| 1461 |      1 | (*  Title:      LK/ex/prop
 | 
| 0 |      2 |     ID:         $Id$
 | 
| 1461 |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
| 0 |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Classical sequent calculus: examples with propositional connectives
 | 
|  |      7 | Can be read to test the LK system.
 | 
|  |      8 | *)
 | 
|  |      9 | 
 | 
|  |     10 | writeln"LK/ex/prop: propositional examples";
 | 
|  |     11 | 
 | 
|  |     12 | writeln"absorptive laws of & and | ";
 | 
|  |     13 | 
 | 
|  |     14 | goal LK.thy "|- P & P <-> P";
 | 
|  |     15 | by (fast_tac prop_pack 1);
 | 
|  |     16 | result();
 | 
|  |     17 | 
 | 
|  |     18 | goal LK.thy "|- P | P <-> P";
 | 
|  |     19 | by (fast_tac prop_pack 1);
 | 
|  |     20 | result();
 | 
|  |     21 | 
 | 
|  |     22 | writeln"commutative laws of & and | ";
 | 
|  |     23 | 
 | 
|  |     24 | goal LK.thy "|- P & Q  <->  Q & P";
 | 
|  |     25 | by (fast_tac prop_pack 1);
 | 
|  |     26 | result();
 | 
|  |     27 | 
 | 
|  |     28 | goal LK.thy "|- P | Q  <->  Q | P";
 | 
|  |     29 | by (fast_tac prop_pack 1);
 | 
|  |     30 | result();
 | 
|  |     31 | 
 | 
|  |     32 | 
 | 
|  |     33 | writeln"associative laws of & and | ";
 | 
|  |     34 | 
 | 
|  |     35 | goal LK.thy "|- (P & Q) & R  <->  P & (Q & R)";
 | 
|  |     36 | by (fast_tac prop_pack 1);
 | 
|  |     37 | result();
 | 
|  |     38 | 
 | 
|  |     39 | goal LK.thy "|- (P | Q) | R  <->  P | (Q | R)";
 | 
|  |     40 | by (fast_tac prop_pack 1);
 | 
|  |     41 | result();
 | 
|  |     42 | 
 | 
|  |     43 | writeln"distributive laws of & and | ";
 | 
|  |     44 | goal LK.thy "|- (P & Q) | R  <-> (P | R) & (Q | R)";
 | 
|  |     45 | by (fast_tac prop_pack 1);
 | 
|  |     46 | result();
 | 
|  |     47 | 
 | 
|  |     48 | goal LK.thy "|- (P | Q) & R  <-> (P & R) | (Q & R)";
 | 
|  |     49 | by (fast_tac prop_pack 1);
 | 
|  |     50 | result();
 | 
|  |     51 | 
 | 
|  |     52 | writeln"Laws involving implication";
 | 
|  |     53 | 
 | 
|  |     54 | goal LK.thy "|- (P|Q --> R) <-> (P-->R) & (Q-->R)";
 | 
|  |     55 | by (fast_tac prop_pack 1);
 | 
|  |     56 | result(); 
 | 
|  |     57 | 
 | 
|  |     58 | goal LK.thy "|- (P & Q --> R) <-> (P--> (Q-->R))";
 | 
|  |     59 | by (fast_tac prop_pack 1);
 | 
|  |     60 | result(); 
 | 
|  |     61 | 
 | 
|  |     62 | 
 | 
|  |     63 | goal LK.thy "|- (P --> Q & R) <-> (P-->Q)  &  (P-->R)";
 | 
|  |     64 | by (fast_tac prop_pack 1);
 | 
|  |     65 | result();
 | 
|  |     66 | 
 | 
|  |     67 | 
 | 
|  |     68 | writeln"Classical theorems";
 | 
|  |     69 | 
 | 
|  |     70 | goal LK.thy "|- P|Q --> P| ~P&Q";
 | 
|  |     71 | by (fast_tac prop_pack 1);
 | 
|  |     72 | result();
 | 
|  |     73 | 
 | 
|  |     74 | 
 | 
|  |     75 | goal LK.thy "|- (P-->Q)&(~P-->R)  -->  (P&Q | R)";
 | 
|  |     76 | by (fast_tac prop_pack 1);
 | 
|  |     77 | result();
 | 
|  |     78 | 
 | 
|  |     79 | 
 | 
|  |     80 | goal LK.thy "|- P&Q | ~P&R  <->  (P-->Q)&(~P-->R)";
 | 
|  |     81 | by (fast_tac prop_pack 1);
 | 
|  |     82 | result();
 | 
|  |     83 | 
 | 
|  |     84 | 
 | 
|  |     85 | goal LK.thy "|- (P-->Q) | (P-->R)  <->  (P --> Q | R)";
 | 
|  |     86 | by (fast_tac prop_pack 1);
 | 
|  |     87 | result();
 | 
|  |     88 | 
 | 
|  |     89 | 
 | 
|  |     90 | (*If and only if*)
 | 
|  |     91 | 
 | 
|  |     92 | goal LK.thy "|- (P<->Q) <-> (Q<->P)";
 | 
|  |     93 | by (fast_tac prop_pack 1);
 | 
|  |     94 | result();
 | 
|  |     95 | 
 | 
|  |     96 | goal LK.thy "|- ~ (P <-> ~P)";
 | 
|  |     97 | by (fast_tac prop_pack 1);
 | 
|  |     98 | result();
 | 
|  |     99 | 
 | 
|  |    100 | 
 | 
|  |    101 | (*Sample problems from 
 | 
|  |    102 |   F. J. Pelletier, 
 | 
|  |    103 |   Seventy-Five Problems for Testing Automatic Theorem Provers,
 | 
|  |    104 |   J. Automated Reasoning 2 (1986), 191-216.
 | 
|  |    105 |   Errata, JAR 4 (1988), 236-236.
 | 
|  |    106 | *)
 | 
|  |    107 | 
 | 
|  |    108 | (*1*)
 | 
|  |    109 | goal LK.thy "|- (P-->Q)  <->  (~Q --> ~P)";
 | 
|  |    110 | by (fast_tac prop_pack 1);
 | 
|  |    111 | result();
 | 
|  |    112 | 
 | 
|  |    113 | (*2*)
 | 
|  |    114 | goal LK.thy "|- ~ ~ P  <->  P";
 | 
|  |    115 | by (fast_tac prop_pack 1);
 | 
|  |    116 | result();
 | 
|  |    117 | 
 | 
|  |    118 | (*3*)
 | 
|  |    119 | goal LK.thy "|- ~(P-->Q) --> (Q-->P)";
 | 
|  |    120 | by (fast_tac prop_pack 1);
 | 
|  |    121 | result();
 | 
|  |    122 | 
 | 
|  |    123 | (*4*)
 | 
|  |    124 | goal LK.thy "|- (~P-->Q)  <->  (~Q --> P)";
 | 
|  |    125 | by (fast_tac prop_pack 1);
 | 
|  |    126 | result();
 | 
|  |    127 | 
 | 
|  |    128 | (*5*)
 | 
|  |    129 | goal LK.thy "|- ((P|Q)-->(P|R)) --> (P|(Q-->R))";
 | 
|  |    130 | by (fast_tac prop_pack 1);
 | 
|  |    131 | result();
 | 
|  |    132 | 
 | 
|  |    133 | (*6*)
 | 
|  |    134 | goal LK.thy "|- P | ~ P";
 | 
|  |    135 | by (fast_tac prop_pack 1);
 | 
|  |    136 | result();
 | 
|  |    137 | 
 | 
|  |    138 | (*7*)
 | 
|  |    139 | goal LK.thy "|- P | ~ ~ ~ P";
 | 
|  |    140 | by (fast_tac prop_pack 1);
 | 
|  |    141 | result();
 | 
|  |    142 | 
 | 
|  |    143 | (*8.  Peirce's law*)
 | 
|  |    144 | goal LK.thy "|- ((P-->Q) --> P)  -->  P";
 | 
|  |    145 | by (fast_tac prop_pack 1);
 | 
|  |    146 | result();
 | 
|  |    147 | 
 | 
|  |    148 | (*9*)
 | 
|  |    149 | goal LK.thy "|- ((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)";
 | 
|  |    150 | by (fast_tac prop_pack 1);
 | 
|  |    151 | result();
 | 
|  |    152 | 
 | 
|  |    153 | (*10*)
 | 
|  |    154 | goal LK.thy "Q-->R, R-->P&Q, P-->(Q|R) |- P<->Q";
 | 
|  |    155 | by (fast_tac prop_pack 1);
 | 
|  |    156 | result();
 | 
|  |    157 | 
 | 
|  |    158 | (*11.  Proved in each direction (incorrectly, says Pelletier!!)  *)
 | 
|  |    159 | goal LK.thy "|- P<->P";
 | 
|  |    160 | by (fast_tac prop_pack 1);
 | 
|  |    161 | result();
 | 
|  |    162 | 
 | 
|  |    163 | (*12.  "Dijkstra's law"*)
 | 
|  |    164 | goal LK.thy "|- ((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))";
 | 
|  |    165 | by (fast_tac prop_pack 1);
 | 
|  |    166 | result();
 | 
|  |    167 | 
 | 
|  |    168 | (*13.  Distributive law*)
 | 
|  |    169 | goal LK.thy "|- P | (Q & R)  <-> (P | Q) & (P | R)";
 | 
|  |    170 | by (fast_tac prop_pack 1);
 | 
|  |    171 | result();
 | 
|  |    172 | 
 | 
|  |    173 | (*14*)
 | 
|  |    174 | goal LK.thy "|- (P <-> Q) <-> ((Q | ~P) & (~Q|P))";
 | 
|  |    175 | by (fast_tac prop_pack 1);
 | 
|  |    176 | result();
 | 
|  |    177 | 
 | 
|  |    178 | 
 | 
|  |    179 | (*15*)
 | 
|  |    180 | goal LK.thy "|- (P --> Q) <-> (~P | Q)";
 | 
|  |    181 | by (fast_tac prop_pack 1);
 | 
|  |    182 | result();
 | 
|  |    183 | 
 | 
|  |    184 | (*16*)
 | 
|  |    185 | goal LK.thy "|- (P-->Q) | (Q-->P)";
 | 
|  |    186 | by (fast_tac prop_pack 1);
 | 
|  |    187 | result();
 | 
|  |    188 | 
 | 
|  |    189 | (*17*)
 | 
|  |    190 | goal LK.thy "|- ((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))";
 | 
|  |    191 | by (fast_tac prop_pack 1);
 | 
|  |    192 | result();
 | 
|  |    193 | 
 | 
|  |    194 | writeln"Reached end of file.";
 |