vars)
  | 
| 
45015
 | 
   238  | 
  note IH = WhileTrue.hyps(3,5)
  | 
| 
43158
 | 
   239  | 
  have "s1 = t1 on L c' (L ?w X)"
  | 
| 
45771
 | 
   240  | 
    using L_While_pfp WhileTrue.prems c by blast
  | 
| 
45015
 | 
   241  | 
  with IH(1)[OF bc', of t1] obtain t2 where
  | 
| 
43158
 | 
   242  | 
    "(c', t1) \<Rightarrow> t2" "s2 = t2 on L ?w X" by auto
  | 
| 
45015
 | 
   243  | 
  from IH(2)[OF WhileTrue.hyps(6), of t2] c this(2) obtain t3
  | 
| 
43158
 | 
   244  | 
    where "(?w,t2) \<Rightarrow> t3" "s3 = t3 on X"
  | 
| 
 | 
   245  | 
    by auto
  | 
| 
 | 
   246  | 
  with `bval b t1` `(c', t1) \<Rightarrow> t2` c show ?case by auto
  | 
| 
 | 
   247  | 
qed
  | 
| 
 | 
   248  | 
  | 
| 
 | 
   249  | 
corollary final_bury_sound2: "(bury c UNIV,s) \<Rightarrow> s' \<Longrightarrow> (c,s) \<Rightarrow> s'"
  | 
| 
 | 
   250  | 
using bury_sound2[of c UNIV]
  | 
| 
 | 
   251  | 
by (auto simp: fun_eq_iff[symmetric])
  | 
| 
 | 
   252  | 
  | 
| 
 | 
   253  | 
corollary bury_iff: "(bury c UNIV,s) \<Rightarrow> s' \<longleftrightarrow> (c,s) \<Rightarrow> s'"
  | 
| 
 | 
   254  | 
by(metis final_bury_sound final_bury_sound2)
  | 
| 
 | 
   255  | 
  | 
| 
 | 
   256  | 
end
  |