| author | wenzelm | 
| Mon, 06 Sep 2010 14:18:16 +0200 | |
| changeset 39157 | b98909faaea8 | 
| parent 37767 | a2b7a20d6ea3 | 
| child 40812 | ff16e22e8776 | 
| permissions | -rw-r--r-- | 
| 
29655
 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 
haftmann 
parents: 
28562 
diff
changeset
 | 
1  | 
(* Authors: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 15300 | 2  | 
Copyright 1996 University of Cambridge  | 
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Equivalence Relations in Higher-Order Set Theory *}
 | 
|
6  | 
||
7  | 
theory Equiv_Relations  | 
|
| 
35725
 
4d7e3cc9c52c
Big_Operators now in Main rather than Plain src/HOL/Wellfounded.thy
 
haftmann 
parents: 
35216 
diff
changeset
 | 
8  | 
imports Big_Operators Relation Plain  | 
| 15300 | 9  | 
begin  | 
10  | 
||
11  | 
subsection {* Equivalence relations *}
 | 
|
12  | 
||
13  | 
locale equiv =  | 
|
14  | 
fixes A and r  | 
|
| 30198 | 15  | 
assumes refl_on: "refl_on A r"  | 
| 15300 | 16  | 
and sym: "sym r"  | 
17  | 
and trans: "trans r"  | 
|
18  | 
||
19  | 
text {*
 | 
|
20  | 
  Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
 | 
|
21  | 
r = r"}.  | 
|
22  | 
||
23  | 
  First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
 | 
|
24  | 
*}  | 
|
25  | 
||
26  | 
lemma sym_trans_comp_subset:  | 
|
27  | 
"sym r ==> trans r ==> r\<inverse> O r \<subseteq> r"  | 
|
28  | 
by (unfold trans_def sym_def converse_def) blast  | 
|
29  | 
||
| 30198 | 30  | 
lemma refl_on_comp_subset: "refl_on A r ==> r \<subseteq> r\<inverse> O r"  | 
31  | 
by (unfold refl_on_def) blast  | 
|
| 15300 | 32  | 
|
33  | 
lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r"  | 
|
34  | 
apply (unfold equiv_def)  | 
|
35  | 
apply clarify  | 
|
36  | 
apply (rule equalityI)  | 
|
| 30198 | 37  | 
apply (iprover intro: sym_trans_comp_subset refl_on_comp_subset)+  | 
| 15300 | 38  | 
done  | 
39  | 
||
40  | 
text {* Second half. *}
 | 
|
41  | 
||
42  | 
lemma comp_equivI:  | 
|
43  | 
"r\<inverse> O r = r ==> Domain r = A ==> equiv A r"  | 
|
| 30198 | 44  | 
apply (unfold equiv_def refl_on_def sym_def trans_def)  | 
| 15300 | 45  | 
apply (erule equalityE)  | 
46  | 
apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r")  | 
|
47  | 
apply fast  | 
|
48  | 
apply fast  | 
|
49  | 
done  | 
|
50  | 
||
51  | 
||
52  | 
subsection {* Equivalence classes *}
 | 
|
53  | 
||
54  | 
lemma equiv_class_subset:  | 
|
55  | 
  "equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
 | 
|
56  | 
  -- {* lemma for the next result *}
 | 
|
57  | 
by (unfold equiv_def trans_def sym_def) blast  | 
|
58  | 
||
59  | 
theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
 | 
|
60  | 
apply (assumption | rule equalityI equiv_class_subset)+  | 
|
61  | 
apply (unfold equiv_def sym_def)  | 
|
62  | 
apply blast  | 
|
63  | 
done  | 
|
64  | 
||
65  | 
lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
 | 
|
| 30198 | 66  | 
by (unfold equiv_def refl_on_def) blast  | 
| 15300 | 67  | 
|
68  | 
lemma subset_equiv_class:  | 
|
69  | 
    "equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
 | 
|
70  | 
  -- {* lemma for the next result *}
 | 
|
| 30198 | 71  | 
by (unfold equiv_def refl_on_def) blast  | 
| 15300 | 72  | 
|
73  | 
lemma eq_equiv_class:  | 
|
74  | 
    "r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
 | 
|
| 17589 | 75  | 
by (iprover intro: equalityD2 subset_equiv_class)  | 
| 15300 | 76  | 
|
77  | 
lemma equiv_class_nondisjoint:  | 
|
78  | 
    "equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
 | 
|
79  | 
by (unfold equiv_def trans_def sym_def) blast  | 
|
80  | 
||
81  | 
lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A"  | 
|
| 30198 | 82  | 
by (unfold equiv_def refl_on_def) blast  | 
| 15300 | 83  | 
|
84  | 
theorem equiv_class_eq_iff:  | 
|
85  | 
  "equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
 | 
|
86  | 
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)  | 
|
87  | 
||
88  | 
theorem eq_equiv_class_iff:  | 
|
89  | 
  "equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
 | 
|
90  | 
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)  | 
|
91  | 
||
92  | 
||
93  | 
subsection {* Quotients *}
 | 
|
94  | 
||
| 28229 | 95  | 
definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"  (infixl "'/'/" 90) where
 | 
| 37767 | 96  | 
  "A//r = (\<Union>x \<in> A. {r``{x}})"  -- {* set of equiv classes *}
 | 
| 15300 | 97  | 
|
98  | 
lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
 | 
|
99  | 
by (unfold quotient_def) blast  | 
|
100  | 
||
101  | 
lemma quotientE:  | 
|
102  | 
  "X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
 | 
|
103  | 
by (unfold quotient_def) blast  | 
|
104  | 
||
105  | 
lemma Union_quotient: "equiv A r ==> Union (A//r) = A"  | 
|
| 30198 | 106  | 
by (unfold equiv_def refl_on_def quotient_def) blast  | 
| 15300 | 107  | 
|
108  | 
lemma quotient_disj:  | 
|
109  | 
  "equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
 | 
|
110  | 
apply (unfold quotient_def)  | 
|
111  | 
apply clarify  | 
|
112  | 
apply (rule equiv_class_eq)  | 
|
113  | 
apply assumption  | 
|
114  | 
apply (unfold equiv_def trans_def sym_def)  | 
|
115  | 
apply blast  | 
|
116  | 
done  | 
|
117  | 
||
118  | 
lemma quotient_eqI:  | 
|
119  | 
"[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y"  | 
|
120  | 
apply (clarify elim!: quotientE)  | 
|
121  | 
apply (rule equiv_class_eq, assumption)  | 
|
122  | 
apply (unfold equiv_def sym_def trans_def, blast)  | 
|
123  | 
done  | 
|
124  | 
||
125  | 
lemma quotient_eq_iff:  | 
|
126  | 
"[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)"  | 
|
127  | 
apply (rule iffI)  | 
|
128  | 
prefer 2 apply (blast del: equalityI intro: quotient_eqI)  | 
|
129  | 
apply (clarify elim!: quotientE)  | 
|
130  | 
apply (unfold equiv_def sym_def trans_def, blast)  | 
|
131  | 
done  | 
|
132  | 
||
| 18493 | 133  | 
lemma eq_equiv_class_iff2:  | 
134  | 
  "\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)"
 | 
|
135  | 
by(simp add:quotient_def eq_equiv_class_iff)  | 
|
136  | 
||
| 15300 | 137  | 
|
138  | 
lemma quotient_empty [simp]: "{}//r = {}"
 | 
|
139  | 
by(simp add: quotient_def)  | 
|
140  | 
||
141  | 
lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
 | 
|
142  | 
by(simp add: quotient_def)  | 
|
143  | 
||
144  | 
lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
 | 
|
145  | 
by(simp add: quotient_def)  | 
|
146  | 
||
147  | 
||
| 15302 | 148  | 
lemma singleton_quotient: "{x}//r = {r `` {x}}"
 | 
149  | 
by(simp add:quotient_def)  | 
|
150  | 
||
151  | 
lemma quotient_diff1:  | 
|
152  | 
  "\<lbrakk> inj_on (%a. {a}//r) A; a \<in> A \<rbrakk> \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
 | 
|
153  | 
apply(simp add:quotient_def inj_on_def)  | 
|
154  | 
apply blast  | 
|
155  | 
done  | 
|
156  | 
||
| 15300 | 157  | 
subsection {* Defining unary operations upon equivalence classes *}
 | 
158  | 
||
159  | 
text{*A congruence-preserving function*}
 | 
|
160  | 
locale congruent =  | 
|
161  | 
fixes r and f  | 
|
162  | 
assumes congruent: "(y,z) \<in> r ==> f y = f z"  | 
|
163  | 
||
| 19363 | 164  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19979 
diff
changeset
 | 
165  | 
  RESPECTS :: "('a => 'b) => ('a * 'a) set => bool"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19979 
diff
changeset
 | 
166  | 
(infixr "respects" 80) where  | 
| 19363 | 167  | 
"f respects r == congruent r f"  | 
| 15300 | 168  | 
|
169  | 
||
170  | 
lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c"  | 
|
171  | 
  -- {* lemma required to prove @{text UN_equiv_class} *}
 | 
|
172  | 
by auto  | 
|
173  | 
||
174  | 
lemma UN_equiv_class:  | 
|
175  | 
"equiv A r ==> f respects r ==> a \<in> A  | 
|
176  | 
    ==> (\<Union>x \<in> r``{a}. f x) = f a"
 | 
|
177  | 
  -- {* Conversion rule *}
 | 
|
178  | 
apply (rule equiv_class_self [THEN UN_constant_eq], assumption+)  | 
|
179  | 
apply (unfold equiv_def congruent_def sym_def)  | 
|
180  | 
apply (blast del: equalityI)  | 
|
181  | 
done  | 
|
182  | 
||
183  | 
lemma UN_equiv_class_type:  | 
|
184  | 
"equiv A r ==> f respects r ==> X \<in> A//r ==>  | 
|
185  | 
(!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B"  | 
|
186  | 
apply (unfold quotient_def)  | 
|
187  | 
apply clarify  | 
|
188  | 
apply (subst UN_equiv_class)  | 
|
189  | 
apply auto  | 
|
190  | 
done  | 
|
191  | 
||
192  | 
text {*
 | 
|
193  | 
Sufficient conditions for injectiveness. Could weaken premises!  | 
|
194  | 
  major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
 | 
|
195  | 
A ==> f y \<in> B"}.  | 
|
196  | 
*}  | 
|
197  | 
||
198  | 
lemma UN_equiv_class_inject:  | 
|
199  | 
"equiv A r ==> f respects r ==>  | 
|
200  | 
(\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r  | 
|
201  | 
==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r)  | 
|
202  | 
==> X = Y"  | 
|
203  | 
apply (unfold quotient_def)  | 
|
204  | 
apply clarify  | 
|
205  | 
apply (rule equiv_class_eq)  | 
|
206  | 
apply assumption  | 
|
207  | 
apply (subgoal_tac "f x = f xa")  | 
|
208  | 
apply blast  | 
|
209  | 
apply (erule box_equals)  | 
|
210  | 
apply (assumption | rule UN_equiv_class)+  | 
|
211  | 
done  | 
|
212  | 
||
213  | 
||
214  | 
subsection {* Defining binary operations upon equivalence classes *}
 | 
|
215  | 
||
216  | 
text{*A congruence-preserving function of two arguments*}
 | 
|
217  | 
locale congruent2 =  | 
|
218  | 
fixes r1 and r2 and f  | 
|
219  | 
assumes congruent2:  | 
|
220  | 
"(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2"  | 
|
221  | 
||
222  | 
text{*Abbreviation for the common case where the relations are identical*}
 | 
|
| 19979 | 223  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19979 
diff
changeset
 | 
224  | 
  RESPECTS2:: "['a => 'a => 'b, ('a * 'a) set] => bool"
 | 
| 21749 | 225  | 
(infixr "respects2" 80) where  | 
| 19979 | 226  | 
"f respects2 r == congruent2 r r f"  | 
227  | 
||
| 15300 | 228  | 
|
229  | 
lemma congruent2_implies_congruent:  | 
|
230  | 
"equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)"  | 
|
| 30198 | 231  | 
by (unfold congruent_def congruent2_def equiv_def refl_on_def) blast  | 
| 15300 | 232  | 
|
233  | 
lemma congruent2_implies_congruent_UN:  | 
|
234  | 
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==>  | 
|
235  | 
    congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
 | 
|
236  | 
apply (unfold congruent_def)  | 
|
237  | 
apply clarify  | 
|
238  | 
apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+)  | 
|
239  | 
apply (simp add: UN_equiv_class congruent2_implies_congruent)  | 
|
| 30198 | 240  | 
apply (unfold congruent2_def equiv_def refl_on_def)  | 
| 15300 | 241  | 
apply (blast del: equalityI)  | 
242  | 
done  | 
|
243  | 
||
244  | 
lemma UN_equiv_class2:  | 
|
245  | 
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2  | 
|
246  | 
    ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
 | 
|
247  | 
by (simp add: UN_equiv_class congruent2_implies_congruent  | 
|
248  | 
congruent2_implies_congruent_UN)  | 
|
249  | 
||
250  | 
lemma UN_equiv_class_type2:  | 
|
251  | 
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f  | 
|
252  | 
==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2  | 
|
253  | 
==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B)  | 
|
254  | 
==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B"  | 
|
255  | 
apply (unfold quotient_def)  | 
|
256  | 
apply clarify  | 
|
257  | 
apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN  | 
|
258  | 
congruent2_implies_congruent quotientI)  | 
|
259  | 
done  | 
|
260  | 
||
261  | 
lemma UN_UN_split_split_eq:  | 
|
262  | 
"(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) =  | 
|
263  | 
(\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)"  | 
|
264  | 
  -- {* Allows a natural expression of binary operators, *}
 | 
|
265  | 
  -- {* without explicit calls to @{text split} *}
 | 
|
266  | 
by auto  | 
|
267  | 
||
268  | 
lemma congruent2I:  | 
|
269  | 
"equiv A1 r1 ==> equiv A2 r2  | 
|
270  | 
==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w)  | 
|
271  | 
==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z)  | 
|
272  | 
==> congruent2 r1 r2 f"  | 
|
273  | 
  -- {* Suggested by John Harrison -- the two subproofs may be *}
 | 
|
274  | 
  -- {* \emph{much} simpler than the direct proof. *}
 | 
|
| 30198 | 275  | 
apply (unfold congruent2_def equiv_def refl_on_def)  | 
| 15300 | 276  | 
apply clarify  | 
277  | 
apply (blast intro: trans)  | 
|
278  | 
done  | 
|
279  | 
||
280  | 
lemma congruent2_commuteI:  | 
|
281  | 
assumes equivA: "equiv A r"  | 
|
282  | 
and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y"  | 
|
283  | 
and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z"  | 
|
284  | 
shows "f respects2 r"  | 
|
285  | 
apply (rule congruent2I [OF equivA equivA])  | 
|
286  | 
apply (rule commute [THEN trans])  | 
|
287  | 
apply (rule_tac [3] commute [THEN trans, symmetric])  | 
|
288  | 
apply (rule_tac [5] sym)  | 
|
| 25482 | 289  | 
apply (rule congt | assumption |  | 
| 15300 | 290  | 
erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+  | 
291  | 
done  | 
|
292  | 
||
| 24728 | 293  | 
|
294  | 
subsection {* Quotients and finiteness *}
 | 
|
295  | 
||
296  | 
text {*Suggested by Florian Kammüller*}
 | 
|
297  | 
||
298  | 
lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)"  | 
|
299  | 
  -- {* recall @{thm equiv_type} *}
 | 
|
300  | 
apply (rule finite_subset)  | 
|
301  | 
apply (erule_tac [2] finite_Pow_iff [THEN iffD2])  | 
|
302  | 
apply (unfold quotient_def)  | 
|
303  | 
apply blast  | 
|
304  | 
done  | 
|
305  | 
||
306  | 
lemma finite_equiv_class:  | 
|
307  | 
"finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X"  | 
|
308  | 
apply (unfold quotient_def)  | 
|
309  | 
apply (rule finite_subset)  | 
|
310  | 
prefer 2 apply assumption  | 
|
311  | 
apply blast  | 
|
312  | 
done  | 
|
313  | 
||
314  | 
lemma equiv_imp_dvd_card:  | 
|
315  | 
"finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X  | 
|
316  | 
==> k dvd card A"  | 
|
| 
26791
 
3581a9c71909
Instantiated subst rule to avoid problems with HO unification.
 
berghofe 
parents: 
25482 
diff
changeset
 | 
317  | 
apply (rule Union_quotient [THEN subst [where P="\<lambda>A. k dvd card A"]])  | 
| 24728 | 318  | 
apply assumption  | 
319  | 
apply (rule dvd_partition)  | 
|
320  | 
prefer 3 apply (blast dest: quotient_disj)  | 
|
321  | 
apply (simp_all add: Union_quotient equiv_type)  | 
|
322  | 
done  | 
|
323  | 
||
324  | 
lemma card_quotient_disjoint:  | 
|
325  | 
 "\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A"
 | 
|
326  | 
apply(simp add:quotient_def)  | 
|
327  | 
apply(subst card_UN_disjoint)  | 
|
328  | 
apply assumption  | 
|
329  | 
apply simp  | 
|
330  | 
apply(fastsimp simp add:inj_on_def)  | 
|
| 35216 | 331  | 
apply simp  | 
| 24728 | 332  | 
done  | 
333  | 
||
| 15300 | 334  | 
end  |